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Why real time? cnﬁm

Performing calculations directly in real time

> avoids the need of analytic continuation in comparison with the
iImaginary-time formalism

> allows treating phenomena off-equilibrium, e.g. many aspects of heavy-
lon collisions, including ...

| | | | | | | | | | I
1x100 E 2-loop PT - - - - _ 1x101 £ 2-loop PT - - - -
: exact diag. ; : exact diag. ]
. (M"‘«. class stat. class stat.
UVV\;\A\ real-time FRG | R real-time FRG
1x1071 £ - GSA (static) . 1100 1 GSA (static)
Q i Q _ !
c , o 1x107 E
S 1x102 " S F/
Q E LN [&)
c C 1N c H
-E ;o E 2| i
C_E 5 I i I X \)\\ n )\ @ 1)(10 g E
S Ix10% g/ T Yy ~ [\ ° :
@ i ! . ! e A ims: o} L 7 ]
= 7a N \\,Um[\[\(\ * 3l )
{1 - . A | A 1x1073 ¢ é
[ / \ v \. " [ ]
1x104 |~ N I\VN , ]
[ / N N | R,
3 S B "N ] 1x104 | B TN E
t T - D] : MMMM
1)(10-5) I I I e L 1 1 1 1 1 1 1 ]
0 2 4 6 8 10 0 1 2 3 4 5 6 7 8

w

Figure: Spectral functions of the quartic oscillator at finite temperature, stemming

from various computational techniques, including the real-time FRG.
JR, D. Schweitzer, L. J. Sieke, L. von Smekal, Phys. Rev. D 105, 116017 (2022)
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Why critical dynamics? cncﬁ%

... dynamic universality (classified into ‘Models’)

> Proper theoretical description needs methods which can handle non-
perturbative real-time physics

> Long-term goal: or——r——— 1 1 1 1 ]
Models G, H -O(4) + magnetic field -
[ (Model G) 7, §
> In this talk: start with ~_ i -
somewhat simpler  _
>
Models A, B, and C $
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Figure adapted from L. von Smekal, Nucl. Phys. B Proc. Suppl. 228 (2012) Figure adapted from C. S. Fischer, Prog. Part. Nucl. Phys. 105, 1 (2019)

Johannes Roth Critical dynamics from the real-time FRG HFHF Theory Retreat



Causality in the functional renormalization group




Causality in the FRG cncﬁ%

['[¢] I [¢] Sl¢]
|dea of the FRG is to introduce an infrared cutoff s |_k5‘k"k_| -

IR uVv
ASU*, ¢ = 5 [ " @R )0l /
Ty = —
> with r99U|at0r ‘anomalous’ (zero due to causality) advanced ok 2

\ / integrate out fluctuations

RK(CL‘ le/) RA(CC ZB’) ‘step by step’
R " — k ’ k ’
) = () Rk

/ N\

retarded ‘Keldysh’ (set by FDR in equilibrium)

| | Rff (w,p) = coth (= ) (Bf(w,p) — R{!(w.p))
» which affects analytic structure of propagators

1
I (w, p) + R} (w, p)

1
I (w,p) + Ri (w, p)

GkR(wap) — = G?(va) — =

» What are the consequences?

Johannes Roth Critical dynamics from the real-time FRG HFHF Theory Retreat



Causal regulators cncﬁ%

Test:

> Observe general property of Keldysh action:
direct consequence of causality structure!

s=5 [ @ (e

see for example A. Kameneyv, Field Theory of Non-Equilibrium Systems (Cambridge University Press, 2011)

> Necessary condition for correctness of flow

Find:
» Popular regulators produce such an unphysical component during the
flow

» Problem of Causality IS not trivial C. Duclut and B. Delamotte, Phys. Rev. E 95, 012107 (2017)

> An insufficient regulator leads to an incorrect Keldysh action
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Causal regulators cncﬁ%

What can we do?

(Start with O+1 dimensional case, i.e. quantum mechanics)

Most simple regulator has form of a purely mass-like shift
(Callan-Symanzik regulator)

R w) = —k?
> Trivially causal, only induces mass shift m?2 - m? + k2
> Too simple?

> Flow no longer consistent with Wilson’s idea of integrating out
momentum (energy) shells?
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Causal regulators cncﬁ%

Regulator motivated by physics: (Causality guaranteed!)

