Decoupling

(J. Knoll)

Golden rule

Exact decoupling rates

Semiclassica rates

Conserving scheme

Expansion model

Expansion model

Summary

Continuous Decoupling of Dynamically Expanding Systems

J. Knoll

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(で)

Decoupling

(J. Knoll)

Golden rule

Exact decoupling rates

Semiclassical rates

Conserving scheme

Expansion model

Expansion model

Summary

Continuous Decoupling of Dynamically Expanding Systems

J. Knoll

Outline

Decoupling

(J. Knoll)

Golden rule

Exact decoupling rates

Semiclassical rates

Conserving scheme

Expansior model

Expansion model

Summary

Golden rule

Semi-classical rates

Exact decoupling rates

Conserving scheme

- Iocal equilibrium
- Cooper-Frye limit
- Iocal equilibrium
- Cooper-Frye limit

Expansion model

Expansion model

- time & temperature distributions
- ophase transition
- short lived resonances

Metamorphosis of Diagrams

Decoupling

(J. Knoll

Golden rule

Exact decoupling rates

Semiclassical rates

Conserving scheme

Expansior model

Expansion model

Summary

from Amplitude to Correlation Diagrams

Golden rule: $W = \sum_{if} n_i (1 - n_f) \left| \begin{array}{c} \int_{i}^{f} \\ \int_{j}^{2} \\ (1 + n_{\omega}) \delta(\mathbf{E}_i - \mathbf{E}_f - \omega_{\vec{q}}) \end{array} \right|$

$$=\sum_{if} n_i (1-n_f) \left\{ \begin{array}{c} \frac{f}{i} \\ \frac{f}{j} \end{array} \right\} \times \left\{ \begin{array}{c} \frac{f}{i} \\ \frac{f}{j} \end{array} \right\} (1+n_\omega) \delta(E)$$

current-current corr.fct

Decoupling

(J. Knoll

Golden rule

Exact decoupling rates

Semiclassical rates

Conserving scheme

Expansion model

Expansion model

Summary

detector yield of particle a:

 $(2\pi)^{4} \frac{dN_{a}(\vec{p}_{A})}{d^{3}p_{A}} = \frac{2\pi}{2p_{A}^{0}} \int d^{4}x \ d^{4}y \ \left\langle J_{a}^{\dagger}(x)J_{a}(y)\right\rangle_{\text{irred.}} \psi_{\vec{p}_{A}}^{\dagger}(y)\psi_{\vec{p}_{A}}(x)$ $= \frac{2\pi}{2p_{A}^{0}} \ \left\langle \psi_{\vec{p}_{A}}\right| \prod_{a}^{\text{gain}} |\psi_{\vec{p}_{A}}\rangle \quad \text{Gyulassy '78, Danielewicz '92}$

Wigner transformation

$$(x,y) \to (X,p)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

local decoupling rate:

Semi-classical Rates

Decoupling

(J. Knoll

Golden rule

Exact decoupling rates

Semiclassical rates

Conserving scheme

Expansior model

Expansion model

Summary

wave functions: built up by bundles of classical paths (X(t), p(t))escape probability: $P_{escape}(X, p) \approx exp(-\chi(X, p))$ with

$$\chi(X, p) = \int_{t}^{\infty} dt' \Gamma(X(t'), p(t')) \quad \text{with}$$
$$\Gamma(X, p) = -\frac{1}{p_0} \operatorname{Im} \Pi^{R}(X, t)$$

classical paths: given by Re $\Pi^R(X, p)$

spectral funct.: 1st ord. gradient expansion of Kadanoff-Baym Eq.

$$A(X,p) = \frac{2p^{0}\Gamma(X,p)}{(p^{2} - m_{a}^{2} - \operatorname{Re}\,\Pi^{R}(X,p))^{2} + (p^{0}\Gamma(X,p))^{2}}$$

local decoupling rate:

$$\left| (2\pi)^4 \frac{dN_a(X,p)}{d^3 X dt \ d^4 p} \approx \Pi_a^{\text{gain}}(X,p) \ A(X,p) \ \exp(-\chi(X,p)) \right|$$

Conserving scheme

conserving scheme:

