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Abstract—The properties of two forms of the gradient expanded Kadanoff–Baym equations, i.e., the
Kadanoff–Baym and Botermans–Malfliet forms, suitable for describing the transport dynamics of particles
and resonances with broad spectral widths, are discussed in context of conservation laws, the definition of a
kinetic entropy, and the possibility of numerical realization. Recent results on exact conservations of charge
and energy–momentum within Kadanoff–Baym form of quantum kinetics based on local coupling schemes
are extended to two cases relevant in many applications. These concern the interaction via a finite-range
potential and, relevant in nuclear and hadron physics, e.g., for the pion–nucleon interaction, the case of
derivative coupling. c© 2003 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

Ever since L. Boltzmann suggested his famous
kinetic equation, the field of non-equilibrium physics
and stochastic processes has grown tremendously,
expanding in various directions. The interactions
among particles driven by mean fields were included,
quasiparticles were introduced in order to include
much of the medium effects, the kinematics was
extended to the relativistic case, and ultimately the-
oretical foundations of the transport equation were
given from an underlying quantum many-body or
field theory. In this line of achievements also stands
the work of Budker and Belyaev, who demonstrated
the Lorentz invariance of the relativistic distribu-
tion function and derived relativistic Fokker–Planck
kinetic equation [1]. The work entered into many
textbooks and found numerous applications in atomic
physics and electron–positron plasma. Presently, the
relativistic transport concepts are a conventional tool
to analyze the dynamics of dense and highly excited
matter produced in relativistic heavy-ion collisions.

Along with semiphenomenological extensions,
great progress was achieved in microscopic founda-
tion of the kinetic theory, which is mainly associated
with the names of Bogolyubov, Born, Green, Kirk-
wood, Yvon, and Zubarev. The appropriate frame-
work for describing non-equilibrium processes within
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the real-time formalism of quantum-field theory
was developed by Schwinger, Kadanoff, Baym, and
Keldysh [2–4]. This formalism allows extensions of
the kinetic picture beyond conventional approxima-
tions (like the quasiparticle one) and has found now
numerous applications in many domains of physics.

The interest in transport descriptions of heavy-
ion collisions beyond the quasiparticle approximation
was initiated by Danielewicz [5], using the gradient
expanded Kadanoff–Baym (KB) equations. These at-
tempts have recently been revived [6–13] in order to
properly describe the transport properties of broad
resonances (like the ρ meson and ∆ isobar). In a
dense environment, a stable particle also acquires a
considerable width because of collisional broaden-
ing. A proper dynamical treatment of their widths in
a dense nuclear medium within transport theoreti-
cal concepts is still a challenging problem. Trans-
port approaches for treating such off-shell dynamics
were proposed in [7–13]. They all were based on the
KB equations [3, 14], which describe the nonequi-
librium quantum evolution at the truncation level of
the Schwinger–Dyson equation. Expanded up to the
first spacetime gradients, the KB equations provide
transport equations for the one-body phase-space
distribution functions with a collision term and Pois-
son bracket terms arising from the first-order gradient
terms. Presently, two slightly different forms of the
gradient-expanded KB equations are used: the origi-
nal KB form [3], as follows right after the gradient ex-
pansion without any further approximations, and the
Botermans–Malfliet (BM) one [15], which is derived
from the KB form by omitting certain second-order
spacetime gradient corrections.

In this paper, we would like to compare these two
forms of “quantum” kinetic equations and discuss
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their advantages and disadvantages from the point
of view of their conserving properties, the possibil-
ity of numerical realization, etc. (Section 2). Tech-
nical details on the conserving properties are de-
ferred to Appendices B–D, since they illustrate some
of the general consideration of [10] together with
some extensions to cases particularly relevant in nu-
clear physics. Appendix C treats nonrelativistic nu-
cleon–nucleon interactions via a potential of finite
range. The derivative coupling is considered in Ap-
pendix D using the example of P-wave pion–nucleon
interaction. In Section 3, we supplement some con-
siderations about the construction of a kinetic en-
tropy within these two transport schemes. To make
the paper self-contained, we summarize the time-
contour matrix notation in Appendix A and introduce
the Φ-functional formalism for derivative coupling in
Appendix B. A summary is given in Section 4.

2. OFF-SHELL KADANDFF–BAYM
AND BOTERMANS–MALFLIET KINETICS

In this section, we summarize the formulation of
the off-shell kinetic equations in two different forms:

in the KB form, i.e., as follows right after the gradient
expansion of the exact KB equations, and in the BM
form [15], which differs from the KB form only in the
second order of the gradient expansion. We assume
that the reader is familiar with the real-time formula-
tion of nonequilibrium many-body theory and use the
contour matrix notation, detailed in Appendix A.

The starting point of all considerations is the
set of KB equations which express the spacetime
changes of the Wigner transformed correlation func-
tion iG−+(X, p) in terms of the real-time contour
convolution of the self-energy Σ with the Green’s
function G. We give the kinetic equation in compact
notation [cf. below Eq. (A.4)]:

vµ∂
µ
X iG−+(X, p) = [Σ ⊗G−G⊗ Σ]−+

X,p (1)

with vµ =
∂

∂pµ
G−1

0 (p),

where G−1
0 (p) is the Fourier transform of the inverse

free Green’s function:

G−1
0 (p) =

{
p2 −m2 for relativistic bosons

p0 − p2/(2m) for nonrelativistic fermions or bosons.
(2)

For a complete definition, Eq. (1) has to be supple-
mented with further equations, e.g., for the retarded
Green’s function together with the retarded relations
(A.6). In addition to these equations, the exact set
of KB equations also includes the prototype of the
mass-shell equation, which we also discuss below. If
a system under consideration is only slightly spatially
inhomogeneous and slowly evolving in time, a good
approximation is provided by an expansion up to first
order in spacetime gradients. Then, the main problem
to arrive at a proper kinetic equation consists in ac-
curately disentangling the rather complicated right-
hand side of Eq. (1). This problem in the context of
conserving approximations will be addressed here.

A. Φ-Derivable Approximations

In actual calculations, one has to use certain
approximations or truncation schemes to the ex-
act nonequilibrium theory, which make conserving
properties (such as charge and energy–momentum
conservations) and thermodynamic consistency of
the transport theory not evident. It was shown [8,
16, 17] that there exists a class of self-consistent
approximations, called Φ-derivable approximations,
which are conserving at the expectation value level

and at the same time thermodynamically consistent,
i.e., they provide true Noether currents and a con-
served energy–momentum tensor. In these schemes,
the self-consistent self-energies are generated from
a functional Φ[G] through the following variational
procedure [8]:

−iΣik(X, p) = ∓ δiΦ[G]
δiGki(X, p)

(3)

×
{

2 for real fields,

1 for complex fields,
i, k ∈ {−+}.

The functional Φ[G] specifies the truncation scheme.
It consists of a set of properly chosen closed two-
particle irreducible diagrams, where lines denote the
self-consistent propagator G, while vertices are bare.
The functional variation with respect to G diagram-
matically implies an opening of a propagator line of Φ.

Particular examples of Φ-derivable approxima-
tions can be found in Appendices C and D, which
consider applications of the general formalism to
cases important in nuclear physics. The treatment
of the pion–nucleon derivative coupling in Ap-
pendix D requires the corresponding extension of the
Φ-derivable formalism, which has not been done up
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to now. Therefore, in Appendix B, we perform such
an extension and derive the relevant modifications
of the variational rules and the ensuing additional
terms in the current and energy–momentum tensor
expressions.

The conserving properties of these approximations
are exact at the level of KB Eqs. (1), while after the
expansion up to the first spacetime gradients they are
generally expected to be only approximately fulfilled.

B. Physical Notation

It is helpful to eliminate the imaginary factors in-
herent in the standard Green’s function formulation
and introduce quantities that are real and, in the
quasi-homogeneous limit, positive, with clear phys-
ical meaning, thereby. Thus, instead of Green’s func-
tions Gij(X, p) and self-energies Σij(X, p) with i, j ∈
{−+} (see Appendix A) in the Wigner representation,
we use the kinetic notation of [8]. We define3)

F (X, p) = A(X, p)f(X, p) = (∓)iG−+(X, p), (4)

F̃ (X, p) = A(X, p)[1 ∓ f(X, p)] = iG+−(X, p)

for the generalized Wigner functions F and F̃ and the
corresponding four-phase-space distribution func-
tions f(X, p) and Fermi/Bose factors [1 ∓ f(X, p)].
Here,

A(X, p) ≡ −2ImGR(X, p) = F̃ ± F (5)

is the spectral function, and GR is the retarded prop-
agator. The spectral function satisfies the sum rule

∞∫
0

dp0

2π
A(X, p) = 1 for nonrelativistic particles, (6)

∞∫
−∞

dp0

2π
p0A(X, p) = 1 for relativistic bosons, (7)

which follows from the canonical equal-time
(anti)commutation relations for (fermionic) bosonic
field operators. Likewise, the gain and loss rates of
the collision integral are defined as

Γin(X, p) = ∓iΣ−+(X, p), (8)

Γout(X, p) = iΣ+−(X, p)

with the damping width

Γ(X, p) ≡ −2ImΣR(X, p) = Γout(X, p) ± Γin(X, p),
(9)

where ΣR is the retarded self-energy.

3)Here and below, the upper sign corresponds to fermions,
while the lower sign corresponds to bosons.