> Imagine ASkis the result of integrating out an external heat bath (HB),
modelled as an ensemble of harmonic oscillators attached to the particle

(,US A. O. Caldeira and A. J. Leggett, Physics A 121, 587 (1983)
2 2
76 W
2 : 2
QMMM Hj“l_HB: _S_|_ 8908—9590333
Ps X 2 2

S

> Integrate out heat bath £ Particle acquires self-energy

ER(w):—/OO dw'’ 2w"J(w’)
0 21 (w+ig)? —w?

2
> Fully controlled by spectral density: J(w) =7 Z z—sé(w — w,) = 2Im ¥ (w)

> But self-energy also has a non-vanishing real Eart!
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Causal regulators cncﬁ%

Now make the spectral density k-dependent, and choose it so as to damp
iInfrared modes.

> Resulting self-energy is the regulator,

negative shift in squared mass!
° \O'A Example:
0.6

| \ — RelRu(w)k] Tn(w) = kwexp { —w?/k* }

IM[Rk(w)/k?]
| | \ But: Heat bath induces negative (!) shift

\/f" “*"in the squared mass

Ji *dw J k2
: Am%IB(k) Z/ w k(W) —
-—0.4_ ; - o 47-‘-
(1) which makes the theory unstable and
m® — m® = Ampg (k) acausal for sufficiently large values of k !
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Causal regulators

CR:T%

Way out: Remember that a mass-like shift is causal

» Add mass-like ‘counter-term’ —ak? with a > 0 to compensate unwanted
shift in squared mass

o0 / / /
R/A dw' 2w Ji (W) 5
R, (w) =— — = —ak
0 27 (wtig)? —w "
/ mass-like counter-term
spectral representation of w-dependence

> Flow of retarded-propagator poles:

JR, D. Schweitzer, L. J. Sieke, L. von Smekal, Phys. Rev. D 105, 116017 (2022)
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Causal regulators for field theories cncﬁ%

What about a field theory?

> Imagine an independent bath of harmonic oscillators ‘attached’ to every
spatial momentum mode p

> Spectral representation just acquires an additional p-dependence

R/A B T dw 2w Ik (W', p) 2
Rk ((’U?p) — _/O 9 (w L Z-E)Q - CU/2 T Oék(p)k

0.50

1.5 0.25
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~Re[RR(w,p)/k?)/Z;t
Im[RE(w,p)/k2V Z

Figure: Real (left, mass shift) and imaginary (right, damping) parts of regulator.
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Causal regulators for field theories cncﬁ%

And when there is no preferred frame of reference, e.g. no external
medium? What about Lorentz invariance?

> Regulator like above would break Lorentz symmetry.

> Imagine the heat bath to be an ensemble of Klein-Gordon fields with a
relativistic dispersion relation w2 = ms? + p2.

> Qur field gains a self-energy
(Kallen-Lehmann representation)

* dy? T (1)
» R = —
£ (W, P) /0 21 (w +1€)? — p? — p?

> with invariant spectral density: J(u?) =2 ) g26(u* — m2)

~

connected to the general one above via J(w,p) = sgn(w) 6(p*) J(p?)

» Reintroduce mass-like counter-term —ak?, and then ...
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Causal regulators for field theories cncﬁ%

... find general form of a Lorentz-invariant heat-bath regulator

o0 2 T 2
R/A _ d,LL Jk(lu ) o k2
Ry (w,p) = /o 21 (w +1€)2 — p2? — 2 “

intrinsically not UV finite!
(for a positive-definite spectral density) (special case of general spectral representation from above)

Ak
(1+ 2 /k2)?

Example: Ji(p?) =

Lorentz
invariance lies here
X
B
3
9 possible at all?
E
£ A,
@ o°
OQ e.g. o°
Y Ru(p)=k>r(x; ¢)

integrating out heat bath

defines arrow of time
Figure: Imaginary part of the resulting causal,
Lorentz invariant, but not-UV-finite, regulator. Figure taken from J. Braun et al., arXiv:2206.10232
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Critical dynamics cncﬁ%

Spectral function defined as

pw) = 5z [ dt e [ dta iflot.@). 00 0))

which critical scaling: s°~"p(s%w, sp, 31/”7) = p(w, p, T)
> behaves like p(w) ~ lwl-¢ at critical point, with [reduced’ temperature 7= (T = Tc)/Td]

