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Standard modelling of heavy ion collisions
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▶ early stage requires non-equilibrium description, but
system quickly equilibrates

▶ strongly interacting QGP leaves imprints of
thermalization and collectivity in final state observables:

vn, ⟨pT ⟩, particle yields, ...
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Small systems
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Very dilute, hydrodynamics not necessarily applicable

▶ still collective behaviour is observed!
Nagle, Zajc Ann.Rev.Nucl.Part. 68 (2018) 211

collectivity can also be explained in kinetic theory, a microscopic
description which does not rely on equilibration

▶ interpolate between free streaming at small opacities and
hydrodynamics at large opacities!

Aim

Case study in simplified kinetic theory description on full range from small to large
system size with comparison to hydrodynamics for transverse flow observables
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Model and Setup
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▶ microscopic description in terms of averaged on-shell phase-space distribution of
massless bosons:

f(τ,x⊥, η,p⊥, y) =
(2π)3

νeff

dN

d3x d3p
(τ,x⊥, η,p⊥, y)

boost invariance
initialized with vanishing longitudinal pressure and no transverse momentum
anisotropies

▶ time evolution: Boltzmann equation in conformal relaxation time approximation

pµ∂µf = CRTA[f ] = −pµuµ

τR
(f − feq) , τR = 5

η

s
T−1

results will depend only on initial state and opacity
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Parametric dependencies
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▶ dimensionless parameter: opacity ∼“total interaction rate”
Kurkela, Wiedemann, Wu EPJC 79 (2019) 965

γ̂ =

(
5
η

s

)−1
(

1

aπ
R
dE

(0)
⊥

dη

)1/4

encodes dependencies on viscosity, transverse size and energy scale

▶ our initial condition:
average profiles for centrality classes of Pb+Pb at 5.02 TeV
Borghini, Borrell, Feld, Roch, Schlichting, Werthmann PRC 107 (2023), 034905

for fixed profile, vary γ̂ via η/s: γ̂ ≈ 11 · (4πη/s)−1

30-40%
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Time evolution in different systems
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▶ Re−1 =
(

6πµνπµν

e2

)1/2
measures

relative size of non-equilibrium effects
equilibration timescale strongly
depends on opacity; smaller systems
take longer to equilibrate

▶ elliptic flow on similar timescales;
continuously varying strength of
response
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How to compare to Hydro?
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▶ want to find the regime where hydrodynamics agrees with kinetic theory
▶ caveat: even at large opacities, naive hydrodynamics does not accurately describe

pre-equilibrium
how to find a meaningful setup to compare to?
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Hydrodynamic setups
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〈Re−1〉ε = 0.8
〈Re−1〉ε = 0.6
〈Re−1〉ε = 0.4

▶ scaled hydro: change initial condition in anticipation of different early time behaviour

▶ hybrid simulations: switching from kinetic theory to hydrodynamics after Re−1 has
dropped to a specific value

later switch ⇒ more accurate results
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Comparison of improved hydro schemes with kin. theory
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▶ naive hydro is off; scaled hydro accurate if γ̂ ≳ 4

▶ Hybrid kin. theory scheme can improve on scaled hydro at intermediate opacities

▶ later switching improves agreement: accurate on 5% level if Re−1 < Re−1
c ∼ 0.75
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Transition between dynamical regimes
 

 

CRC -  TR 

Characterize dynamics by timescales of:

transition to hydrodynamic behaviour and onset of transverse expansion

▶ hydro applicable for Re−1 ≲ 0.75

takes longer for smaller systems; some
systems never equilibrate enough!

▶ measured by buildup of flow: u⊥ ∼ 0.1

almost independent of opacity:
τExp ∼ 0.2R
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Regime of applicability of hydrodynamics
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▶ upper area: regime of transverse expansion

▶ Hydro applicable in top right corner
▶ γ̂ ≲ 3: hydro does not become applicable before onset of transverse expansion!