In terms of the above kinetic notation, the gradient-
expanded KB equations are reduced to equations for
four real quantities: two equations for the real and
imaginary parts of the retarded Green’s function,
while there are two equations for the phase-space
occupation F : the KB kinetic equation and the pro-
totype “mass-shell equation.” The latter doubling of
equations reflects the well-known redundancy of the
KB equations. Before the gradient expansion, both
equations are completely identical. However, after the
gradient expansion, their interrelation is no longer
obvious and deserves special care (see below).

The equations for the retarded propagator in first-
order gradient approximation can be immediately
solved with the result [3, 15]

GR =
1

M(X, p) + iΓ(X, p)/2
(10)

→


A(X, p) =

Γ(X, p)
M2(X, p) + Γ2(X, p)/4

ReGR(X, p) =
M(X, p)

M2(X, p) + Γ2(X, p)/4
,

with the “mass” function

M(X, p) = G−1
0 (p) − ReΣR(X, p). (11)

Although solution (10) is simply algebraic, it is valid
up to first-order gradients.

C. Kadanoff–Baym Form

In terms of the above notation, the KB kinetic
equation for F in the first-order gradient approxima-
tion takes the form

DF (X, p) −
{
Γin,ReGR

}
= C(X, p). (12)

We denote this as the quantum transport equation
in the KB choice.4) Here, the differential drift operator
is defined as

D =
(
vµ − ∂ReΣR

∂pµ

)
∂µ

X +
∂ReΣR

∂Xµ

∂

∂pµ
, (13)

and {. . . , . . .} denotes the four-dimensional Poisson
bracket,

{f(X, p), ϕ(X, p)} =
∂f

∂pµ

∂ϕ

∂Xµ
− ∂f

∂Xµ

∂ϕ

∂pµ
(14)

in covariant notation. Please note that, now, after
the gradient approximation, all quantities on the left-
hand side are to be taken in the local approximation,
i.e., void of any further gradient terms. Thus, the
occurring self-energies are obtained from evaluating

4)If the system consists of several different particle species,
there is a set of coupled kinetic equations corresponding to
each species (e.g., see Appendix D).
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the diagrams as in the momentum representation
with the coordinates X of all Green’s functions kept
identical. The right-hand side specifies the collision
term5)

C(X, p) = Γin(X, p)F̃ (X, p) − Γout(X, p)F (X, p).
(15)

If the diagrams for the self-energy contain internal
vertices, which give rise to memory or nonlocal ef-
fects, the gain and loss rates contain additional gradi-
ent terms, which have to be constructed, e.g., accord-
ing to the rules given in [10]. The resulting local part
of the collision term is charge (e.g., the baryonic num-
ber) and energy–momentum conserving by itself:

tr
∫

d4p

(2π)4

 e

pµ

C loc = 0. (16)

Here and below, e denotes the elementary charge,
while tr implies the sum over all possible internal de-
grees of freedom, like spin, and over possible particle
species. We do not explicitly introduce the particle-
species label to avoid overcomplication of equations.
In terms of a local functional Φloc, the explicit form of
the local collision term is

C loc(X, p) =
δiΦloc

δF̃ (X, p)
F̃ (X, p) − δiΦloc

δF (X, p)
F (X, p)

(17)

[cf. Eq. (3)]. In this paper, we limit the considerations
to cases void of memory effects in this collision term.
The latter effects were studied in [8].

Relation (16) permits us to derive the current

jµ
KB-eff(X) = etr

∫
d4p

(2π)4

[
vµF (X, p) (18)

+ ReΣR ∂F

∂pµ
− ReGR ∂Γin

∂pµ

]
of a charge e (e.g., the baryonic one) from the KB
kinetic equation (12), which is conserved:

∂µj
µ
KB-eff(X) = 0. (19)

Note that this current formally differs from the true
Noether current

jµ(X) = etr
∫

d4p

(2π)4
vµF (X, p) + jµ

(der)(X), (20)

which follows right from the operator expression for
this quantity (cf. [8] and Appendix B). The addi-
tional term jµ

(der) appears only in the case of derivative
coupling [see Eq. (B.19)]. In view of the gradient
approximation employed, one could generally expect

5)See an example in Eq. (C.3).

both currents to differ beyond the validity range of the
gradient approximation. However, as demonstrated in
detail in [10], these two currents are exactly equal
for Φ-derivable approximations if a consistent gra-
dient expansion is performed also in the gain and
loss rates (8) of the collision term (15). In this case,
the exact conservation of the Noether current results
from the corresponding invariance of the Φ functional
{Eq. (6.9) in [17]}, which survives the gradient expan-
sion:

etr
∫

d4p

(2π)4
[{

ReΣR, F
}

(21)

−
{

ReGR,Γin}+ C
]

= ∂µj
µ
(der).

The latter relation is written for the general case of
memory or nonlocal effects included in C. If such
effects in C are absent, the collision term drops out
of Eq. (21) according to Eq. (16).

Within Φ-derivable approximations, also the con-
servation of energy–momentum can be established
for local (pointlike) couplings providing a local en-
ergy–momentum tensor. The pν-weighted 4-mo-
mentum integral of the KB kinetic equation leads to
the following consistency relation [8] 6):

∂ν
(
Epot − E int

)
− ∂µEµν

(der) = tr
(

1
2

)
n.b

(22)

×
∫

pνd4p

(2π)4
[{

ReΣR, F
}
−
{

ReGR,Γin}+ C
]
,

which is again exact after the gradient expansion,
as shown in [10] (see also Appendices C and D). It
implies that the Noether energy–momentum tensor

Θµν(X) = tr
(

1
2

)
n.b

∫
d4p

(2π)4
vµpνF (X, p) (23)

+ gµν
(
E int − Epot

)
+ Eµν

(der)

is exactly conserved by the kinetic equation (12)

∂µΘµν(X) = 0. (24)

Here, potential energy density Epot(X), which a probe
particle with Wigner density F (X, p) would experi-
ence due to the interaction with all other particles in
the system, is

Epot(X) = tr
(

1
2

)
n.b

∫
d4p

(2π)4
[
ReΣRF + ReGRΓin] .

(25)

6)Here, in compliance with Eq. (3), we define the factor

1

2 n.b
=

{
1/2 for neutral bosons (real fields)

1 else.
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The interaction energy density E int(X) specifies that
part of the total energy density which is due to inter-
actions. In simple cases, it relates to Epot by a simple
counting factor, namely, if all the interaction vertices
of a theory have the same number nl of lines attached
to them

E int(X) =
2
nl
Epot(X). (26)

In particular, for two-body interactions, one has nl =

4 and thus E int =
1
2
Epot, while for the fermion–boson

interaction nl = 3, which results in E int =
2
3
Epot. In

Appendices C and D, we discuss cases of this type.
The additional term Eµν

(der) appears in Eq. (23) only in
the case of derivative coupling [cf. Eq. (B.18)].

The considerations given above summarize the
results of [10], which are quite general. However,
they are restricted to local (pointlike) interactions and
are void of derivative couplings. This excludes two
important cases relevant to many areas in physics,
nuclear physics in particular. These are the cases
of interaction mediated by finite-range nonrelativistic
potentials and of derivative couplings like the P-wave
pion–nucleon interaction. Since the considerations
are rather technical, they are exemplified in Appen-
dices C and D. There, the results of [10] are gener-
alized, proving that, also in these cases, conserved
currents and expressions for a conserved total energy
and total momentum can be constructed. These two
appendices also provide further illustrations of the
discussion given in the present section.

The conserving feature is especially important for
devising numerical simulation codes based on this
kinetic equation. Indeed, if a test-particle method is
used, one should be sure that the number of test par-
ticles is conserved exactly rather than approximately.
For a direct application of this method, however, there
is a particular problem with the KB kinetic equation.
In the test-particle method, the distribution functions
are represented by an ensemble of test particles as
follows:

F (X, p) ∼
∑

i

δ(3) (X− Xi(T )) δ(4) (p− pi(T )) ,

(27)

where the i sum runs over test particles. Then, the
DF term in Eq. (12) just corresponds to the classi-
cal motion of these test particles subjected to forces
inferred from ReΣR, while the collision term C gives
a stochastic change of test-particles’ momenta, when
their trajectories “cross.” The additional term, i.e., the
Poisson bracket term

{
Γin,ReGR

}
, spoils this sim-

plistic picture, since derivatives acting on the distri-
bution functionF appear here only indirectly. Namely,

they are encoded through derivatives of Γin. This term
is responsible for backflow effects, which restore the
Noether current to be the conserved one. However,
such backflow phenomena are difficult to absorb into
test particles, since they describe the response of the
medium to the motion of the charges. In order to
conserve the number of test particles between sub-
sequent collisions, one would have to unite the addi-
tional term

{
Γin,ReGR

}
with the drift term DF even

in the simplest case, when the collision term is charge
conserving by itself [see Eq. (16)] and derivative cur-
rents vanish, jµ

(der) = 0. However, the interpretation

of the additional term
{
Γin,ReGR

}
causes problems

within this picture, since it is not just proportional to
the same δ functions as in Eq. (27) and thus cannot
be included in the collisionless propagation of test
particles. This problem, of course, does not prevent
a direct solution of the kinetic equation. For example,
one can apply well-developed lattice methods, which
are, however, much more complicated and time con-
suming as compared to the test-particle approach.

