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Abstract

We study the influence of the virtual pion cloud in nuclear matter at finite den-
sities and temperatures on the structure of the ρ- and ω-mesons. The in-matter
spectral function of the pion is obtained within a selfconsistent scheme of coupled
Dyson equations where the coupling to the nucleon and the ∆(1232)-isobar reso-
nance is taken into account. The selfenergies are determined using a two-particle
irreducible (2PI) truncation scheme (Φ-derivable approximation) supplemented by
Migdal’s short range correlations for the particle-hole excitations. The so obtained
spectral function of the pion is then used to calculate the in-medium changes of
the vector-meson spectral functions. With increasing density and temperature a
strong interplay of both vector-meson modes is observed. The four-transversality of
the polarisation tensors of the vector-mesons is achieved by a projector technique.
The resulting spectral functions of both vector-mesons and, through vector domi-
nance, the implications of our results on the dilepton spectra are studied in their
dependence on density and temperature.
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1 Introduction

It is an interesting question how the behaviour of hadrons changes in a dense
hadronic medium. One of the driving ideas is that chiral symmetry is expected
to become partially restored with increasing density or temperature. Therefore
the spectral functions of hadrons in their dependence on the thermodynamic
parameters of the hadronic environment are of special interest. They directly
show the possible effects on the mass and decay properties of the particles.
One of the experimental accesses to observe the spectral functions in-matter
is provided through the study of electron-positron- or muon anti-muon pairs,
called dileptons [1–5] both in hadron–nucleus and nucleus–nucleus collisions.
The advantage of such electromagnetic probes instead of strong interacting
particles, like pions or kaons, is that one gets information directly from the
centre of the interaction zone. Above invariant masses of 400 MeV the pairs are
mainly produced through the decay of vector-mesons like the ρ- and ω-meson.
Additional contributions come from bremsstrahlung and final-state Dalitz-
decays of other resonances, like the η-meson, which in part are controlled by
other observations. Presently all nuclear collision experiments [2–5] observe a
significantly enhanced dilepton yield in the invariant mass range below the
light vector-meson masses compared to straight extrapolations from elemen-
tary processes, like proton-proton scattering. Several mechanisms, especially
a lowering of the ρ-meson mass or an increase of its damping width, were
proposed to explain the experimental facts [8–29]. Additional experiments for
photo-production off nuclei are planned, where one likes to investigate the
ω → π0γ → 3γ channel [6,7]. Despite the perturbation through the final state
interaction of the π0-meson [6] it will still be possible to isolate the ω-meson
component because the competing ρ-meson process is highly suppressed.

Ever since the early considerations of vector-mesons in dense matter [30,31,18]
much effort has been devoted to study the properties of the ρ-meson, which
strongly couples to the two-pion channel. However, with a few exceptions,
e.g. [10,12,13], the in-medium properties of the pion are commonly neglected,
just employing unperturbed free pion states. Furthermore so far there are
only few attempts to study the in-medium properties of the ω-meson [20–
25,32–34]. Thus, a more realistic determination of the in-matter pion cloud
permits to investigate the dependence of the vector-meson properties on the
various components of the pion spectral function in the medium. Compared
to a schematic three level model for the pion modes studied by Wachs [34]
we use a scheme of coupled Dyson equations in which the pionic degrees of
freedom are modified selfconsistently through the coupling to the nucleon and
the ∆(1232)-resonance. All selfenergies are determined within a truncated two-
particle irreducible (2PI) effective action formalism (Φ-functional) in their full
dependence on energy and three momentum. This guarantees conservation
laws of the theory to be fulfilled on the level of expectation values [36] despite
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the approximations employed. From the in-medium spectral function of the
pion we are able to calculate the modified spectral functions for the ρ-meson as
well as for the ω-meson in the coupled scheme. Thereby the process ρ → ω+π
leads to a strong interplay between both vector-mesons. In particular the ω-
width is very sensitive to the space-like, i.e. low energy component of the pion
caused by its coupling to nucleon nucleon-hole states. For a realistic treatment
of this component Migdal’s short range correlations [37] are important. These
RPA-type correlations shift the spectral strength to higher energies, such that
pion condensation is prevented. In order to concentrate on the effects due
to the modified pion we neglected direct couplings of the vector-mesons to
the baryonic currents. The latter have been investigated by several authors
[35,8,9], who found a multicomponent structure for the in-medium ρ meson
which is yet absent in our approach.

Dealing with vector-mesons requires to consider current conservation on the
correlator level. This is ensured by a projector formalism [38] which constructs
a four-transversal polarisation tensor.

The paper is organised in the following way: We first summarise the essential
definitions in the realtime formalism used in the calculations at finite temper-
ature and density. Then we present the model for the in-medium pion coupled
to the the baryonic degrees of freedom. Afterwards we show how to derive a
four-transversal and thus a current conserving polarisation tensor by means of
a projector formalism. For the so obtained in-medium spectral functions of the
vector-mesons we use the vector-dominance concept in order to calculate the
effect of our results on the dilepton rates. The different decay contributions as
well as the effect of possible mass-shifts of the vector-mesons in the dilepton
spectra are investigated. A discussion of our results concludes the paper.

