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Why do we study J/yp production in heavy-ion collisions?

J/p mesons
are a hard probe: test quark-gluon plasma from creation to hadronization
no consistent microscopical theory available yet
show quite different results for key observables at RHIC and LHC
which are not fully understood yet:
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J/y production in p+p collisions

How to describe a bound state like a c-cbar in QCD?
It involves low momenta and needs non perturbative input =» assumptions.

Our approach: Wigner density formalism (as successful at lower energies)
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Wigner Density Formalism

c-cbar interaction depends on relative p and r only, = plane wave of CM
Starting point: Wave function (w.f.) of the relative motion of state i: |(I)@ =

w.f. 2 density matrix ‘(I)i >< (I)i‘

, . 1 1
Wigner density of |®; >: @' (r.p) = / ye'PY <1 — 5y|®; >< Bifr + 5y >

(close to classical phase space density) R 1‘1;1‘21 R
P=pi+p2, p= D1 ;pz.
Erd3p Erid3p; W
ni(RP) = / (2my i (5-P) 11 / (23N -2 PN (T P1--IN, PN)
all c¢ pairs” - all other particles” -
— dn; / R i (R, P) The results are obtained
&P ) (2m)? using a relativ. formulation

pp: In momentum space given by tuned PYTHIA
In coordinate space mr?exp(_ 2) 62 = (r?)/3 = 4/(3m?)
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Wigner Density Formalism

The Wigner density of the state |®; >is
Simplest possible (harmonic oscillator) parametrization:

| D 72 ; 16 D 2 3 2
@'? (r.p) =8 c«::rrp[ ——5 52;‘;2} ‘I’I'g (r.p) = 3 dyds (ﬁ 5 + 0214*2)6-'?-'}»‘[ T3 *721”2]

dqd- o

D : degeneracy of ®

d, : degeneracy of ¢

d, : degeneracy of cbar
o ~ radius of @

Where o reproduces the rms radius of the vacuum c cbar state

The tuned PYTHIA reproduces FONLL charm quark calculations
but J/Y multiplicity depends in addition on the ccbar correlation (not known in FONLL)
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pp: comparison with PHENIX and ALICE data
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pp: comparison of Y(nS) with CMS/ALICE data

Wigner density approach works also for Y(nS)
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With this validation of the new approach for
guarkonium production in pp we are ready for AA collisions
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AA collisions




Primary production of J/'¥ in AA

Without the formation of a QGP we expect a (large) enhancement of the
J/p production because ¢ and cbar from different NN vertices can form a J/y.

enhancement 46% enhancement 270%
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but experiments show suppression
Reason: J/y production in HI collisions is a very complex process

T. Song et al., PRC 96 (2017) 1, 014907
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The different processes which influence the J/y yield

Creation of heavy quarks (shadowing)

J/yp are first unstable in the quark gluon plasma and are created later

c and cbar interact with the QGP

c and cbar interact among themselves (< lattice QCD)

If QGP arrives at the dissociation temperature T, , Stable J/y are possible
J/p creation ends when the QGP hadronizes

J/p can be further suppressed or created by hadronic interaction
(task for the future - Torres-Rincon)

There are in addition J/p from the corona (do not pass the QGP)

Our model follows the time evolution of all ¢ and cbar quarks,
Is based, as our pp calculation, on the Wigner density formalism

assumes that
all c and cbar interact with QGP as those observed finally as D-mesons

all c and cbar interact among themselves
uses EPOS2 to describe the expanding QGP
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HQ interactions with QGP verified by D meson results

D mesons test the energy loss and v, of heavy quarks in a QGP

energy loss tests the initial phase

Vv, the late stage of the expansion

Two mechanisms : collisional energy loss: PRC78 (2008) 014904
radiative energy loss: PRD89 (2014) 074018
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EPOS4HQ reproduces dN/dp;, R,, and v, quite well
- Heavy quark dynamics in QGP medium under control
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J/p dynamics in heavy ion collisions

Starting point: von Neumann equation for the density matrix of all particles
5p4ﬁr/5t = —E[H, pln,_r] W|th H = EiKi —+ Ei}jﬂj
P®(t) = Tr[p®pw ()] with p® = |T® >< Tg| gives the multiplicity of ® at time t

This is the solution if we would know the quantal py(t)
p(t) Is unknown so we follow BUU,QMD ..

pN — <WNc(cIassicaI) >

and replace P*(t) by the integration over the rate:
~dP*  d

I?(t) = — = —Tr[p®pn (t)] P2(T) = / ' T (t)dt
dt  di : 0

We assume that heavy quarks and QGP partons interact by collisions only:

I = T dpN (1)/dt) = —iTr(p[H. o (1)) = —Tr(p* [Usz. o))
U = Z(VljJFV%)
Jj<3
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elastic HQ interactions with the QGP  sysrev.c 78 @oos) 014904

The interaction between HQ and q and g is described by Born type diagrams

@ .
dop ot s — M?%)? s 1 Se) Vir) ~ R D

g/g is randomly chosen from a Fermi/Bose distribution with the hydro cell temperature

coupling constant and infrared screening are input

If t is small (<<T) : Born has to be replaced
by a hard thermal loop (HTL) approach
For t>T Born approximation is (almost) ok

(Braaten and Thoma PRD44 1298,2625) for QED:
Energy loss indep. of the artificial scale t* which
separates the regimes

02 01 1

Peshier NPA 888, 7 Extension to QCD (PRC78:014904)
based on universality
constraint of K = 02

Dokshitzer
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Inelastic Qq - Qqg collisions

Low mass quarks : radiation dominantes energy loss
Charm and bottom: radiation of the same order as collisional

fw
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MSQMD in [ight cone gauge