Within the same approximation level, the set of
Dyson equations for Green’s functions Gij(X, p) pro-
vides us with an alternative equation for F ,

MF − ReGRΓin =
1
4
(
{Γ, F} −

{
Γin, A

})
, (28)

which is called the mass-shell equation, since in
the quasiparticle limit it provides the mass condition
M = 0. This equation coincides with the kinetic
one (12) only within the first-order gradient approx-
imation [8, 11, 12, 15], while both equations are
exactly identical before the gradient expansion. In
view of this still remaining difference, the practical
recipe is to forget about the mass-shell equation (28),
since the retarded Eq. (10) determines the spectral
distribution, and to treat Eq. (12) as a proper quantum
kinetic equation. Still, this is an ambiguous recipe,
which historically was one of the motivations to pro-
ceed to the Botermans–Malfliet form of the quantum
kinetic equation.

D. Botermans–Malfliet Form

As can be seen from the mass-shell Eq. (28) and
Eq. (12) [8, 11, 12, 15], the gain rate Γin departs
from FΓ/A only by corrections of first order in the
gradients:

Γin = ΓF/A + O(∂X) (29)

(in equilibrium, both equate to each another). This
fact permits one to substitute the right-hand side
estimate for Γin in any of the gradient terms, i.e.,
in the Poisson-bracketed terms of Eqs. (12) and
(28), and neglect the correction O(∂X), as it already
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leads to terms of second order in the gradients. Upon
this substitution, first proposed by Botermans and
Malfliet [15], one arrives at the following form of the
kinetic and mass-shell equations:

DF (X, p) −
{

Γ
F

A
,ReGR

}
= C(X, p), (30)

MF − ReGRΓin =
1
4

(
{Γ, F} −

{
ΓF
A

,A

})
,

(31)

which are already exactly identical, as they were be-
fore the gradient expansion, and still equivalent to
those in the KB form within the first-order gradi-
ent approximation. The so-obtained Eq. (30) will be
called the quantum kinetic equation in BM choice.
This equation exactly conserves the following effec-
tive current:

jµ
BM-eff(X) = etr

∫
d4p

(2π)4

[
vµF (X, p) (32)

+ ReΣR ∂F

∂pµ
− ReGR ∂(ΓF/A)

∂pµ

]
,

which differs from the Noether current jµ in terms
of the order of O(∂X), provided a Φ-derivable ap-
proximation is used for self-energies. All the prop-
erties of the KB-choice kinetic equation within a
Φ-derivable approximation also transcribe to Eq. (30)
in the BM choice through the substitution Γin =
ΓF/A in Eqs. (21), (22), and (25). This substitution,
however, touches the accuracy of those relations. For
instance, the conservation laws of the Noether cur-
rents (20) and the energy–momentum tensor (23)
are then only approximately fulfilled together with the
corresponding consistency relations (21) and (22),
which now appear as

etr
∫

d4p

(2π)4
[{

ReΣR, F
}

(33)

−
{

ReGR,ΓF/A
}

+ C
]
� ∂µj

µ
(der),

∂ν
(
Epot − E int

)
− ∂µEµν

(der) � tr
(

1
2

)
n.b

(34)

×
∫

pνd4p

(2π)4

[{
ReΣR, F

}
−
{

ReGR,
ΓF
A

}
+ C

]
,

respectively, and hold only up to first-order gradients.
The effective BM current (32) was used by Le-

upold [12] as a basis for the construction of a test-
particle ansatz for the nonrelativistic case. In this
case, the additional term

{
ΓF/A,ReGR

}
in the BM

kinetic equation (30) is expressed in terms of the same
distribution function as the drift term DF . Therefore,
one can unify these terms to construct equations of

motion for test particles, which provide exact conser-
vation of jµ

BM-eff. To automatically fulfill this effective-
current conservation, the test-particle ansatz is intro-
duced for the combination

1
2
ΓA

(
1 − ∂ReΣR

∂p0
− M

Γ
∂Γ
∂p0

)
F (X, p) (35)

∼
∑

i

δ(3) (X− Xi(T )) δ(4) (p− pi(T )) ,

rather than for the distribution function itself. Note
that the energy p0

i (T ) of the test particle is a free
coordinate, not restricted by a mass-shell condition.
Cassing and Juchem [11] extended this test-particle
ansatz to the relativistic case. The equations of
motion for the test particle, which follow from this
ansatz, in particular, give the time evolution of the
off-shellness of a test particle [11, 12]

dM

dT
=

M

Γ
dΓ
dT

, (36)

the origin of which can be traced back to the ad-
ditional term

{
ΓF/A,ReGR

}
in the BM kinetic

Eq. (30). Here, M is the mass of the test particle
relative to its on-shell value [see Eq. (11)], and this
equation of motion implies that, once the width drops
in time, the particles are driven towards the on-
shell mass M = 0. This clarifies the meaning of the
additional term

{
ΓF/A,ReGR

}
in the off-shell BM

transport: it provides the time evolution of the off-
shellness.

3. ENTROPY

Another important feature of the kinetic descrip-
tion is the approach to thermal equilibrium during
evolution of a closed system. In terms of transport
theory, the sufficient (while not necessary!) condition
of it is the existence of an H theorem. Leaving aside
all complications associated with nonlocal effects in
the collision term and possible lack of positive defi-
niteness of the transition rates, discussed in [8], we
confine our consideration to simple approximations
[cf. (C.1)]. As demonstrated in [8], in the BM ap-
proximation to the quantum kinetic Eq. (30), the H
theorem can indeed be formulated:

∂µs
µ
BM(X) = tr

∫
d4p

(2π)4
ln

F̃

F
C loc(X, p) ≥ 0, (37)

where the quantity

sµ
BM = tr

∫
d4p

(2π)4

[(
vµ − ∂ReΣR

∂pµ

)
(38)

×
(
∓F̃ ln

F̃

A
− F ln

F

A

)
− ReGR
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×
(
∓ ln

F̃

A

∂

∂pµ

(
Γ
F̃

A

)
− ln

F

A

∂

∂pµ

(
Γ
F

A

))]
obtained from the left-hand side of the BM kinetic
Eq. (30) is interpreted as an entropy flow for the BM
choice. For the Φ-derivable approximation (C.1), the
right-hand side of relation (37) takes the following
form:

tr
∫

d4p

(2π)4
ln

F̃

F
C loc(X, p) (39)

= tr
1
4

∫
d4p1

(2π)4
d4p2

(2π)4
d4p3

(2π)4
d4p4

(2π)4

×Rloc(2π)4δ4 (p1 + p2 − p3 − p4)

×
(
F1F2F̃3F̃4 − F̃1F̃2F3F4

)
ln

F1F2F̃3F̃4

F̃1F̃2F3F4

,

where Rloc is the transition rate determined by
Eq. (C.4). This expression is indeed non-negative,
since (x− y) ln(x/y) ≥ 0 for any positive x and y,
and is of the second order in deviation from equilib-
rium (F −Feq), as both (F1F2F̃3F̃4 − F̃1F̃2F3F4) and
ln(F1F2F̃3F̃4/F̃1F̃2F3F4) approach zero at equilib-
rium. From the kinetic equation, it follows that the
deviation from equilibrium is of the first order in time
gradients: (F −Feq) ∝ O(∂TF ). This implies that the
right-hand side of relation (37) is of the second order
in time gradients, which is, strictly speaking, beyond
our first-order gradient approximation. However,
from the point of view of practical use, this feature
is highly welcome as it guarantees equilibration. A
further advantage of the kinetic entropy flux (38) is
that, in equilibrium, its zero component merges the
thermodynamic expression for the entropy deduced
from the thermodynamic potential in the Φ-derivable
scheme [8, 18, 19].

In the case of the KB choice (12), the situation is
more controversial. Performing all the same manipu-
lations with the KB kinetic Eq. (12) as those in [8], we
arrive at the following relation:

∂µs
µ
KB(X) = tr

∫
d4p

(2π)4
ln

F̃

F
C loc − δHKB, (40)

where

sµ
KB = tr

∫
d4p

(2π)4

[(
vµ − ∂ReΣR

∂pµ

)
(41)

×
(
∓F̃ ln

F̃

A
− F ln

F

A

)

− ReGR

(
∓ ln

F̃

A

∂Γout

∂pµ
− ln

F

A

∂Γin

∂pµ

)]
,

δHKB = −
∫

d4p

(2π)4
ReGR

{
ln

F̃

F
,
C loc

A

}
. (42)

The KB entropy flow sµ
KB is identical to the BM one

sµ
BM up to zeroth-order gradients, while they differ

in the first-order gradient corrections. One can eas-
ily obtain sµ

BM from the KB entropy flow by doing
replacement (29) in Γin and a similar replacement
in Γout.

The additional term δHKB on the right-hand side
of relation (40) is of the second order in gradients, due
to the Poisson bracket and C loc ∝ O(∂TF ). There-
fore, the right-hand side of (40) consists of two terms,
which are of the same order of magnitude, and one
of them (δHKB) is sign indefinite. This prevents us
from concluding the positive definiteness of the right-
hand side of Eq. (40). Alternatively, we were not
able to cast this term into a full divergence as to be
included into the definition of the KB entropy flow.
This fact by itself does not imply that the system
does not approach equilibrium or even the absence
of an H theorem for the KB kinetic equation, but
suggests that equilibration should be tested in actual
calculations. The local H theorem we are looking for
is a very stringent condition, providing a monotonic
approach to equilibrium. In fact, equilibration may
well be nonmonotonic in time.