2 Realtime formalism and 2PI generating functional

Interested in all spectral properties as a function of real energies the realtime
formalism [39] will be used rather than the Matsubara technique. Within this
formalism all two-point functions such as the propagator 4 or selfenergies take
four components, e.g.

iG−−(x, x′)≡ 〈T Ψ̂(x)Ψ̂†(x′)〉 iG++(x, x′)≡ 〈T−1Ψ̂(x)Ψ̂†(x′)〉

iG+−(x, x′) ≡ 〈Ψ̂(x)Ψ̂†(x′)〉 iG−+(x, x′) ≡ ∓〈Ψ̂†(x′)Ψ̂(x)〉,

4 We use units with c = ~ = 1 throughout the paper.
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depending on the order of the fermionic (upper sign) or bosonic (lower sign)
field operators Ψ̂(x) appearing in the expectation values. The space-time coor-
dinates are denoted by x and x′, the time-, respectively, anti-time-ordering is
symolized by T and T−1. The Dyson equations then become matrix equations
with respect to the {−, +} labels (placement on the closed time contour).

For a uniform medium in thermal equilibrium one can exploit the standard
simplification by going to the space-time Fourier-transformation x − x′ → p
of all quantities, where p = (p0, p) is the four momentum. Then the coupled
Dyson equations simply become algebraic and it is sufficient to solve for the
retarded (or advanced) Dyson equation, since all four components can be
deduced from this by thermal Fermi-Dirac or Bose-Einstein factors arising
from the Kubo-Martin-Schwinger (KMS) condition. Thereby the retarded and
advanced Green functions follow from

GR(p) ≡ G−−(p) − G−+(p) = G+−(p) − G++(p)

GA(p) ≡ G−−(p) − G+−(p) = G−+(p) − G++(p)

GA(p) ≡ (GR(p))†
(1)

with the KMS conditions

iG−+ ≡ ∓nT (p)A(p)

iG+− ≡ (1 ∓ nT (p))A(p),
(2)

where the spectral function and thermal weights are given by

iA(p) ≡ GA(p) − GR(p) = (GR(p))† − GR(p)

nT (p) ≡
1

exp((p0 − µ)/T ) ± 1

(3)

with temperature T , chemical potential µ and the energy p0. The above listed
relations for G likewise apply for all equilibrium two-point functions, i.e. also
for the selfenergies. They are also written in a way that they apply to Dirac
spinors or vector fields, whereby all quantities additionally become Dirac-
matrix or Lorentz-tensor structures, respectively. The adjungation denoted
by the †-symbol refers to this matrix structure 5 . For relativistic bosons the
spectral functions A(p) are normalised to 2π with respect to the integration
measure p0 dp0.

The propagators and selfenergies of the baryons are denoted by G and Σ,
while we use D and Π for the corresponding quantities for the meson fields. In
selfconsistent two-particle irreducible (2PI) approximation schemes [36,40] the
selfenergies Σ or Π for the baryons and mesons are derived from a generating

5 Dirac spinors need to be treated with special care since one has to employ the
“hermitian” form γ0γµ of the Gamma-matrices before executing the adjungation.
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functional, called Φ-functional. This functional is given by a truncated set
of closed diagrams in accordance with the interaction Lagrangian where all
lines denote dressed, i.e. selfconsistent propagators. The selfenergies result as
functional variations with respect to the propagators, i.e.

−iΣ(x, y) =
δiΦ[G, D]

δiG(y, x)
or − iΠ(x, y) =

δiΦ[G, D]

δiD(y, x)
. (4)

This implies an opening of a corresponding propagator line in the diagrams
of Φ. For the resulting set of coupled Dyson equations such 2PI approaches
guarantee that even in a partial resummation of a single class of diagrams
the conservation laws which are related to the symmetries of the system are
fulfilled on the level of expectation values [36].

3 The Model

The present investigations are restricted to spin as well as isospin symmetric
nuclear matter. This implies vanishing chemical potentials for all mesons in
the light flavour sector. All selfconsistent calculations of the spectral functions
are carried out numerically as a function of energy and momentum on a two
dimensional grid of 5 MeV by 5 MeV/c resolution using an iterative procedure.
For the model Lagrangian we use the dominant hadron interactions emerging
from the low energy chiral limit of QCD, i.e. the Weinberg-Tomozawa cou-
plings[41,42]. Although the fields are not elementary we try to keep the model
as free as possible from further ambiguities such as form factors, thus treating
most coupling as point-like. Apart from the πNN - and πN∆-coupling this
can be done for all other channels. In no-sea approximation for the baryons
all baryon-loops are finite. Loops involving mesons are divergent and would
require appropriate regularisation schemes, either in form of a UV-cutoff or by
some generalized counter term strategy [43] for some loops up to the 6-point
level with corresponding complications [47] for the selfconsistent treatment.
Both introduce further ambiguities. In order to circumvent such complications
we have dropped the real part of these loops while keeping the normalization
of the corresponding spectral functions. The simplification violates the ana-
lyticity properties of the selfenergies. However explicit checks showed this of
minor importance, in particular for the here addressed vector mesons. For the
present investigations we also ignore direct couplings of the vector mesons to
the baryonic currents.