> scaling exponent o= (2 — n)/z, which is related to

» dynamical critical exponent z, defined by &~ &2 ‘critical slowing down’
correlation time correlation length
» z determined by dynamic universality class

|

(called ‘Models’ in the classification scheme by Halperin and Hohenberg)
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Critical dynamics cncﬁ%

Consider classical Ag*-theory with Landau-Ginzburg Model A
free energy (statics) z=2+cn
equilibrium partition function:
F= [ dts {5002 + Vi) } 7= [pp oo

> equations of motion (dynamics) with dissipative coupling y to heat bath

a
¥¢+7@¢=—5;+€

> Gaussian white noise(s)

&(x))s =0
E(@)E(2"))p = 29T0(x — 2)

> discrete Z> symmetry breaks spontaneously for T< T when m?2 <0
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Critical dynamics cncﬁ%

Consider classical Ag*-theory with Landau-Ginzburg Model B
free energy (statics) z=4-n
equilibrium partition function:
FZ/dde' {1(§¢)2+V(¢)+ngn+n—2 } Z—/Dngne_BF
2 2X0

> equations of motion (dynamics) with dissipative coupling y to heat bath

5F - = 5F — —
815290%—73,590:—% + £ TRatzn—l—atn:)\VQE—Fv-C

\ .

-~

total divergence (n is conserved density)

> Gaussian white noise(s)

&(x))p =0 (¢"(x))s =0
(€(2)€(2")) s = T (z — ') (¢'(2)¢? (27)) g = 2AT0" 6(x — )

> discrete Z> symmetry breaks spontaneously for T< T when m?2 <0

> e.g. uniaxial ferromagnet

include shear modes of energy-momentum tensor ~ Model H
see Son and Stephanov, Phys. Rev. D 70, 056001 (2004)
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Critical dynamics cncﬁ%

Consider classical Ag*-theory with Landau-Ginzburg
free energy (statics)

equilibrium partition function:

1 - 2
F= [ dts {5002 + Vi) 2 } 2= [ Dopne
2 2X0

> equations of motion (dynamics) with dissipative coupling y to heat bath

5F - = 5F — —
815290%—73,590:—% + £ TRatzn—l—atn:)\VQE—Fv-C

\ .

-~

total divergence (n is conserved density)

> Gaussian white noise(s)

&(x))p =0 (¢"(x))s =0
(€(2)€(2")) s = T (z — ') (¢'(2)¢? (27)) g = 2AT0" 6(x — )

> discrete Z> symmetry breaks spontaneously for T< T when m?2 <0
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Critical dynamics — truncation cncﬁ%

1P| vertex expansion ... around scale-dependent minimum ¢g: use for Models A and B

> effective average action: > flow of 2-point function:

_ 1 c c 0 ch(x,a:’) ¢c_¢(¢),k qc "N = —j
te=g [0 =050, (g thiren) (O o), omte0=t L e A e

B [ e Zge V2oa — 2 [ ise _ge V3 g
RGO Y RS t %
generate non-local power-law + 5 > +

expand 2-point function in spatial gradients,

behaviour in spectral function T ox
but keep full frequency dependence: X x' /
Ii(w,p) = Tg% (W) — Zyp* + -+ | | |
059w, p) = T (w) — ZEp? + -+ interaction” with scale-
o dependent minimum

Df(w,p) = = (T5,(w) — T (@)

> flow of effective potential: > flow of couplings to density: (Model B)

I
p V’( )= vanish!
kVi\p NG Q (coupling is linear ~ mixing)

use for squared mass and quartic coupling

for color coding and diagrammatic conventions, see
S. Huelsmann, S. Schlichting, P. Scior, Phys. Rev. D 102, 096004 (2020)
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Critical dynamics — truncation CRC-TR2n

1P1 vertex expansion ... around ¢ = 0: use for Models Aand C

> effective average action: > flow of 2- and 4-point functions:
—1 q 0 ch(xaxl) ¢C
F’“‘z/ (6%, 6%), (rqcu ) Fliq(x,x’)) <¢Q)m,+ I (xx)___ Q Q
T | @@V @@ @)+

PRI iy o
OV, " (x,x) = i
22 s @yt e ) —y "

expand 2- and 4-point functions in spatial gradients,

but keep full frequency dependence: > flow of couplings to density: (Model C)
[} (w,p) =T, (w) — Zip* +-
LY (w,p) = T (W) — Zip® +
M p) = = (Tw) ~ T )
Vit w p) = Ve (@) + Vi (0)p” +
Ve

for the QM case, see
S. Huelsmann, S. Schlichting, P. Scior, Phys. Rev. D 102, 096004 (2020)
JR, D. Schweitzer, L. J. Sieke, L. von Smekal, Phys. Rev. D 105, 116017 (2022)
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Critical dynamics — results