Still, for the KB kinetic equation, we are able to
prove the H theorem in a limiting case, i.e., close
to local thermal equilibrium or for a quasi-stationary
state, which slowly evolves in space and time. To be
definite, let us talk about the local thermal equilib-
rium. In terms of the distribution function

F (X, p) = Floc.eq(X, p) + δF (X, p), (43)

the above assumption implies that |δF | � Floc.eq and
|∂XFloc.eq| � |∂XδF |. Then, we can write

δHKB = ∂µδs
µ
KB(X) (44)

+
∫

d4p

(2π)4
C loc

A

{
ln

F̃

F
,ReGR

}
,

where

δsµ
KB(X) = −tr

∫
d4p

(2π)4
ReGR

A
(45)

× ∂ ln(F̃ /F )
∂pµ

C loc(X, p).

Here, the remaining term∫
d4p

(2π)4
C loc

A

{
ln

F̃

F
,ReGR

}
∝ O(δF∂XδF ) (46)

+ O(δF∂XFloc.eq)
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can be neglected, as it has additional gradient small-
ness as compared to the first term on the right-
hand side of Eq. (40). Here, we have taken into

account that C loc ∝ δF and
{
ln(F̃ /F ),ReGR

}
∝

∂X(Floc.eq + δF ). Thus, from Eq. (40), we conclude
that

∂µ

(
sµ

KB + δsµ
KB

)
≥ 0 near local equilibrium, (47)

which is the H theorem for this case with the total
entropy flow sµ

KB + δsµ
KB. Note that δsµ

KB is propor-
tional to the collision term and hence equals zero in
equilibrium. The applicability range of this result is
the same as that for the memory entropy derived in [8]
for the BM choice.

4. SUMMARY AND PERSPECTIVES

In conclusion, we would like to summarize the
present status of the two considered approaches to
off-shell transport.

From a consistency point of view, the BM choice
looks more appealing, since it preserves the exact
identity between the kinetic and mass-shell equa-
tion, a property inherent in the original KB equa-
tions [8]. For the KB choice, this identity between
the kinetic and mass-shell equations is only approxi-
mately preserved, namely, within the validity range of
the first-order gradient approximation. However, this
disadvantage is not of great practical use, since, in
any case, only one of these two equations, namely, the
kinetic one, should be used in actual calculations.

For the construction of conservation laws related
to global symmetries or energy and momentum,
the local collision term entirely drops out of the
balance. Thus, the conservation laws solely depend
on the properties of the first-order gradient terms in
the kinetic equation. In this respect, the KB kinetic
equation has a conceptual advantage as it leads
to exact [10] rather than approximate conservation
laws, provided the scheme is based on Φ-derivable
approximations. Thereby, the expectation values of
the original operator expressions of conserved quan-
tities (e.g., Noether currents) are exactly conserved.
The reason is that the KB kinetic equation pre-
serves certain contour symmetries among the various
gradient terms, while they are violated for the BM
choice. Of course, within their range of applicability,
these two approaches are equivalent, because the
BM kinetic equation conserves the charge and en-
ergy–momentum within the theoretical accuracy of
the gradient approximation. Still, the fact that the
KB choice possesses exact conservation laws puts
this version at the level of a generic equation, much
like the Boltzmann or hydrodynamic equations, to be
used as phenomenological dynamical equations for

practical applications. Such conserving dynamical
schemes may be useful even though the applicability
condition of the approximation might be violated
at some stages of evolution. For instance, such a
situation happens at the initial stage of heavy-ion
collisions. As the conservations are exact, we can
still use the gradient approximation, relying on a
minor role of this rather short initial stage in the total
evolution of a system. Moreover, exact conservation
laws allow us to keep control of numerical codes.

Although the KB kinetic equations possess ex-
actly conserved Noether currents, a practical numer-
ical approach (e.g., by a test-particle method) to its
solution has not yet been established. The obstacle
is the special Poisson bracket term in the KB ki-
netic Eq. (12) which lacks proper interpretation since
the phase-space occupation function F (X, p) enters
only indirectly through the gain-rate gradient terms.
What is known is that this term encodes the backflow
component, which ensures that the Noether currents
are conserved. However, such backflow features are
difficult to implement in a test-particle scheme. This
problem, of course, does not exclude solution of the
KB kinetic equation, e.g., within well-adapted lattice
methods, which are, however, much more compli-
cated and time consuming as compared to the test-
particle approach. For the BM kinetic equation, on
the other hand, an efficient test-particle method is
already available [11, 12], for the price that it deals
with an alternative current rather than the Noether
current.

As a novel part, we showed (cf. Appendices) that
the exact conservation laws in the KB kinetic equa-
tions, originally derived for local interaction terms,
which lead to a local energy–momentum tensor, also
do hold for derivative couplings and for interactions
of finite range, like a nonrelativistic potential. For
the latter case, of course, only global conservation
of energy and momentum can be achieved. In order
to deal with the derivative coupling, we extended the
Φ-derivable approach to this case.

An important feature of kinetic descriptions is
the approach to thermal equilibrium during evolution
of a closed system. A sufficient (while not neces-
sary!) condition is provided by an H theorem. As
was demonstrated in [8], at least within simplest
Φ-derivable approximations for the kinetic equation
in BM choice, an H theorem indeed can be proven.
In equilibrium, the so-derived kinetic entropy merges
the corresponding equilibrium expression, which in
the context of Φ-derivable approximations results
from the thermodynamic potential (cf. [8, 18, 19]). For
the KB kinetic equation, the result is by far weaker.
Here, we were able to prove the H theorem only
within simplest Φ-derivable approximations and for a
system very close to an almost spatially homogeneous
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thermal local equilibrium or stationary state. These
results, in general, do not imply that the system
does not approach equilibrium but suggest that
equilibration should be tested in actual calculations.
Furthermore, the local H theorem with a local entropy
current that we considered for the BM case may be
far too restrictive, providing a monotonic approach
to equilibrium. In fact, for kinetic equations with
memory or nonlocal effects, equilibration may well be
nonmonotonic in time.

Though the discussion in this paper is confined
to problems of Φ-derivable off-shell transport based
on the first-order gradient expansion, significant
progress has recently been achieved also in solving
KB equations directly without any gradient expansion
for selected examples. These concern nonequilibrium
processes in scalar and spinor–scalar models on one-
and three-space dimensions (see, e.g., [20–22] and
references therein). It was found [20, 21] that, after a
comparably short but violent nonequilibrium evolu-
tion, the time dependence of the Wigner-transformed
spectral function becomes rather weak even for mod-
erate coupling constants. During this slow evolution,
the system is still far away from equilibrium. This
fact provides a necessary condition for a successful
gradient expansion and hence indicates a wide range
of applicability of the approaches discussed in this
paper. Even though the rapid far-from-equilibrium
dynamics is formally beyond the scope of applicability
of the gradient-expanded quantum kinetics, never-
theless, the KB choice includes all the ingredients
required for such a treatment, i.e., the proper mean-
field dynamics, together with the off-shell transport
of particles, thereby satisfying exact rather than
approximate conservation laws even far away from
equilibrium.

Further progress in understanding the properties
of Φ-derivable approximations to finite-temperature
quantum field theory was reported concerning the
question of renormalizability. The new results are
equally applicable to quantum kinetic equations, both
in KB and in BM choices. In [23], it was shown
that truncated nonperturbative self-consistent Dyson
resummation schemes can be renormalized with local
counterterms defined at the vacuum level. The re-
quirements are that the underlying theory is renor-
malizable and that the self-consistent scheme follows
Baym’s Φ-derivable concept. This result proves that

there is no arbitrariness in studying the in-medium
modifications of model parameters, like the mass and
the coupling constants, within this class of approx-
imation schemes. It is sufficient to adjust them in
the vacuum, for instance, by fitting them to scat-
tering data, in order to predict their changes in the
medium without ambiguity. This result also guaran-
tees the standard Φ-derivable properties, like ther-
modynamic consistency and exact conservation laws,
for the renormalized approximation schemes to hold.
In [24], the theoretical concepts for the renormaliza-
tion devised in [23] were applied to the φ4 model,
demonstrating the practicability of the method.

In general, the symmetries of the classical ac-
tion that lead to Ward–Takahashi identities for the
proper vertex functions are violated for Φ-derivable
approximations for functions beyond the one-point
level, i.e., on the correlator level. This causes prob-
lems concerning the Nambu–Goldstone modes [25]
in the broken symmetry case or concerning local
symmetries (gauge symmetries) [26] on a level where
the gauge fields are treated beyond the classical
field approximation, i.e., on the propagator level.
In [26], it was shown that, on top of any solution of
a Φ-derivable approximation, which is constructed
from a symmetric Lagrangian, there exists a non-
perturbative effective action which generates proper
vertex functions in the same sense as the 1PI ef-
fective action. These external vertex functions fulfill
the Ward–Takahashi identities of the underlying
symmetry. However, in general, they coincide with
the self-consistent ones only up to one-point or-
der. Thus, usually, the so-generated external self-
energy and higher vertex functions are different from
the Φ-derivable expressions. Therefore, the pleasant
property of the Φ-derivable approximations, namely,
the conserving one, proves to be lost. The derivation
of approximation schemes that satisfy all symmetry
properties of the underlying classical action and at
the same time are fully self-consistent and conserving
still remains as an open task.