3.1 Pions and baryonic Resonances

In the baryon sector the nucleon and the ∆(1232)-resonance are included. The
pion is considered as Goldstone boson of chiral symmetry which, in lowest ap-
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proximation in the pion-energy, leads to p-wave couplings to the baryonic
pseudo-vector currents together with a minor s-wave term which we ignore.
For the energies involved we approximate the spinor structure of the baryons
by the non-relativistic limit, while the kinematics is kept in the relativistic
form. This approximation allows to handle the spin-3/2-structure of the ∆-
resonance in a simple way 6 . Furthermore, for the investigated range in exci-
tation energies we can safely use the no-sea approximation for the baryons.
Thus we neglect processes involving anti-baryons and set the baryon spectral
functions to zero for negative energies.

The following non-relativistic form of the interaction Lagrangian

L
int
N∆π = −gπNNΨ†

N

(

σ†
∇

) (

τ †π
)

ΨN − gπN∆Ψ†
∆

(

S†
∇

) (

T †π
)

ΨN + h.c.

(5)
is used with the spinor-field operators ΨN and Ψ∆ of the nucleon and ∆-
resonance. Here σ and τ denote the vectors of Pauli matrices in spin and
isospin, respectively. Likewise, the vector S defines the three spin-coupling
matrices of spin 3/2 and 1/2 to spin 1, while T is the same in isospin-space.
In our scheme we neglect pion self-interactions (L int

π ∝ π4) which give rise to
selfenergy diagrams of sunset type [38] as well as contributions from ∆∆−1

excitations. Both are of some importance at temperatures above 80 MeV,
where they would even further broaden the pion spectral functions.

Furthermore we supplement an exponential formfactor

F (q) = exp(−q2/Λ2) (6)

at the πNN- and πN∆-vertices. Values of Λ= 440 MeV and gπN∆ = 0.02 MeV−1

are required for a decent fit of the pion-nucleon phase-shifts in the 33-chanal 7

and a proper vacuum spectral function of the ∆-resonance. For gπNN we use
0.007 MeV−1 [46].

For the chosen Lagrangian mean-field terms drop out and the first diagrams
for the Φ-functional in the baryon-pion sector which we use are:

ΦN∆π =

N

π

N

+

∆

π

N

6 A fully relativistic formulation would require the use of special interactions as
can be seen for example in ref. [44], which then would also have to be incorporated
in the later introduced Migdal formalism.
7 This implies a cut-off dependence of the in-medium results. In models with a
larger body of resonances, cf. [45], the cut-off Λ can be chosen above 700 MeV.
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The lines represent the fully dressed propagators, while apart from the form-
factor (6) the vertices remain bare.

Not all of the selfenergy terms obtained through (4) are of equal importance.
For instance the ∆-π-loop contribution to the nucleon selfenergy is found
negligible compared to the N -π-loop and thus neglected in the production
runs. The retarded pion selfenergy can be obtained from a dispersion relation
which in no-sea approximation does not require any renormalisation

ΠR(p) =
i

2π

∫

dE ′Π
+−(E ′, p) − Π−+(E ′, p)

E ′ − E − iǫ
. (7)

Interested in the pion modes a complete determination of the baryon selfen-
ergies Σ(p) is beyond the scope and not the aim of the present model. For
simplicity we drop the real parts of Σ(p), which would require a renormal-
isation procedure within a selfconsistent resummation scheme [47]. However
the normalisation of the corresponding spectral functions is restored in each
iteration step.

As is well known, the coupling of the pion to nucleon-hole (NN−1) and ∆N−1-
states provides a strong softening of the pion modes already at normal nuclear
densities. Since there are no indications from experiment for a pion condensate
at normal nuclear density one has to include a repulsive force which shifts the
spectral strength up to higher energies. This can be achieved by a repulsive
short-range interaction between the baryons first introduced by Migdal [37]

g11 g12 g22

For the Migdal parameters we used g11 = 0.5, g22 = 0.6 g12 = 0.5 without
any form factor. At a momentum scale of 200 MeV/c for the relevant NN−1

excitations 8 this choice is compatible with the recent parameter set of Suzuki
[49] and Nakano [50] who calibrated it on Gamow-Teller transition strengths.
These correlations are to be included in the retarded pion selfenergy in form
of an RPA-resummation with particle-hole loops

ΠR
π = + + . . . ,

where also mixtures with the ∆-resonance, i.e ∆N−1-loops need to be con-
sidered. In the non-relativistic limit for the spinor structure of the baryons,
only the spatial components of the Dirac matrices survive in all loops which,