Clemens Werthmann Range of Applicability of Hydrodynamics STRONG-HFHF-2023 ∥ 03.10.2023 10/15



Hydrodynamics in real collision systems
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Taking the criterion of γ̂ ≳ 3 seriously, what does this mean for the applicability of
hydrodynamics to “real-life” collisions?

Pb + Pb :
30−40%

γ̂ ∼ 5.7
(

η/s
0.16

)−1 (
R

2.78 fm

)1/4(dE
(0)
⊥ /dη

1280GeV

)1/4

∼
70−80%

2.7 −
0−5%

9.0

hydrodynamic behaviour in all but peripheral collisions

O+O :
30−40%

γ̂ ∼ 2.2
(

η/s
0.16

)−1 (
R

1.13 fm

)1/4(dE
(0)
⊥ /dη

55GeV

)1/4

∼
70−80%

1.4 −
0−5%

3.1

probes transition region to hydrodynamic behaviour

p + Pb :
min.bias

γ̂ ∼ 1.5
(

η/s
0.16

)−1 (
R

0.81 fm

)1/4(dE
(0)
⊥ /dη

24GeV

)1/4 high mult.

≲ 2.7

very high multiplicity events approach regime of applicability, but do not reach it

p + p :
min.bias

γ̂ ∼ 0.7
(

η/s
0.16

)−1 (
R

0.12 fm

)1/4(dE
(0)
⊥ /dη

7.1GeV

)1/4

far from hydrodynamic behaviour
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Hydrodynamics in real collision systems
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Event-by-event initial conditions
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▶ TRENTO initial conditions for two different collision systems
Moreland, Bernhard, Bass PRC 92 (2015) 011901(R)

▶ pre-generated nucleon positions to account for correlations like α-clustering

Pb+Pb 2.76 TeV
Alvioli, Drescher, Strikman PLB 680 (2009) 225

O+O 7 TeV
Loizides, Nagle, Steinberg SoftwareX 1-2 (2015) 13

(example profiles from 20-30% centrality class)
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Event-by-event flow responses
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Pb+Pb O+O

▶ significant difference in geometry
Pb+Pb: visible effect of mean
geometry
O+O: mostly fluctuation (?)

▶ flow response still mostly depends on γ̂
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Flow cumulants in O+O
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⟨(ϵp)n⟩ = ⟨(κϵ2)n⟩ = κ̄n⟨(ϵ2)n⟩+ ...

▶ flow fluctuations dominated by avg.
response to geometry fluctuations

▶ no γ̂-dependence in ideal hydro ⇒
same fluctuation curve

▶ ratio eliminates avg. response
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Summary
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▶ kinetic theory description of transverse flow
on whole range in system size

▶ comparison to hydrodynamics:
accurate at 5% level if Re−1 ≲ 0.75

▶ small systems (p+p, p+Pb):
transverse expansion faster than equilibration
⇒ hydro not applicable!

O+O covers transition regime to hydro behaviour

Outlook:

▶ looking for observables indicating degree of hydrodynamization
in event-by-event simulations
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Backup



How can hydro still describe small systems?
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In theoretical descriptions:

vn = κn,n · ϵn
▶ Flow can be compared to experiment

▶ Response depends on the dynamical model

▶ Initial state geometry is poorly constrained in small systems

Varying initial condition in order to fit flow measurements will mask inaccuracies in the
description of the dynamical response!
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What might happen when going beyond RTA?
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▶ more complex kernels will introduce further parameter dependence, but opacity
dependence might still be ”leading order approximation”

▶ in Bjorken flow, equilibration happens in very similar ways across different model
descriptions:

Giacalone, Mazeliauskas, Schlichting, PRL 123 (2019) 262301
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Early time longitudinal cooling and scaled hydro
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evolution of τe:

Kinetic Theory

→ →

Naive Hydro

→ →

Scaled Hydro

τ = 3 · 10−6fm

→

τ = 8 · 10−4fm

→

τ = 3 · 10−3fm
(times for 4πη/s = 0.05)

Kinetic Theory

→ →

Scaled Hydro

τ = 3 · 10−6fm

→

τ = 8 · 10−4fm

→

τ = 3 · 10−3fm
(times for 4πη/s = 0.05)