As has been already mentioned, the gauge in-
variance may be lost in Φ-derivable approximations
too. In particular, this problem prevents applications
of Φ-derivable approximations (including kinetic
ones) to description of quark–gluon plasma based
on QCD. This occurs because, in general, solutions
for dressed propagators and vertices do not satisfy
Ward–Takahashi identities. This pathology shows up
as an explicit dependence of results on the choice of
the gauge condition. In [27], it was demonstrated,
in fact, that Φ-derivable approximations have a con-
trolled gauge dependence, i.e., the gauge-dependent
terms appear at orders higher than the truncation
order. Furthermore, using the stationary point ob-
tained for the approximation to evaluate the complete
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2PI effective action boosts the order at which the
gauge-dependent terms appear, to twice the order of
truncation. This is still not a solution of the gauge
problem in the rigorous sense but certain progress to
its better control and understanding.
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APPENDIX A

Matrix Notation
In calculations that apply to the Wigner transfor-

mations, it is necessary to decompose the full con-
tour into its two branches—the time-ordered and
antitime-ordered branches. One then has to distin-
guish between the physical spacetime coordinates x
and the corresponding contour coordinates xC , which
for a given x = (t,x) take two values x− = (t−,x)
and x+ = (t+,x) on the two branches of the contour
(see figure).

Closed real-time contour integrations can then be
decomposed as∫

C

dx · · · =

∞∫
t0

dx · · · +
t0∫

∞

dx . . . (A.1)

=

∞∫
t0

dx · · · −
∞∫

t0

dx . . . ,

where only the time limits are explicitly given. The
extra minus sign of the antitime-ordered branch can
conveniently be formulated by a {−+} “metric” with
the metric tensor in {−+} indices

(
σij
)

= (σij) =

1 0

0 −1

, (A.2)

which provides a proper matrix algebra for multipoint
functions on the contour with “co”- and “contra”-
contour values. Thus, for any two-point function F ,
the contour values are defined as

F ij(x, y) := F (xi, yj), i, j ∈ {−,+}, (A.3)

with

F j
i (x, y) := σikF

kj(x, y),

F i
j(x, y) := F ik(x, y)σkj ,

Fij(x, y) := σikσjlF
kl(x, y)

on the different branches of the contour. Here sum-
mation over repeated indices is implied. Then, contour
folding of contour two-point functions, e.g., in Dyson
equations, simply becomes

H(xi, yk) = H ik(x, y) = [F ⊗G]ik (A.4)

≡
∫
C

dzF (xi, z)G(z, yk) =
∫

dzF i
j(x, z)G

jk(z, y)

in the matrix notation.
For any multipoint function, the external point

xmax, which has the largest physical time, can be
placed on either branch of the contour without chang-
ing the value, since the contour-time evolution from
x−max to x+

max provides unity. Therefore, one-point
functions have the same value on both sides on the
contour.

Due to the change of operator ordering, genuine
multipoint functions are, in general, discontinuous
whenever two contour coordinates become identi-
cal. In particular, two-point functions like iF (x, y) =
〈TCÂ(x)B̂(y)〉 become7)

iF (x, y) =

iF−−(x, y) iF−+(x, y)

iF+−(x, y) iF++(x, y)

 (A.5)

=

〈T Â(x)B̂(y)〉 ∓〈B̂(y)Â(x)〉

〈Â(x)B̂(y)〉 〈T −1Â(x)B̂(y)〉

 ,

where T and T −1 are the usual time- and antitime-
ordering operators. Since there are altogether only
two possible orderings of the two operators, in fact
given by the Wightman functions F−+ and F+−,
which are both continuous, not all four components
of F are independent. Equation (A.5) implies the
following relations between nonequilibrium and usual
retarded and advanced functions:

FR(x, y) = F−−(x, y) − F−+(x, y) (A.6)

= F+−(x, y) − F++(x, y)
:= Θ(x0 − y0)

×
(
F+−(x, y) − F−+(x, y)

)
,

FA(x, y) = F−−(x, y) − F+−(x, y)

= F−+(x, y) − F++(x, y)

7)Frequently used alternative notation is F < = F−+ and
F > = F+−.
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:= −Θ(y0 − x0)

×
(
F+−(x, y) − F−+(x, y)

)
,

where Θ(x0 − y0) is the step function of the time dif-
ference. The rules for the co-contour functions F−−,
etc., follow from Eq. (A.3).

For such two-point functions, complex conjuga-
tion implies(
iF−+(x, y)

)∗ = iF−+(y, x) → iF−+(X, p) = real,
(A.7)(

iF+−(x, y)
)∗ = iF+−(y, x) → iF+−(X, p) = real,(

iF−−(x, y)
)∗ = iF++(y, x) →

(
iF−−(X, p)

)∗
= iF++(X, p),(

FR(x, y)
)∗

= FA(y, x) →
(
FR(X, p)

)∗
= FA(X, p),

where the right parts specify the corresponding prop-
erties in the Wigner representation. Diagrammati-
cally, these rules imply the simultaneous swapping
of all “+” vertices into “−” vertices and vice versa
together with reversing of the line arrow sense of all
propagator lines in the diagram.

Contrary to the common case (A.5), the sym-
metrized contour convolution

E(x) =
∫
C

dz [F (x, z)G(z, x) + G(x, z)F (z, x)]
(A.8)

is continuous when two contour coordinates become
identical. This can be easily checked, proceeding from
relations (A.6) for F and G functions. Moreover, for
this symmetrized convolution with two coincident
points, we obtain a very simple expression in the
Wigner representation if all gradient corrections to
the convolution are neglected (so-called local approx-
imation),

Eloc(X) =
∫

d4p

(2π)4
[
F−−(X, p)G−−(X, p) (A.9)

−F++(X, p)G++(X, p)
]
.

In particular, this form is applicable to the poten-
tial (25) and derivative (D.4) energy densities.

APPENDIX B

Derivative Coupling

To be specific, we consider a multicomponent sys-
tem with different constituents a described by non-
relativistic fermionic and relativistic scalar bosonic
field operators, summarized as φ̂ = {φ̂a(x)}. The free
Lagrangians of these fields are

L̂L0
a =



1
2

(
iφ̂†

a∂tφ̂a − i∂tφ̂
†
aφ̂a −

1
ma

∇φ̂†
a∇φ̂a

)
for nonrelativistic fermions

1
2

1
ma

(
∂µφ̂a∂

µφ̂a −m2
aφ̂

2
a

)
for neutral relativistic bosons

1
ma

∂µφ̂
†
a∂µφ̂a −m2

aφ̂
†
aφ̂a for charged relativistic bosons.

(B.1)

We assume that these fields interact via linear deriva-
tive coupling, such that the interaction Lagrangian
depends not only on these fields but also on their
derivatives: L̂int = L̂int{φ̂a, φ̂

†
a, ∂µφ̂a, ∂

µφ̂†
a}. The vari-

ational principle of stationary action determines
Euler–Lagrange equations of motion for the field
operators

∂µ
∂L̂L0

∂(∂µφ̂
†
a)

− ∂L̂L0

∂
(
φ̂†

a

) =
∂L̂Lint

∂
(
φ̂†

a

) (B.2)

− ∂µ
∂L̂Lint

∂(∂µφ̂
†
a)

=:
δL̂Lint

δφ̂†
a(x)

and the corresponding adjoint equation, where the
“variational” δ derivative is defined as

δ

δf(x)
· · · :=

∂

∂f(x)
· · · − ∂µ

(
∂

∂(∂µf(x))
. . .

)
.

(B.3)

This is the key definition, which allows us to recast
the local-coupling formulas to the derivative coupling
case. In fact, the “variational” δ derivative specifies
the full derivative over f(x), implying that all deriva-
tives acting on f(x) in the action should be redirected
to other terms by means of partial integration before
taking variational derivatives of f(x).
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The equations of motion can also be written in the
differential form,

G−1
0 (x)φ̂a(x) = −Ĵa(x) ≡ − δL̂Lint

δφ̂†
a(x)

(B.4)

and similarly for the corresponding adjoint equation.
The Ĵa(x) operator is the local source current of field
a with mass ma, and G−1

0 (x) is the free evolution
operator8)

G−1
0 (x) (B.5)

=

−∂µ∂
µ −m2

a for relativistic bosons

i∂t +
1

2ma
∂2
x for nonrelativstic particles

with free propagatorG0(y, x) as resolvent [cf. Eq. (2)].

Invariances of the Lagrangian provide a set of
conservation laws, the most prominent of which
are those for the energy–momentum and certain
currents. In addition to the standard canonical en-
ergy–momentum tensor [28], different representa-
tions of this tensor have been considered [29, 30].
Using the Euler–Lagrange equations of motion and
the definition of the source current (B.4), one can
show that the following form also defines a conserving
energy–momentum tensor:

Θ̂µν(x) = −1
2

[∑
a

(
1
2

)
n.b

(
∂ν

x − ∂ν
y

)
(B.6)

×
(
∂L̂L0(x)
∂(∂µφ̂a)

φ̂a(y) − φ̂†
a(x)

∂L̂L0(y)

∂(∂µφ̂
†
a)

)]
x=y

+ gµν
(
Ê int(x) − Êpot(x)

)
+ Êµν

(der)(x).

Here we have introduced the operators of the interac-
tion-energy density Ê int and the potential-energy
density Êpot:

Ê int(x) = −L̂Lint(x), (B.7)

Êpot(x) = −1
2

∑
a

(
1
2

)
n.b

(B.8)

×
(
Ĵ†

a(x)φ̂a(x) + φ̂†
a(x)Ĵa(x)

)
.