8 These excitations, which essentially influence the ρ-ω mixing in matter, are mainly
determined by g11.
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by symmetry arguments, are diagonal (for a fully relativistic treatment cf.
[52]). Therefore, apart from a q2-factor due to the difference between the
pion-baryon coupling and the Migdal interaction the basic loops for the RPA-
resummation are given by the normal pion selfenergy diagrams resulting from
the Φ-functional (4)

ΠR
π NN−1 = ΠR

π ∆h =

Thus, the RPA-resummation can be done without further problems. With
the three possible vertices one finally obtains [45,11,12]

ΠR = (q2)2 ΠR
π NN−1 + ΠR

π ∆h − (g11 − 2g12 + g22)Π
R
π NN−1ΠR

π ∆h

(q2 − g11Π
R
π NN−1)(q2 − g22Π

R
π ∆h) − g2

12Π
R
π NN−1ΠR

π ∆h

F (q) (8)

for the retarded pion selfenergy. The corresponding results together with those
for the pion spectral function are shown in the Figs. 1 to 6.
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Fig. 1. Contour plot of the logarithm of
the pion spectral function Aπ at T=0
MeV and ρ = ρ0. The line spacing covers
half a decade.
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Fig. 4. Same as Fig. 1 for T=120 MeV
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Fig. 6. Same as Fig. 3 at T=120 MeV

In the selfenergy and spectral function we see the effect of the coupling to
the different baryonic excitations. The on-shell pole broadens and is shifted
towards lower energies due to the net-attraction of the interaction in this
kinematical region. This component strongly mixes with the ∆N−1 component
which leads to the shoulders around this peak. This component appears in the
time-like region for low momenta, while it traverses to the space-like region
for higher momenta. At low energies an entirely space-like pion component
appears due to NN−1 excitations. From the kinematics it is clear that this
component stays in the space-like region for all momenta. Such space-like pion
modes have to be interpreted as a scattering process on the baryons in the
matter mediated by the exchange of pions. Due to this component, the pion
spectral function has non-vanishing strength at all energies, such that in all
processes where pions are involved all thresholds disappear. Due to the short-
range Migdal repulsion there is no spectral component where the peak position
decreases towards lower energies when one increases the momentum. The form
of the spectral function turns out to be very sensitive on values for the Migdal
parameters and the formfactor F . In addition, in the literature one finds quite
different procedures to incorporate the formfactor in the Migdal resummation.
Some of them include formfactors also for the Migdal-vertices [48–50] 9 . We

9 Following the Korpa-Malfliet [48,51] prescription for the Migdal vertices we could
qualitatively reproduce their results as a check for our numerics.
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followed the approach from refs. [11–13] with formfactor-free Migdal vertices.
The difference between these two techniques turns out to have a great effect on
the shape of the pion spectral function for momenta in the order of 400 MeV.
For higher temperatures all structures are smoothed out and the value of the
selfenergy even decreases because of limited number of available nucleons to
scatter.

3.2 Pions and Vector-mesons

In this chapter we study the influence of the medium-modified pion-modes on
the spectral functions of the ρ- and ω-mesons. The vacuum widths of these
resonances are generated through the decay into two pions in the case of
the ρ-meson, respectively three pions for the ω-meson. For the ω-meson we
choose the indirect decay via the ρ-meson (the so called Gell-Mann, Sharp
and Wagner (GSW) process [54]) because, as shown by Theileis [53], this is
the dominant contribution in vacuum. The interaction Lagrangian defining
the vertices is given by [55–57]

L
int
πρω = gρππρµ(π

↔

∂µπ) + gωρπǫ
αβµνωα∂βρµ∂νπ, (9)

for a review see [58]. In this sector we are lead to the following Φ-functional
approximation

Φ =

π

π

ρ
+

ρ

π

ω
(10)

The coupling vertices of both terms are adjusted to the ππ-scattering phase
shifts together with the electromagnetic formfactor of the pion and to the
vacuum decay width of the ω-meson, respectively. From the point of view of
a Φ-derivable approximation we neglected the coupling of the ρ-ω-loop back
to the pion. This process is expected to contribute only marginally to the low
energy region of the pion spectrum, which turns out to be the most relevant
part to determine the in-medium damping width of the ω-meson. Therefore
only the following retarded selfenergies are included:

ΠR
µν ρππ =

π

π

(11)
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ΠR
µν ωρπ =

ρ

π

(12)

The correlation between ρ- and ω-meson modes results from the ω-meson
selfenergy (12) and the reverse process encoded in the coupling of the ρ-meson
to the ω-π-loop

ΠR
µν ρωπ =

ω

π

(13)

which both are included selfconsistently. Since the model omits higher lying
degrees of freedom the in-medium changes of the real parts of the vector-meson
selfenergies are less precisely determined within the model space. Therefore
we drop them during the selfconsistent iterations, while restoring the normal-
isation of the spectral functions at each step. A posteriori, we checked for
the thus ignored real parts of the loops using a counter-term scheme which
through vector dominance fixes the photon mass (i.e. at q2 = 0) to be zero
with residue equal one in vacuum. It gave values of Re Π/(2p0) which are by
far less than the corresponding widths of the vector mesons and therefore
negligible. Keeping this subtraction scheme also at finite T , i.e. ignoring con-
tributions from hidden divergences [47] and tadpoles, which solely lead to an
additional T -dependent mass shift, we still obtained insignificant changes in
this quantity. In a later section we supplement a discussion on the sensitivity
of the results on possible changes of the vector-meson masses in matter.