▶ our actual initial condition: average profile
(30-40% Pb+Pb 5.02 TeV)
Borghini, Borrell, Feld, Roch, Schlichting, Werthmann PRC 107 (2023), 034905

fixed profile: vary γ̂ via η/s: γ̂ ≈ 11 · (4πη/s)−1
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Initializing on the local attractor
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▶ accuracy depends on timescale separation of pre-equilibrium and transv. expansion
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Bjorken flow attractor
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▶ longitudinal boost-invariant Bjorken flow exhibits universal behaviour

▶ time evolution curves converge to an attractor curve when expressed via the scaling
variable w̃ = Tτ

4πη/s

⇒ expressed via universal scaling functions
χ(w̃) = pL/pT , E(w̃) ∝ τ4/3e, fE⊥(w̃) ∝ τ1/3 dE⊥

dy
, ...

Giacalone, Mazeliauskas, Schlichting, PRL 123 (2019) 262301
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Early time eccentricity decrease
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▶ τ ≪ R: no transverse expansion, system locally behaves like 0+1D Bjorken flow

universal attractor curve scaling in the variable w̃(τ,x⊥) =
T (τ,x⊥)τ

4πη/s
Giacalone, Mazeliauskas, Schlichting, PRL 123 (2019) 262301

w̃ ≫ 1: τ4/3e = const., τ1/3 dE⊥
dy

= const.

w̃ ≪ 1: model dependent power law τ4/3e ∼ w̃γ
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Early Time Bjorken Scaling
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Bjorken flow universal attractor curve in scaling variable w̃(τ,x⊥) =
T (τ,x⊥)τ

4πη/s
:

ϵ(τ)τ4/3 = (4πη/s)4/9a1/9(ϵτ)
8/9
0 C∞ E(w̃) ,

τ1/3
dE⊥

d2x⊥dη
= (4πη/s)4/9a1/9(ϵτ)

8/9
0 C∞ fE⊥ (w̃)

▶ using ϵ = aT 4, recast first eq. into self consistency eq. for w̃
▶ use this togehter with initial cond. for ϵτ to relate differentials of dw̃ and dx⊥
▶ integrate second equation to find scaling of dE⊥/dη

▶ use (4πη/s)4a

dE0
⊥/dη R

= 1
π

(
4π
5γ̂

)4
to identify γ̂

dE⊥/dη

dE0
⊥/dη

=
9

2

(
4π

5γ̂

)4 (
R

τ

)3 ∫ w̃(τ,x⊥=0)

0

w̃3dw̃

E(w̃)

[
1−

w̃

4

E ′(w̃)

E(w̃)

]
fE⊥ (w̃) ,

w̃(τ,x⊥ = 0) =

(
5γ̂

4π

)8/9 ( τ

R

)2/3

[C∞E(w̃)]1/4

Limits of this scaling law:

▶ γ̂
(

τ
R

)3/4 ≪ 1 ⇒ w̃ ≪ 1 ⇒ E(w̃) ≈ fE⊥(w̃) ≈ C−1
∞ w̃4/9 ⇒ dE⊥/dη

dE0
⊥/dη

= 1

▶ γ̂3/4
(

τ
R

)
≫ 1 ⇒ w̃ ≫ 1 ⇒ E(w̃) ≈ 1, fE⊥ ≈ π

4

⇒ dE⊥/dη

dE0
⊥/dη

= 9π
32

(
4π
5γ̂

)4/9 (
R
τ

)1/3
C∞
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Centrality dependence
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Transverse flow velocity
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Hydrodynamization in viscosity and centrality dependence
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▶ transverse expansion sets in at τ⊥ ∼ 0.2R, independent of opacity

▶ Hydro appicable when Re−1 < Re−1
c ∼ 0.75 after timescale

τHydro/R ≈ 1.53 γ̂−4/3
[
(Re−1

c )−3/2 − 1.21(Re−1
c )0.7

]
▶ hydrodynamization before transv. Expansion for γ̂ ≳ 3
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