Furthermore, we have singled out the contribution

Êµν
(der)(x) =

∑
a

(
1
2

)
n.b

(B.9)

8)Note that the first line in (B.5) is not the nonrelativistic
limit of the second one. We have already divided the second
line by 2ma, to take into account different normalizations of
relativistic and nonrelativistic wave functions.

×
(

∂L̂Lint

∂(∂µφ̂a)
∂ν φ̂a + ∂ν φ̂†

a

∂L̂Lint

∂(∂µφ̂
†
a)

)
arising in the case of derivative coupling. Here and
below, the case of neutral bosons results from equat-
ing φ̂a = φ̂†

a in all the formulas. Proper counting is

assured by the extra
(

1
2

)
n.b

factor which takes the

value 1/2 for neutral boson (real fields) and 1 for
complex fields.

If the Lagrangian is invariant under some global
transformation of charged fields (with the charges ea),
e.g.,

φ̂a(x) → e−ieaΛφ̂a(x); φ̂†
a(x) → eieaΛφ̂†

a(x),
(B.10)

there exists a Noether current defined as [28]

ĵµ = −i
∑

a

ea

(
∂L̂L

∂(∂µφ̂a)
φ̂a − φ̂†

a

∂L̂L
∂(∂µφ̂

†
a)

)
(B.11)

= ĵµ
(conv) + ĵµ

(der),

which is conserved, i.e., ∂µĵ
µ = 0. Here we have de-

composed it into two terms: the conventional one

ĵµ
(conv) = −i

∑
a

ea

(
∂L̂L0

∂(∂µφ̂a)
φ̂a − φ̂†

a

∂L̂L0

∂(∂µφ̂
†
a)

)
,

(B.12)

which is associated with the free Lagrangian, and the
derivative term

ĵµ
(der) = −i

∑
a

ea

(
∂L̂Lint

∂(∂µφ̂a)
φ̂a − φ̂†

a

∂L̂Lint

∂(∂µφ̂
†
a)

)
,

(B.13)

which is nonzero only for derivative coupling.
To define the Φ functional for the case under con-

sideration, all the steps described in [17] should be
repeated. Then, we arrive at the Φ functional that
depends also on the gradients of mean fields (∂µφa

and ∂µφa
∗) and Green’s functions (∂µ

xG(x, y) and
∂µ

y G(x, y)), rather than on their values only. The vari-
ational rules of this functional formally look similar to
those in [17],

iJa(x) =
δiΦ

δφa
∗(x)

, (B.14)

−iΣa(x, y) = (∓)
δiΦ

δiGa(y, x)
(B.15)

×
{

2 for real fields

1 for complex fields,
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−E int(x) =
δiΦ

δiλ(x)
, (B.16)

but should be understood in terms of the variational
δ derivative of Eq. (B.3) for one-point functions (like
φa(x) and λ(x)) and its generalization

δiΦ
δiG(y, x)

:=
δ0iΦ

δ0iG(y, x)
(B.17)

− ∂µ
x

(
δ0iΦ

δ0(∂
µ
x iG(y, x))

)
− ∂µ

y

(
δ0iΦ

δ0(∂
µ
y iG(y, x))

)
+ ∂µ

x∂
ν
y

(
δ0iΦ

δ0(∂
µ
x∂ν

y iG(y, x))

)
to two-point functions. Here, δ0/δ0iG(y, x) means
the conventional variation over G(y, x), which does
not touch ∂µ

x iG, ∂µ
y iG, and ∂µ

x∂ν
y iG terms in iΦ.

Similar to the variational δ derivative of Eq. (B.3),
the δ variation of Eq. (B.17) means the full variation
over G(y, x), implying that all derivatives acting on
G(y, x) in the Φ functional should be redirected to
other terms by means of partial integration before
taking variation over G(y, x). The factor λ(x) appear-
ing in Eq. (B.16) is an auxiliary scaling parameter
of the coupling constant. In terms of the Φ func-
tional, the additional derivative contributions to mean
values of the energy–momentum tensor (B.9) and
current (B.13) take the form

Eµν
(der) =: 〈Êµν

(der)〉 (B.18)

=
∑

a

((
1
2

)
n.b

[
δΦ

δ(∂µφa(x))
∂νφa(x)

+
δΦ

δ(∂µφa
∗(x))

∂νφa
∗(x)

]
+
∫
C

dz

[
δΦ

δ(∂x
µiGa(z, x))

∂ν
xiGa(z, x)

+∂ν
xiGa(x, z)

δΦ
δ(∂x

µ iGa(x, z))

])
,

jµ
(der) =: 〈ĵµ

(der)〉 = −i
∑

a

ea (B.19)

×
([

δΦ
δ(∂µφa(x))

φa(x) − δΦ
δ(∂µφa

∗(x))
φa

∗(x)
]

+
∫
C

dz

[
iGa(x, z)

δΦ
δ(∂x

µ iGa(x, z))

− δΦ
δ(∂x

µiGa(z, x))
iGa(z, x)

])
,

while the remaining terms of Θµν and jµ retain the
same form as that for local coupling (cf. [17]). Here,
the variation is also understood in terms of Eq. (B.17)
to take account of the ∂µ

x∂ν
y iGa(y, x) dependence of

the Φ functional.
The next step to the kinetic description consists

in gradient expansion of KB equations and all the
related quantities. Expansion of the equations of
motion up to the first order in gradients implies that
the conserving quantities and self-energies, except
for possible memory terms in the collision integral,
are required only up to zero order in gradients.
These zero-order quantities are determined by the
local Φ functional, where all gradient corrections are
neglected. Since in the local approximation ∂µ

x iG,
∂ν

y iG, and ∂µ
x∂ν

y iG transform into −iqµiG(X, q),
iqνiG(X, q), and −iqµiqνiG(X, q), respectively, no
partial integrations are needed for the variations of
Eqs. (B.15), (B.16). This means that conventional
variation rules of Eq. (3) still hold in this case. At the
same time, derivative contributions to the conserving
quantities, Eqs. (B.18) and (B.19), involve only
variations over derivatives of the Green’s functions
and, hence, should be carefully defined within the
local approximation for the particular application
considered.

APPENDIX C

Nonrelativistic Nuclear Matter

Currently, calculations of ground-state and low-
temperature properties of nuclear matter are per-
formed within the G- or T -matrix approximations
to the self-energy [31–33]. Based on realistic non-
relativistic nucleon–nucleon potentials, they quan-
titatively reproduce phenomenological properties of
nuclear matter. However, already for the ground
state, the resulting chemical potential, i.e., the single-
particle separation energy, deviates from the binding
energy per particle, violating the Hugenholtz–van
Hove theorem. This is a manifestation of problems
with the thermodynamic consistency in these approx-
imations, which gets even worse at nonzero temper-
atures. This problem was discussed in [31, 34, 35]. A
consistent way to overcome this problem consists in
using a self-consistent T -matrix approximation [31]
based on the Φ-derivable approximation.

Dynamic simulations of nuclear matter are even
more demanding to the choice of approximation to
the self-energy, because the requirement of charge
and energy–momentum conservations should be met
except for that of the thermodynamic consistency.
Again, all these requirements are met provided the
approximation is Φ-derivable. Since dynamic simu-
lations are much more complicated as compared to

PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 10 2003



SELF-CONSISTENT APPROACH 1915

static ones, up to now they have been performed in
a simpler approximation to the self-energy, i.e., the
direct Born approximation [5, 7], which provides a
qualitative description of the dynamics. These simu-
lations were based on the KB equations without any
gradient expansion. Here, we would like to call atten-
tion to the fact that the use of the gradient expansion
in the KB form (see Section 2C) would simplify these
dynamic simulations and, at the same time, preserve
the pleasant features of exact conservations and ther-
modynamic consistency.

In view of a reasonable level of complexity feasible
for current computing, we confine our consideration
to the full Born approximation to the Φ functional
 

1
2
---

 

+

 

Φ

 

HF

 

Φ

 

Born

 

i

 

Φ

 

HFB

 

1
2
---=

1
4
---

 

+

 

1
4
---

 

+

 

V

 

(C.1)

 

V

which includes the Hartree–Fock contribution ΦHF

[the first two diagrams in Eq. (C.1)] and the true Born
contribution ΦBorn (the last two diagrams). Here, the
wavy line symbolizes a nonlocal nucleon–nucleon
potential V (|x1 − x2|), or V (|q|) in the momentum
representation. For simplicity, below we denote the
latter as V (q), keeping in mind that, in fact, it does
not depend on either q0 or direction of q.

Note that the ΦBorn part gives rise to the self-
energy containing internal vertices. This implies that
the corresponding collision term involves nonlocal
effects (see discussion in [8]). However, only “spatial
nonlocality” appears in the collision term, while the
memory in time is absent since V (|x1 −x2|)δ(t1 − t2)
is time-local. According to the general consideration
of [10], exact conservations in the gradient approxi-
mation take place if all the nonlocal terms are consis-
tently taken into account up to first-order gradients.
Below, we show that, in the particular case of the
ΦHFB functional, the exact conservations hold true
even if we neglect the spatial nonlocality generated by
ΦHFB. These exact conservations imply global rather
than local conservation of the energy–momentum,
which is in fact natural for the case of instant inter-
action of finite range considered here.