108

spectral function p(w) / MeV-2

preliminary

CRC-TR2n
(a)d =2 (b)d =3 Model A
z=2+c¢cn
B . mean field, g=1 —T1=0 -=-T=0 10° (¥ mean field, o=1 —1=0 -=-1=0
S 1=55x10"°--1=29x10" i 7= 0.0043- - 7 = 0.0022
—1=0062 --71=0014 - —1=003 --71=0.028
—71=02 --71=0.15 10% - —T7=0.094 --71=0.092
-=-7=0.35 —_—T1=029 =--71=0.28

Figure: Critical spectral functions of Model A in 2d and 3d.

w / MeV

107°
w / MeV

JR, L. von Smekal, in preparation

> visible power-law behaviour building up close to the critical point
> extract dynamical critical exponents z =2.09 in 2d and z = 2.04 in 3d

compare z = 2.1667(5)
z = 2.09(6)
z =2.0842(39)

[reduced temperature T = (T — T¢)/T¢]

M. P. Nightingale and H. W. J. Bléte, Phys. Rev. B 62, 1089 (2000)
M. J. Dunlavy and D. Venus, Phys. Rev. B 71, 144406 (2005)

A.S. Krinitsyn, V.V. Prudnikov, P.V. Prudnikov, Theor Math Phys 147, 561-575 (2006)

and more...

compare z = 2.0245(15)
see e.g. M. Hasenbusch, Phys. Rev. E 101, 022126 (2020)
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Critical dynamics — results cncﬁ%

(@) T =-0.356 b)T=0 Mo_céllel B

(non-critical) (critical) —o

preliminary =<

.
Y 2N

10°

e
-

(scali avi 107°

spectral function p(w) / MeV-2

Ipl / MeV

10-1° JR, L. von Smekal, in preparation

10—10

Figure: Non-critical (left) and critical (right) spectral functions of Model B in 3d.

> sigma meson stays massive!
> it is the mixed diffusive mode between fluctuations in the sigma meson and the
conserved baryon density which becomes critical

[reduced temperature T = (T — Tc)/Tc] include shear modes of energy-momentum tensor ~ Model H
see Son and Stephanov, Phys. Rev. D 70, 056001 (2004)
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Critical dynamics — results CRC-TR2n

(@) d=2 (b)d =3
. 1010

10° ., ++ mean field, o=1 —1=0 P . mean field, g=1 —1=0
2 i r=29x107 | 10°F T = 0.0022
é 106* ”", —1=0.014 106: — T = (0.028
= I . ——1=0.15 i ——17=0.002
= 10t p b ——1=0235 oL ——1=0.28
N 2 B B
; 10 I 0
§ 100: 100
= -2 B
= 107 preliminary 1072 - preliminary
g 10y
® 106+ 107 -

-8 i | -8 i \ \ \

10-1° 10-10 1075 10° 107" 10710 107° 10°

w / MeV w / MeV
Figure: Critical spectral functions of Model C in 2d and 3d. JR, L. von Smekal, in preparation

» exact hyperscaling relationz =2 + a/v
> extract dynamical critical exponents z = 2.56 in 2d and z = 2.31 in 3d

AN

compare z = 2.174749(19)

using high-precision conformal-bootstrap results of
F. Kos, D. Poland, D. Simmons-Duffin, A. Vichi, JHEP 08, 036 (2016)

compare z = 2 (exact)

see Onsager’s solution of 2d Ising model

[reduced temperature T = (T — T¢)/T¢]
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Summary & outlook cncﬁ%

We have

> constructed regulators in the real-time FRG, and shown that their
frequency-dependence (if causal) admits a spectral representation,

> calculated critical spectral functions in Model A, B, and C, using one- and
two-loop self-consistent truncation schemes.

For the future, we plan to

> extract universal scaling functions which describe universal behaviour in
close vicinity of critical point,

> inspect real-time dynamics of Model G and H,

> include fermions (low-energy effective models of QCD in real time), and

> analyze non-equilibrium phenomena (Kibble-Zurek, ...)

Thank you for your attention!
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