3.3 Transversality of the vector-meson polarisation tensors

The resulting polarisation-tensors (11 - 13) have to be four-transversal because
of current conservation. In normal perturbation theory this is guaranteed or-
der by order. In the Dyson approach, where one sums up a restricted subclass
of diagrams to infinite order, one generally violates Ward identities on the
correlator level. Thus the polarisation tensor may contain four-longitudinal
components Πµν

l (q), which have to be absent and which may lead to the prop-
agation of unphysical degrees of freedom. From general grounds, this deficiency
can be cured by corresponding vertex corrections. Without further approxima-
tions, however, this leads to a presently intractable scheme of Bethe-Salpeter
equations which accounts for the required t-channel exchanges required by
crossing symmetry. We circumvent this problem in the following way. From
transport considerations [59] it is known that such polarisation tensors have at
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least two relaxation times. Because of charge conservation, one of these times
has to be infinite, implying that the component Π00(q) vanishes exactly for
q = 0 and q0 6= 0, while the second relaxation time is clearly finite. Such a re-
sult can never be reached in a truncated Dyson-resummation scheme where all
relaxation times are finite, because they are determined by the damping-time
scale of the dressed propagators involved in the loops. On the other hand, the
spatial components of the polarisation tensor, given by the autocorrelation
of spatial currents, have solely finite and short correlation times which can
be expected to be safely approximated within a Dyson resummation scheme.
Therefore our strategy assumes the spatial components of the polarisation ten-
sors ΠR

µν to be given by the selfconsistent loops, while the time-components
are to be corrected such that the full tensor becomes four-transversal. This is
achieved by using a projection technique where the full tensors (11 - 13) are
decomposed into a four-longitudinal part Πl and two four-transversal parts
ΠL and ΠT which are three-longitudinal and three-transversal, respectively,

Πµν(q) = Πµν
l (q) + Πµν

L (q) + Πµν
T (q)

Πµν
L (q) =

(

−gµν − δµν +
qµqν

q2
+

qµqν

q2

)

· ΠL(q)

Πµν
T (q) =

(

δµν −
qµqν

q2

)

· ΠT (q).

(14)

Here gµν is the metric tensor, whereas δµν and qµ have vanishing time compo-
nents. We do not specify the Πl part any further, since this part has just to be
dropped due to current conservation. The scalar functions ΠL and ΠT can be
calculated solely from the spatial parts of the polarisation tensors using the
following traces

Π1 =
qiqk

q2
Πik =

(q0)2

q2
· ΠL

3Π3 = Tr3

[

Πik
]

= −gikΠ
ik = 2ΠT +

(q0)2

q2
· ΠL or

ΠL =
q2

(q0)2
· Π1; ΠT =

1

2
(3Π3 − Π1) .

(15)

Due to the traces, the complicated Lorentz-structure of the interaction ver-
tices (9) in the loops can be reduced entirely to expressions involving the
four-, respectively, three-vector squares q2, p2, p′2 and q2, etc. of the external
and internal momenta involved in the loops. Furthermore, three-longitudinal
and transverse modes decouple such that the corresponding spectral functions
AL(q) and AT (q) are directly given by the scalar functions ΠL(q) and ΠT (q)
of the corresponding components of the polarisation tensors.
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3.4 Vector-meson spectral functions in matter

With the dressed pion spectral function from section 3.1, the three-longitudinal
respectively three-transversal polarisation tensors and spectral function of
both vector-mesons can now be calculated. In Figs. 7 to 14 we show the results
for normal nuclear density at different temperatures 10
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MeV and ρ = ρ0 for different temper-
atures

10 Please note that by definition, cf. (14), Im ΠR
L vanishes on the light cone p2 = 0

and becomes positive in the space-like region.
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The main effect towards finite densities and/or finite temperatures is the dis-
appearance of thresholds present in the free particle kinematics for the pi-
ons in the loops. The spectral strength starts right at zero energy for both
vector-mesons, though less visible for the ω-meson due to the smallness of
the coupling. This has significant consequences for the low mass region of the
corresponding dilepton yields (cf. next section). The temperature has no great
influence on the ρ-meson spectrum, while the ω-meson width increases signifi-
cantly. For the latter effect indirectly the nucleon–nucleon-hole excitations are
of special importance as discussed later.
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Fig. 18. µ+µ−-rate at T=120 MeV
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3.5 Dileptons