Neglecting the gradient terms induced by the finite
range of V , we consider the ΦBorn functional in the
local approximation, where all Green’s functions in
the Wigner representation are taken at the same cen-
troid coordinate X. Alongside some variational ex-
pressions, we use an X-dependent local Φ functional,

Φ(X), where the last spatial integration is omitted,
i.e.,

Φ =
∫

dXΦ(X). (C.2)

The ΦHFB of Eq. (C.1) gives rise to the following local
collision term:

CHFB-loc =
∫

d4p2

(2π)4
d4p3

(2π)4
d4p4

(2π)4
RHFB (C.3)

×
(
F̃1F̃2F3F4 − F1F2F̃3F̃4

)
δ4(p1 + p2 − p3 − p4),

RHFB =
(2π)4

2
[V (p1 − p3) + V (p1 − p4)]

2 , (C.4)

where F1 = F (X, p1), etc. [cf. Eq. (17)].

1. Charge Conservation

In ΦHFB, the G−− and G++ Green’s functions
are encountered only in different +− Φ diagrams,
and hence we can vary G−− and G++ independently.
Therefore, ΦHFB is invariant under the following
transformation:

G−−(X, p) → G−−(X, p + ξ(X)), (C.5)

G++(X, p) → G++(X, p − ξ(X)),

with F , F̃ , and V kept unchanged. Here, ξ(X) is
an arbitrary function. If |ξ(X)| � 1, transforma-
tion (C.5) reads

δG−− = ξµ(X)
∂G−−

∂pµ
, (C.6)

δG++ = −ξµ(X)
∂G++

∂pµ
.

Performing variation of ΦBorn under the transforma-
tion (C.6) within the canonical variation rules (3), we
arrive at

iδΦloc =
∫

dXξµ(X)Tr
∫

d4p

(2π)4
(C.7)

×
(
iΣ−−

∂iG−−

∂pµ
− iΣ++

∂iG++

∂pµ

)
= 2i

∫
dXξµ(X)Tr

∫
d4p

(2π)4

×
(

Γin∂ReGR

∂pµ
+ ReΣR ∂F

∂pµ

)
= 0.

Here, we have used the fact that the integral

tr
∫

d4p

(2π)4

(
Γ
∂ReGR

∂pµ
+ ReΣR ∂A

∂pµ

)
(C.8)
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= −1
2

Im tr
∫

d4p

(2π)4
ΣR∂GR

∂pµ
= 0

equals zero due to analyticity of GR and ΣR. Thus, we
obtain the relation

tr
∫

d4p

(2π)4

(
Γin∂ReGR

∂pµ
+ ReΣR ∂F

∂pµ

)
= 0, (C.9)

which guarantees the Noether current conservation
[cf. Eq. (21)] with jµ

(der) = 0.

2. Energy–Momentum Conservation

In order to construct the conservation laws related
to spacetime homogeneity, we perform the following
transformation:

G−−(X, p) → G−− (X + ξ(X), p) , (C.10)

G++(X, p) → G++ (X − ξ(X), p) ,

with F , F̃ , and V kept unchanged. This transfor-
mation only acts on ΦHFB− and ΦHFB+, i.e., those
involving only “−” or “+” vertices, respectively,

δΦHFB (C.11)

=
∫

dXξµ(X)∂µ
(
ΦHFB(X−) − ΦHFB(X+)

)
,

where ΦHFB(Xi) are understood in the sense of (C.2).
Note that

i
(
ΦHFB(X−) − ΦHFB(X+)

)
(C.12)

= itr
∫

d4p

(2π)4
ΣHFF +

1
2
iTr

∫
d4p

(2π)4

×
(
ΓinReGR + (ReΣR − ΣHF)F

)
− tr

∫
d4p

(2π)4
(
ΓReGR + (ReΣR − ΣHF)A

)
︸ ︷︷ ︸

= 0

,

where the last integral is again zero due to analyticity,
similar to (C.8). Here, the first term on the right-hand
side results from the first two (Hartree–Fock) dia-
grams in Eq. (C.1), while the last two integrals follow
from the last two (Born) diagrams. Alternatively, we
can perform variation of ΦBorn applying the canonical
variation rules (3):

iδΦHFB =
∫

dXξµ(X)tr
∫

d4p

(2π)4

(
iΣ−−

∂iG−−

∂Xµ
− iΣ++

∂iG++

∂Xµ

)
= 2i

∫
dXξµ(X)tr

∫
d4p

(2π)4
(C.13)

×
(

Γin∂ReGR

∂Xµ
+ ReΣR ∂F

∂Xµ

)
− i

∫
dXξµ(X)tr

∫
d4p

(2π)4

(
Γ
∂ReGR

∂Xµ
+ ReΣR ∂A

∂Xµ

)
︸ ︷︷ ︸

= 0

,

where the last integral is again zero due to analyticity.
Therefore, we arrive at the important identity

tr
∫

d4p

(2π)4

(
Γin∂ReGR

∂Xµ
+ ReΣR ∂F

∂Xµ

)
(C.14)

= ∂µtr
∫

d4p

(2π)4

[
1
2
ΣHFF

+
1
4

(
ΓinReGR + (ReΣR − ΣHF)F

) ]
.

Next, we investigate the transformation

G−−(X, p) → G−− (X,Λµν(X)pν) , (C.15)

G++(X, p) → G++
(
X,Λ−1

µν (X)pν
)
,

V −(q) → V −(Λµν(X)qν), (C.16)

V +(q) → V +(Λ−1
µν (X)qν)

for the entire ΦHFB, while F and F̃ are kept un-
changed. For the Hartree–Fock part ΦHF, one finds

p̃µ = Λµνp
ν , (C.17)

p̃′µ = Λµνp
′ν → d4pd4p′ = (det Λ)−2d4p̃d4p̃′,

δΦHF− =
∫

dX
[
(det Λ)−2 − 1

]
ΦHF(X−), (C.18)

δΦHF+ =
∫

dX
[
(det Λ)2 − 1

]
ΦHF(X+), (C.19)

where again ΦHF− and ΦHF+ are the ΦHF diagrams
involving only “−” or “+” vertices, respectively. In
general, an arbitrary diagram ΦnG,nλ(−), consisting of
nG Green’s functions, nλ of “−” interactions, and no
“+” interactions, transforms as

δΦnG,nλ(−) (C.20)

=
∫

dX
[
(detΛ)−(nG−nλ+1) − 1

]
ΦnG,nλ(−)(X),

since the change of each momentum integration gives
(det Λ)−1 [cf. Eq. (C.17)], while the transformation
of the δ(p) function at each vertex (apart from one
vertex due to global momentum conservation of the
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diagram) produces det Λ:

δ4(p + p′ − q) = detΛδ4(p̃ + p̃′ − q̃). (C.21)

Similarly,

δΦnG,nλ(+) (C.22)

=
∫

dX
[
(det Λ)nG−nλ+1 − 1

]
ΦnG,nλ(+)(X).

According to these rules the “−” and “+” diagrams
of the second order in the interaction, ΦBorn− and
ΦBorn+, are transformed as follows:

δΦBorn− =
∫

dX
[
(detΛ)−3 − 1

]
ΦBorn−(X),

(C.23)

δΦBorn+ =
∫

dX
[
(det Λ)3 − 1

]
ΦBorn+(X).

(C.24)

If the Λ transformation is infinitesimal, Λµν(X) =
1 + ωµν(X) with |ωµν | � 1 and detΛ = 1 + Trω,
det(Λ−1) = 1 − trω, we obtain

δ
(
ΦHFB− + ΦHFB+

)
(C.25)

= −
∫

dX2trω
(
ΦHF−(X) − ΦHF+(X)

)
−
∫

dX3trω
(
ΦBorn−(X) − ΦBorn+(X)

)

[cf. Eq. (C.12)]. The ΦBorn−+ and ΦBorn+− com-
ponents, i.e., those containing both “−” and “+”
vertices, are modified by only the V transformation.
Moreover, this transformation leaves them invariant,

iδΦBorn−+ (C.26)

=
∫

dXωµν tr
∫

d4p

(2π)4
pν

(
δiΦBorn−+(X)

δiV −
∂iV −

∂pµ

−δiΦBorn−+(X)
δiV +

∂iV +

∂pµ

)
=
∫

dXωµν tr
∫

d4p

(2π)4
pν

(
δiΦBorn−+(X)

δV − V −

−δiΦBorn−+(X)
δV +

V +

)
1
V

∂V

∂pµ
= 0,

since ΦBorn−+ is symmetric with respect to V − and
V +. Thus,

iδΦHFB = −
∫

dX(trω)itr
∫

d4p

(2π)4
(C.27)

×
[
2ΣHFF − 3

2

(
ΓinReGR + (ReΣR − ΣHF)F

)]
.

Alternatively, we can perform variation of ΦHFB ap-
plying the canonical variation rules (3):

iδΦHFB =
∫

dXωµν

[
tr
∫

d4p

(2π)4
pν

(
iΣ−−

∂iG−−

∂pµ
− iΣ++

∂iG++

∂pµ

)
+ 2iQµν(X)

]
(C.28)

= 2i
∫

dXωµν

[
tr
∫

d4p

(2π)4
pν

(
Γin∂ReGR

∂pµ
+ ReΣR ∂F

∂pµ

)
+ Qµν(X)

]
− i

∫
dXωµν tr

∫
d4p

(2π)4
pν

(
Γ
∂ReGR

∂pµ
+ ReΣR ∂A

∂pµ

)
︸ ︷︷ ︸

= 0

,

where the last integral again equals zero due to ana-
lyticity. Here, we have introduced the quantity

2iQµν(X) = tr
∫

d4p

(2π)4
pν (C.29)

×
(
δiΦHFB−(X)

δiV −
∂iV −

∂pµ
− δiΦHFB+(X)

δiV +

∂iV +

∂pµ

)

arising from variation over V . All we have to know
about this quantity is that Qµν = 0 when µ = 0
and/or ν = 0. This property results from p0 indepen-

dence of V (|p|). In particular, this property yields∫
d3X∂µQ

µν(X) = 0, (C.30)

where the X integration runs only over space.