Decoupling

(J. Knoll

Golden rule

Exact decoupling rates

Semiclassical rates

Conserving scheme

Expansior model

Expansion model

Summary

$\begin{array}{ll} \text{local rate:} & \text{source } \times \text{ width } \times \text{ attenuation} \\ (2\pi)^4 \frac{dN_a(X,p)}{d^3 X dt \ d^4 p} \approx \Pi_a^{\text{gain}}(X,p) \ A_a(X,p) \ \exp(-\chi_a(X,p)) \\ \text{drain terms:} \\ \partial_\mu j^\mu_{\alpha,\text{fluid}}(X) = -\sum_a e_{a\alpha} \int d^4 p \ \frac{dN_a(X,p)}{d^4 p dt d^3 X}, \\ \partial_\mu T^{\mu\nu}_{\text{fluid}} = -\sum_a \int d^4 p \ p^\nu \frac{dN_a(X,p)}{d^4 p dt d^3 X} + \begin{cases} \text{interaction} \\ \text{terms} \end{cases} \right\}$

Local Equilibrium – Cooper-Frye limit

Decoupling

 \Box gain (\mathbf{V} =) \mathbf{f} (=0) \mathbf{O} = 0 \mathbf{F} (\mathbf{V} =)

$$(2\pi)^4 \frac{dN(p)}{d^3p} = 2 \int p^0 dp^0 \underbrace{d^3 \sigma_\mu dx^\mu}_{= d^4 X} f_{\text{th}}(p^0) A(X,p) \Gamma(X,p) e^{-\int_t^\infty dt' \Gamma}$$

Cooper-Frye limit: $\implies \int_{\sigma} dp^0 d^3 \sigma_\mu \, 2p^\mu \, f_{th}(p^0) \, A^{vac}(X,p)$

(Cooper-Frye-Planck)

Local Equilibrium – Cooper-Frye limit

Decoupling

 \Box gain (\mathbf{V} =) \mathbf{f} (=0) \mathbf{O} = 0 \mathbf{F} (\mathbf{V} =)

$$(2\pi)^4 \frac{dN(p)}{d^3p} = 2 \int p^0 dp^0 \underbrace{d^3 \sigma_\mu dx^\mu}_{= d^4 X} f_{\text{th}}(p^0) A(X,p) \Gamma(X,p) e^{-\int_t^\infty dt' \Gamma}$$

Cooper-Frye limit: $\implies \int_{\tau} dp^0 d^3 \sigma_\mu \, 2p^\mu \, f_{\rm th}(p^0) \, A^{\rm vac}(X,p) \, \Theta(d\sigma_\mu p^\mu > 0)$

(Cooper-Frye-Planck)

Expansion model

 $V \propto t^3$ $R_{\text{freeze}} = 6 \text{ fm}$ $V_{\rm flow} = 0.5 \, \rm c$ $\Gamma_{\rm chem} = 100 \, {\rm MeV}$ $\Delta t_{\rm chem} \approx 5 \, {\rm fm/c}$ $\Delta t_{\rm th} \approx 7 \, {\rm fm/c}$

20

IQMD calc. of K^+ & K^- ; Hartnack et al. 2007

(ロ) (同) (三) (三) (三) (○) (○)

 $\Delta t_{\rm dec} \approx 10$ fm/c $\rho_i/\rho_f \approx 5$

Expansion model

(J. Knoll)

Golden rule

Exact decoupling rates

Semiclassical rates

Conserving scheme

Expansior model

Expansion model

Summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Temperature distributions

Decoupling

(J. Knoll)

Golden rule

Exact decoupling rates

Semiclassical rates

Conserving scheme

Expansior model

Expansion model

Summary

Phase transition

Decoupling

temperature distributions: $P_{dec}(T) = P_{dec}(t) \frac{dt}{dT}$

using: $TV^{\kappa-1} = \text{const.}$

0.6

Finger prints of short lived resonances

Finger prints of short lived resonances

Summary

Decoupling

(J. Knoll)

Golden rule

Exact decoupling rates

Semiclassical rates

Conserving scheme

Expansion model

Expansion model

Summary

nuclear collisions:decoupling timevolume growthphase transition:6 - 10 fm/c> 5chemical freeze-out:> 5 fm/c> 4kinetic freeze-out:> 8 fm/c> 6CMB early universe:Z = [1300 - 800] $(13/8)^3 = 4.3$

- * why is T_{chem} so sharply determined? \Rightarrow signal for latent heat, phase transition?
- finger print of short lived resonances;
 (two slope behaviour: signal for spread in *T*?)
- * HBT: the method determines the active emission zone