Using vector-dominance we can calculate [60,61] the production-rate for dilep-
ton pairs (e+e− and µ+µ−)

dR

d4qd3xdt
=

α2

6π3q2

√

√

√

√

q2 − 4m2
l

q2
(1 +

2m2
l

q2
)

×
∑

v

m4
v

g2
vππ(1 − 4παg2

vππ)
[2Av,T(q, T ) + Av,L(q, T )]nB(q, T )

(16)

from the in-medium spectral functions of the ρ- and ω-meson. Here nB(q0, T )
is the thermal Bose-Einstein weight, while mv and gvππ denote the vector-
meson mass and the coupling constant of the meson to two pions. The mass of
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the lepton, electron or muon, is symbolised by ml. In our model we obtain the
results displayed in Figs. 15 to 18 for the direct decay of a vector-resonance
into a dilepton pair via an intermediate time-like photon.

With applications to nuclear collisions in mind, we use the vacuum expressions
for the photon- and lepton-propagators, since these particles interact only
weakly, such that they do not get modified by the surrounding medium. In
addition, we used the coupling constants from [58] in order to describe the
partial decay width of both mesons into dileptons. One can see that, due to
the thermal weight and the broad spectral functions, the dilepton spectra are
essentially falling over the whole energy range. This would clearly be different
if the vacuum spectral function for the ω-meson had been used here. The
µ+µ−-spectrum has a threshold at twice the muon mass. At higher invariant
mass both di-lepton spectra merge, because then the muon mass becomes
negligible in comparison with the energy. The contributions of the ω-meson
are hardly visible in the total spectra because of its increased width. For equal
widths of both mesons the contributions of the ω-meson falls below that of
the ρ-meson by one order of magnitude because of the smaller partial decay
width into dileptons.

In the following we explicitly analyse the influence of the various components
of the pion spectral function on the vector-mesons and thus on the dilepton
spectra. Formally we do this by splitting the spectral function of the vector-
meson into the various components related to the different processes feeding
into this vector-meson channel. Thus, decomposing the total damping width
into partial widths Γv,tot(p) =

∑

i Γv,i(p) the dilepton yield can be brought into
a Breit-Wigner like form with partial in- and out-widths

dR

d4qd3xdt
=

3

(2π)4
nT (q0)

∑

v

Av(q) (−2Im Πv,e+e−)

=
3

(2π)4
nT (q0)

∑

v,i

4 q2
0Γv,i Γv,e+e−

(q2 − m2
v)

2 + q2
0Γ

2
v,tot

(17)

(suppressing the tensor structure of spectral function and polarisation tensor
which leads to a degeneracy factor 3 for vector particles). Here, Γv,e+e− is the
dilepton decay width of vector-meson v.

We start the discussion of the effects on the ω-meson. In the medium there are
three major processes contributing to its damping width, illustrated by per-
turbative “time-flow” diagrams where the time is running from left to right
and vertical lines denote a virtual space-like propagator, which mediates a
two-body interaction:
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(F) =

π

ρ

ω (D) = ρ

π

ω

(S) = π

N

ρ

N

ω

(18)

Here the subsequent decay of the ω-meson into the virtual time-like photon
and its final decay into the lepton pair is not illustrated. In the selfconsistent
calculation all these processes are included automatically by using dressed
propagators. For the first process (F), ρπ → ω → e+e−, the ω-meson is formed
by the fusion of a ρ-meson with a quasi-real, in-medium pion. Its inverse exists
already in vacuum and determines the vacuum decay width of the ω-meson.
The second process (D), ρ → πω → πe+e−, corresponds to a ρ-Dalitz-decay
via an intermediate ω-meson. In the selfconsistent calculations, both above
mentioned processes just differ in the sign of the pion energy in the πρ-loop
of the ω-selfenergy (12). The process (S) in (18) corresponds to the scattering
ρN→ ωN mediated by a virtual, i.e. space-like pion exchange. In view of
the pion modes at zero temperature (cf. Fig. 1) we isolate this space-like
component by a cut on the far space-like region with pion loop momenta
with |p| > 2|p0| in (12). At T = 120 MeV this separation is by far less
evident in view of the broad structure of the pion spectral function (Fig. 4).
Thus the different components of the processes displayed in Fig. 19 somewhat
depend on this cut. In addition to the fusion width (F), which constitutes just
a temperature dependent modification of the vacuum width (e.g. accounted
for by Schneider and Weise [32]) a genuine in-medium process, namely the
scattering process (S), contributes with comparable strength at the nominal
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resonance position. The “Daliz”-decay of the ρ-meson (D) dominates the low
mass region.

In summary of this analysis: a major portion to the ω spectrum results from
processes (S) which are not accounted for in the simple on-shell treatment.
These contributions, however, sensitively depend on the in-medium properties
of the virtual pion cloud, which certainly needs further clarifying investigations
before quantitative conclusions can be drawn.