Hence, comparing Eq. (C.28) to Eq. (C.27), we
arrive at another important identity:

tr
∫

d4p

(2π)4
pν

(
Γin∂ReGR

∂pµ
+ ReΣR ∂F

∂pµ

)
(C.31)

+ Qµν(X) = −gµν tr
∫

d4p

(2π)4
ΣHFF

PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 10 2003



1918 IVANOV et al.

− gµν 3
4

tr
∫

d4p

(2π)4
(
ΓinReGR + (ReΣR − ΣHF)F

)
.

We turn now to the right-hand side of the consistency
relation for energy–momentum conservation (22)

Kν = tr
∫

d3X
pνd4p

(2π)4
[{

ReΣR, F
}
−
{

ReGR,Γin}]
(C.32)

integrated over space, which is suitable for the global
conservation. In this expression, the local collision
term (C.3) drops out according to Eq. (16). It can be
transformed by means of the identity∫

d4p

(2π)4
pν {ϕ, f} (C.33)

=
∫

d4p

(2π)4

[
∂µ

(
pνf

∂ϕ

∂pµ

)
+ f∂νϕ

]
,

where ϕ and f are arbitrary functions, with the result

Kν = −tr
∫

d3X∂µ

∫
d4p

(2π)4
pν (C.34)

×
(

ReΣR ∂F

∂pµ
+ Γin∂ReGR

∂pµ

)
− tr

∫
d3X

d4p

(2π)4
(
ReΣR∂νF + Γin∂νReGR

)
.

Now, applying identities (C.14), (C.30), and (C.31) to
the right-hand side of Eq. (C.34), we obtain

Kν =
∫

d3X∂µg
µν tr

∫
d4p

(2π)4
1
2

(C.35)

×
(
ΓinReGR + ReΣRF

)
,

which is precisely needed for the global conservation
of the Noether energy–momentum

∂

∂T

∫
d3XΘ0ν(X) = 0, (C.36)

since, for the case under consideration, E int =
1
2
Epot

[cf. Eq. (26)].

APPENDIX D

Nucleon–Pion System

For the discussion of the physical aspects of the
nucleon–pion problem, we refer to [9]. Here, we
would like to clarify some technical details. We choose
the nonrelativistic form of pion–nucleon interac-
tion [36]

L̂Lint = gψ̂†
[
(σ · ∇)(τ · φ̂)

]
ψ̂, (D.1)

where ψ̂ and φ̂ are nonrelativistic nucleon and Klein–
Gordon pion field operators, respectively. Below, sub-
scripts N or π correspondingly attribute a quantity to
either nucleon or pion subsystems, respectively. We
accept a simple approximation defined by the follow-
ing Φ functional:
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N

 

π

 

N

where G and ∆ are the nucleon and pion Green’s
functions, respectively, and tr runs over spin and
isospin indices. Here, we have assumed an isotopi-
cally symmetric system, where the pion Green’s
functions of all isotopic charges coincide. Though this
approximation is evidently oversimplified to produce
quantitative results (cf. [9]), it is able to reproduce
qualitative features of the dynamics. Moreover, this
approximation is at the edge of present computing
abilities. The formal basics of the Φ-functional for-
malism are given in Appendix B.

The charge current, defined by Eqs. (20) and
(B.11), relates to the baryon number conservation
and hence is trivial from the point of view of the
pion–nucleon interaction. Indeed, to prove the baryon
number conservation, we should perform transforma-
tion (C.5) with FN , F̃N , and ∆ij kept unchanged.
The pion Green’s functions ∆ij are not subjected to
this transformation, since pions are neutral from the
point of view of baryonic charge. All the subsequent
considerations are completely identical to that of the
Fock diagram [the second term in Eq. (C.1)] and lead
to the same final result (C.9), i.e., to the exact Noether
current conservation.

The energy–momentum conservation is more
instructive in this respect. Before proceeding to the
conservation laws themselves, we should define the
derivative contribution to the energy–momentum
tensor (B.18). In our case of vanishing mean fields,
the pion Green’s function enters the Φ functional only
doubly differentiated. Therefore, expression (B.18)
takes the form

Eµν
(der) =

1
2

∫
C

dz

(
δ0Φ

δ0(∂z
λ∂

x
µi∆(z, x))

∂z
λ∂

ν
xi∆(z, x)

(D.3)

+ ∂x
ν∂

λ
z i∆(x, z)

δ0Φ
δ0(∂x

µ∂
z
λi∆(x, z))

)
,
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where δ0 is already the conventional variation. In the
Wigner representation with due regard for Eq. (A.9),
it transforms into

Eµν
(der)(X) (D.4)

= −tr
∫

d4p1

(2π)4
d4p2

(2π)4
d4q

(2π)4
δ4(p1 − p2 + q)g2

×
[
iG−−(X, p1)(−qνσµ)τ i∆−−(X, q)

× (iq · σ)τ iG−−(X, p2) − iG++(X, p1)

×(−qνσµ)τ i∆++(X, q)(iq · σ)τ iG++(X, p2)
]
.

Contrary to usual convention, here we use Greek
indices µ and ν for the components of 3-vectors in
order to distinguish them from the “+ −” summation
indices. The potential energy density is still deter-
mined by the standard expression (25) but in terms
of the sum over nucleons and pions. Within the ap-
proximation of Eq. (D.2), Epot can be alternatively
expressed as

Epot(X) = Epot
N + Epot

π =
3
2
[ΦπN−(X) − ΦπN+(X)],

(D.5)

where ΦπN− (ΦπN+) refers to the ΦπN functional
with removed integration over dX and all vertices
being of “−” (“+”) type. In view of relation (26),

E int(X) − Epot(X) = −1
2
[ΦπN−(X) − ΦπN+(X)].

(D.6)

Energy–Momentum Conservation

We briefly repeat the steps proving the exact en-
ergy–momentum conservation for nonrelativistic nu-
clear matter (Appendix C) with the emphasis on the
specifics of the derivative coupling.

First, the transformation of Eq. (C.10) for the
nucleon Green’s functions together with the corre-
sponding transformation of the pion Green’s func-
tions

∆−−(X, p) → ∆−− (X + ξ(X), p) , (D.7)

∆++(X, p) → ∆++ (X − ξ(X), p) ,

with Fπ and F̃π being kept unchanged, has to be
performed. This transformation is unaffected by the
derivative coupling, and in a similar way as before, we
arrive at the identity

tr
∫

d4p

(2π)4

[(
Γin

N

∂ReGR

∂Xµ
+ ReΣR∂FN

∂Xµ

)
(D.8)

+
1
2

(
Γin

π

∂Re∆R

∂Xµ
+ ReΠR ∂Fπ

∂Xµ

)]

= −∂µ(E int − Epot).

Here, Σ and Π refer to nucleon and pion self-energies,
respectively, and subscripts N or π correspondingly
attribute a quantity to either nucleon or pion subsys-
tems. The right-hand side of this identity is written
with due regards to Eq. (D.6).

Let us now perform the transformation (C.15) for
both nucleon and pion Green’s functions, as well as
q factors encountered in vertices of ΦπN . Then, the
variation of ΦπN gives

δΦπN =
∫

dXωµν (D.9)

×
[
−2gµν

(
ΦπN−(X) − ΦπN+(X)

)
+ 2Eµν

(der)

]
=
∫

dXωµν

[
4gµν

(
E int − Epot

)
+ 2Eµν

(der)

]
,

where the Eµν
(der) results from the variation of q factors

in vertices of ΦπN . Alternatively, performing variation
of ΦπN according to the canonical variation rules (3)
and equating the result to expression (D.9), we arrive
at another identity,

tr
∫

d4p

(2π)4

[(
Γin

N

∂ReGR

∂pµ
+ ReΣR∂FN

∂pµ

)
(D.10)

+
1
2

(
Γin

π

∂Re∆R

∂pµ
+ ReΠR ∂Fπ

∂pµ

)]
= 2gµν(E int − Epot) + Eµν

(der).

The right-hand side of the consistency relation for
energy–momentum conservation (22) now reads

Kν = tr
∫

pνd4p

(2π)4

[
({ReΣR, FN} (D.11)

− {ReGR,Γin
N}) +

1
2
({ReΠR, Fπ} − {Re∆R,Γin

π })
]
.

By means of identity (C.33), it is transformed to the
form

Kν = −∂µtr
∫

d4p

(2π)4
pν

[(
ReΣR ∂FN

∂pµ
(D.12)

+Γin
N

∂ReGR

∂pµ

)
+

1
2

(
ReΠR ∂Fπ

∂pµ
+ Γin

π

∂Re∆R

∂pµ

)]
− tr

∫
d4p

(2π)4
[(

ReΣR∂νFN + Γin
N∂νReGR

)
+

1
2
(
ReΠR∂νFπ + Γin

π ∂
νRe∆R

)]
.

Now, applying identities (D.8) and (D.10) to the
right-hand side of Eq. (D.12), we obtain

Kν = ∂ν
(
Epot − E int

)
− ∂µEµν

(der), (D.13)
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which is precisely needed for the local conservation of
the Noether energy–momentum.
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