In the limit1/s — oo the radiation matrix elements factorize in

Mtzot = M’ Prad

elast

k., W= transv mom/ energy of gluon E = energy of the heavy quark

Emission from heavy g Emission from g

leading order: no emission

m=0 -> Gunion Bertsch from light g
Energy loss: heals tolinear divergences
W dﬂl J?‘ad hrc (Vg dJEI
3 3 = —5 1 —z)—5 - Praa
drd-kidq; T dq;

X:(D/E (w/E)2

MQCD — MSQCD(l — (1—w/E)2)
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Open heavy flavor results in pp and AA from EPOS4
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J/p creation in heavy ion collisions

['®(t) expressed in Wigner and classical phase space density:

(1) = W, p)We(ry.p1...'N. PN)

dP?®(t) d d dBrid®p;
= —T t) = —
dt dt rle®. o (0) dtH (2m)3N

If the collisions are point like in time and if W% (ry,rs, p1.p2) iS time independent

(1,2 are charm quark, n=number of collision of i and j, ty(n)=time of n-th collision of ij )

d3r;d3p; b ﬂ
Z Z Z (t—tij(n) H (2m)3N W (r.p)[ﬂ “(r1.p1, - rN.,pN.t—I— )— “(ri.p1.- I'N-.PN-f—E)J]

n 1=1,2 73 N

W+ W—

W- QObar

W+
9
t+€

q;g ng

QGP parton

ﬁl?



J/g creation in heavy ion collisions

Lattice calc: W®(ry,rs, p1, p2) depends on the temperature and hence on time
8

(Lafferty and RothkoH)f PRD 101,056010) =
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This creates an additional rate, called local rate

e = (27h)° / d*rd’p Wog(r,p.t)We (r,p. T(1)).

Final multiplicity of J/¥ in heavy-ion coll with a dissociation temperature

t
P(t) :Pprim(finit)—l_/ Ceotr(t') + Tipe(t')]dt  —  P(t —o00) = asympt. multiplicity
i

init

] SE— pee
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Interaction of ¢ and cbar in the QGP

V(r) = attractive potential between ¢ and cbar (PRD101,056010)

We work with | PbPb /s=5.02 TeV |y| < 0.9
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c-cbar potential keeps the quarks together = increases multiplicity



Influence of the Corona

EPOS 2 show two classes of particles of initially produced particles:
Core particles which become part of QGP

Corona particles from the surface of the interaction zone / g

(energy density too low, no collision after production - like pp) @ -v‘_,,fé

importent for high pt and for v2 C
Confirmed by centrality dependence of multiplicity | ‘ 77

For elementary particles it is easy to define corona and core particle (2306.10277)

For J/y mesons we use as working description:
Corona J/y are those where none of its constituents suffers from a momentum
change of q > g, - Larger q would destroy a J/y.




Comparison with ALICE data

Caution: excited states decay, b decay and hadronic rescattering not in yet
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Comparison with ALICE data

[30-50%0]
—
" PbPb-5TeV-[30%;50%] d
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create difference between
diagonal and off-diagonal

ﬁzz

caution:
comparison of mid and forward rapidities



Our approach and open quantum systems

Von Neuman eqg.

‘ ‘ Z . .

dpn /Ot = —E[H,PN] H=Hi2+Hyx_2+U;> Uro=%X;Vi; +X,;Va,
Prob. to find quarkonium P (t) = Tr[p® pn (1)] with [p® Hi2] =0 [p® Hy_2]=0
Quarkonium rate: dP®(t)

= I (t) = _T—:T?'[,G‘IJ[ULLPN(?'«L)”

) ) 1
dpn (t)/0t = _Ezj (K. pn ()] — Ek::-} Viks pn (2)]-

i

Interaction: coll. heavy quarks — partons: —;sz}j WVik, pn (1)] = (=i X00(t — tjx(n))
(Wg({r}. {p}.t + ) = W ({r}. {p}.t — ).
yields N v
dP%(t) ® A " 9 .
o =T =nh Efljld rid p;WiWy(t) = thHdSrjd-’*pj wl‘%ﬁww(t)

Lindblad eq. (open quantum systems) in the quantal Brownian motion regime

%p(tj —le—I—AHp] -I-Z/

&k [ oL lctine (&
o {cn(ﬁ m—§{cnwcnm.p}]

Miura, Akamatsu , 2205.15551
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https://arxiv.org/abs/2205.15551

Summary

We presented a new approach for quarkonia production in pp collision based on the Wigner density matrix
It describes the y and p; dependence of the spectra for J/'¥, x and Y from RHIC to LHC

Based on these results we presented a new microscopic quantal approach for J/& production in AA

which follows each ¢ and cbar from creation until detection as J/y
based on dpy /0t = —i[H, py] (noO rate equation, no Fokker Planck eq., no thermal assumptions)

c and cbar are created in initial hard collisions (controlled by pp data)
when entering the QGP J/y become unstable

c and cbar interact by potential interaction (lattice potential)
c and cbar interact by collisions with g,g from QGP

when T < Ty, =400 MeV J/y can be formed (and later destroyed)
formation described by Wigner density formalism (as in pp)

» Including corona J/&, preliminary results agree reasonably with ALICE data for R,, as well as for v, .

» The later production (over) compensates the expected multiplicity
increase (with respect to pp) due to ¢ and cbar from different vertices

» We observe an enhancement of Ry, (J/'¥) at low p; at LHC, as seen experimentally

ﬁm



Outlook

a lot remains to be done:
Follow the color structure, excited states
Relativistic kinematics,

J/y interaction in the hadronic expansion
reduced cross section of preformed J/y (r < Ay,,n) With QGP partons
(dipole cross section)