The same type of processes as in (18) also occur for the ρ-meson just inter-
changing ρ with ω, listed in the ρ-meson decomposition given in Fig. 20 as
(F), (D) and (Sω). However, these ω-induced components are less important
compared to the coupling to the two-pion channels

(A) =

π

π

ρ (B) =π

π

ρ

(Sπ) = π

N

π

N

ρ

(19)

At invariant masses above 300 MeV, the π+π−-annihilation process (A) is
clearly dominant. Processes (B) and (Sπ) are not present in any on-shell
treatment of the pion as they solely arise from genuine off-shell components
of the pion spectral function. In this respect (B) can be interpreted as a
bremsstrahlung process radiated off a pion scattered in the medium, while
process (S) corresponds to inelastic πN → ρN scatterings mediated via vir-
tual pion exchange. The latter two components, which emerge completely
consistently within the model, only contribute to the very low-mass part of
the invariant mass spectrum.

3.6 Dependence on density and temperature

We restrict the discussion of the dependence of the vector-meson properties on
density and temperature to the case where the baryons and the vector-mesons
retain their vacuum masses and use a cut-off Λ = 440 MeV (6) at the pion-
nucleon- and pion-nucleon-∆-vertices (5). The results for the damping width
at resonance condition, i.e. at the vacuum masses, are summarised in Figs. 21
to 24.

Both vector-mesons show a strong non-linear dependence on the baryon den-
sity ρ induced by the selfconsistent treatment. For the ρ-meson the relative
changes are less dramatic due to the large vacuum width of 150 MeV from
the ππ-annihilation channel. The temperature effects are different. Here, with
increasing temperature, the ρ-meson width stays nearly constant at nuclear
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saturation density ρ0. The main contribution to the increase of the total width
comes from the processes ρ → ωπ and ρπ → ω. On the other hand the ω-
meson is seen to have a strong dependence on temperature inducing a width
change of up to a factor of 3 in the temperature range from T=0 MeV to
T=120 MeV. For both mesons the temperature effects are due to an enhanced
scattering with the pions in the medium 11 . In comparison to the pertubative
calculations by Schneider and Weise [32] the selfconsistent treatment produces
an even broader ω spectral function, due to the appearance of the low energy,
space-like, pion modes. The QCD sum rules approach of Klingl and Weise
[63] and also the low-density expansion scheme of Lutz et.al. [17] produced
ω-meson widths of about 40 MeV at T = 0 and ρ = ρ0, which is nearly 2/3
of ours. The slight deviations to our results can be understood by the change
of the vector-meson masses in medium in their models as discussed in chapter

11 This has already been pointed out by Roy et al. [24] who also indicated that the
process ω → ρπ might be increased in-matter due to mass shifts.
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3.7. Compared to the σ-ω-mixing model of Saito et al. [33] we cannot account
for level-level repulsion in our model, as we do not include the real parts of
the vector-meson selfenergies.

Altogether the ω-meson width sensitively depends on the properties on the in-
medium pion cloud. An increase of the cut-off scale Λ of the πNN -formfactor
(6) for instance would significantly enhance the RPA pion-modes and induce
a further increase of the ω-meson width. Once the ω-meson width increases
beyond 50 MeV, it loses its prominent peak-structure and its component can
no longer be easily resolved in the dilepton spectrum due to the dominance of
the ρ contribution.

3.7 Dependence on the vector-meson masses

Our description of the vector-meson sector is not as complete as to permit def-
inite predictions for the mass shifts of the vector-mesons, i.e. the real parts of
the vector-meson selfenergies. This is a subject of current debate and investiga-
tions and requires a more complete model space within hadronic descriptions
[8,17] or support from QCD, e.g. in form of sum-rule constraints [25–29]. For
simplicity the real parts of the vector-meson selfenergies are put to zero in
the results presented above. On the other hand we can explore the effect of
mass shifts by simply changing the masses by hand. For the following dis-
cussion we concentrate on the damping widths (longitudinal and transverse)
of the vector-mesons at the in-medium mass position q2 = m2

v for a typical
momentum of 200 MeV/c given by

Γv,L/T = −Im ΠR
v,L/T(q)/q0

∣

∣

∣

q2=m2
v

. (20)

A phenomenological lowering of the ρ-meson mass, e.g. within the Brown-Rho
scaling scheme [15], has been considered by many authors. This leads to an
enhanced strength in the mass region below the ρ-meson vacuum mass. From
the calculations thus far the mass dependence of the vector-meson damping
widths at T = 0 and saturation density can approximately be read off by i.e.
inspecting Figs. 10 and 14. They predict marginal changes for the ρ-meson
width. Thus, the entire ρ-meson strength will be shifted, e.g. towards lower
masses, with the extra benefit that the thermal weight factor in (17) enhances
the dilepton yield by about a factor exp(∆mρ/T ). The ω-meson shows sensitive
changes of its damping width as a function of its invariant mass. Since the only
channel, to which the ω-meson couples to in our model, is the π-ρ-channel, we
expect Γω to depend sensitively only on the mass difference or ratio between
the ρ- and ω-meson masses.
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The explicit results for the dependence on mω/mρ for T = 0 and normal
nuclear density can be found in the Figs. 25 and 26 for the ω-meson and for
the partial width Γρ→ωπ of the ρ-meson, respectively. Due to the dominance
of the ππ-annihilation channel, the latter has minor impact on the total ρ-
meson width. The displayed dependence follows expectations from phase-space
arguments. Our results compare favourably with the calculations of Klingl and
Weise [63] and Lutz et.al. [17], who used QCD sum rules or the low density
theorem for the determination of the mass shifts. Although in the Klingl and
Weise result [63] the mass of the ω-meson is lowered by 15% relative to the
ρ-meson mass, which would infer a much smaller width, one has to take into
account that in those calculations a much broader ρ-meson (Γρ ≈ 300 MeV)
was used inducing a compensating increase of the ω-width. We also studied the
vector-meson mass dependence at finite temperature. In Fig. 27 we compare

21



the width of the ω-meson with a mass reduced by 15% to the width without
such a reduction 12 . We find that the overall offset is nearly the same for
all temperatures. According to this, the relative effect decreases for higher
temperatures. This can be understood because kinematical effects, like mass
shifts, are of less importance for broad spectral functions. In Fig. 28, we show
the effect of this mass shift on the dilepton spectra. We observe that the peak
structure becomes more prominent because of the smaller width of the ω-
meson and that the total rate is enhanced. This enhancement is due to the
thermal weight which increases exponentially towards lower temperature.

4 Conclusions

We have investigated the in-medium effects on the light vector-mesons due
to the modification of the pion modes in nuclear matter at finite density and
temperature. To isolate this effect only the coupling of the vector-mesons to
the pion modes has been considered so far. The direct coupling to baryonic
currents along the lines of refs. [8,9,17] within a selfconsistent scheme will be
the subject of a forthcoming study.

Within a selfconsistent Dyson resummation scheme, the nucleon and ∆(1232)-
resonance were included as the main degrees of freedom in the baryon sector.
Besides the direct πNN and πN∆ couplings, accounted for in selfconsistent
selfenergies up to one-loop order, also the short-range RPA correlations of
Migdal type [37] were included in order to get a realistic behaviour of the low
energy pion modes. While for the meson-baryon couplings a non-relativistic
approximation was employed, the kinematics of all particles was treated rela-
tivistically. The so obtained in-medium spectral functions of the pion provide
the source for the vector-meson selfenergies through the ππρ and πρω cou-
pling vertices. While the former already induces the strong damping width
of the ρ-meson in vacuum, the latter becomes essential for the strong vector-
meson “mixing” at finite densities and temperatures. Consequences for the
resulting in-matter dilepton spectra from the electromagnetic decay of the
vector-mesons have been discussed.

The polarisation-tensor for the vector-mesons has to be four-transversal such
that no unphysical degrees of freedom are propagated. This was achieved by
a projector technique (see Eq. (14) ff.) which provides the three-longitudinal
and three-transversal parts, respectively. These two parts are identical in the
vacuum due to Lorentz invariance, while they may differ in the medium.

As an important result of our investigations we find a strong mixing of both

12 We show the mean value of longitudinal and transverse widths ΓL and ΓT .
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vector-meson modes in-matter. It is induced by the low-lying space-like pion
modes which essentially arise from the coupling to particle-hole excitations. As
a consequence, the ω-meson damping width drastically broadens both, with
increasing baryon density and temperature reaching values of 100 MeV or even
above.

The quantitative results on the in-medium properties of the vector mesons
still depend on the model assumptions and parameters for the in-medium
pion physics such as the Migdal parameters and the formfactors for the πNN
and πN∆ vertices. Despite more than two decades of work in this field, the in-
medium properties of the pion are not yet conclusively settled. Thus, further
improvements, especially concerning the NN−1-component, are required for a
quantitative understanding of the in-medium broadening of the light vector-
meson spectral functions, especially of the ω-meson. Here other techniques like
the recent calculations from Lutz and Korpa [62] are to be mentioned which
may offer alternative and quantitative strategies to understand the spectral
function of the pion and thus provide a reliable basis for the calculations of the
vector-mesons properties. As our approach qualitatively incorporates most of
the relevant contributions to the pion spectral function, all qualitative features
should already be visible in our results. Even if the situation at zero tempera-
ture and saturation density may eventually become quantitatively settled, the
extrapolation of the effective interactions to finite temperatures may requires
further adaptions.

The broad ω-meson distributions, as found in our calculations, will make it
difficult to isolate this in-medium component in dilepton spectra. It will be
detected in competition with the much stronger electromagnetic decay rates
of the ρ-meson. Therefore complementary experiments which directly isolate
the ω-component e.g. partly through hadronic channels, such as in the recent
TAPS-experiments [6,7], are vital to clarify the situation. In nuclear collision
experiments, one further has to face the fact that contributions from final-
state interaction always arise. Such asymptotic state vector-mesons show the
signature of the corresponding vacuum spectral functions and thus may hide
the here addressed in-matter components.
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