Spin Hydrodynamics II

David Wagner
in collaboration with
Nora Weickgenannt, Enrico Speranza, and Dirk Rischke

based mainly on

```
NW, ES, X.-L. Sheng, Q. Wang, DHR, Phys. Rev. D }104\mathrm{ 1, }016022\mathrm{ (2021)
            NW, DW, ES, DHR, 2203.04766 (2022)
        NW, DW, ES, Phys. Rev. D }105\mathrm{ 11,116026 (2022)
                        DW, NW, ES, 2207.01111 (2022)
```

HFHF Theory Retreat | 12.09.2022

Reminder: Total angular momentum

Decomposition and conservation

$$
\begin{align*}
J^{\lambda \mu \nu} & :=S^{\lambda \mu \nu}+T^{\lambda[\mu} x^{\nu]} \tag{1}\\
\partial_{\lambda} S^{\lambda \mu \nu} & =T^{[\nu \mu]} \tag{2}
\end{align*}
$$

- Total angular momentum tensor consists of spin and orbital parts
- Usual Hydrodynamics: spinless particles
$\rightarrow T^{\mu \nu}=T^{\nu \mu}$ satisfies $\partial_{\lambda} J^{\lambda \mu \nu}=0$
\rightarrow No need to consider angular momentum further
- Spin Hydrodynamics: Particles have spin
$\rightarrow S^{\lambda \mu \nu} \neq 0!$
\rightarrow Conservation of total angular momentum has to be explicitly included

$$
A^{[\mu} B^{\nu]}:=A^{\mu} B^{\nu}-A^{\nu} B^{\mu}
$$

An exercise in counting

- Spin tensor is antisymmetric in the last two indices
$\rightarrow 4 \times 6=24$ components

An exercise in counting

- Spin tensor is antisymmetric in the last two indices
$\rightarrow 4 \times 6=24$ components
- 6 independent equations of motion from $\partial_{\lambda} J^{\lambda \mu \nu}=0$
\rightarrow Underdetermined system, same problem as in the spinless case
- 6 equations describe ideal case
- 18 equations needed in addition for dissipative case

An exercise in counting

- Spin tensor is antisymmetric in the last two indices
$\rightarrow 4 \times 6=24$ components
- 6 independent equations of motion from $\partial_{\lambda} J^{\lambda \mu \nu}=0$
\rightarrow Underdetermined system, same problem as in the spinless case
- 6 equations describe ideal case
- 18 equations needed in addition for dissipative case
- Where to get additional information from?
\rightarrow Kinetic theory with spin!
- Has to respect the relevant conservation laws (in particular allow for $S^{\lambda \mu \nu} \neq 0$)

An exercise in counting

- Spin tensor is antisymmetric in the last two indices
$\rightarrow 4 \times 6=24$ components
- 6 independent equations of motion from $\partial_{\lambda} J^{\lambda \mu \nu}=0$
\rightarrow Underdetermined system, same problem as in the spinless case
- 6 equations describe ideal case
- 18 equations needed in addition for dissipative case
- Where to get additional information from?
\rightarrow Kinetic theory with spin!
- Has to respect the relevant conservation laws (in particular allow for $S^{\lambda \mu \nu} \neq 0$)
- Rest of the presentation:

■ Construct such a kinetic theory

- Perform hydrodynamic limit
- Analyze equations of motion

How to: Quantum kinetic theory

- Spin is a quantum property
\rightarrow Start from quantum field theory
\rightarrow Use Wigner-function formalism

Wigner function

$$
\begin{equation*}
W^{a b}(x, k):=\frac{\#}{(2 \pi \hbar)^{4}} \int \mathrm{~d}^{4} v e^{-i k \cdot v / \hbar}\left\langle: \Phi^{\dagger a}(x+v / 2) \Phi^{b}(x-v / 2):\right\rangle \tag{3}
\end{equation*}
$$

- Wigner function: Wigner transform of two-point function
- Determines a quantum phase-space distribution function
- Matrix dimension determined by representation of the field Φ
\rightarrow Carries information about spin structure
- Equations of motion follow from field equations
- Determined by Lagrangian $\mathcal{L}_{0}+\mathcal{L}_{\text {int }}$

$$
A \cdot B:=A^{\alpha} B_{\alpha}
$$

More counting

- How many independent degrees of freedom (d.o.f.) does $W^{a b}$ have?

■ Formalism is based on the spin-density matrix $\rightarrow(2 s+1)^{2}$ independent components
\rightarrow Some parts of $W^{a b}$ are constrained

Example: Spin-1/2

- Decompose $W^{a b}$ (matrix in Dirac space) according to Clifford algebra

$$
\begin{equation*}
W=\frac{1}{4}\left(\mathcal{F}+i \gamma^{5} \mathcal{P}+\gamma \cdot \mathcal{V}+\gamma^{5} \gamma \cdot \mathcal{A}+\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] \mathcal{S}_{\mu \nu}\right) \tag{4}
\end{equation*}
$$

- Only \mathcal{F} (1 d.o.f.) and \mathcal{A}^{μ} (3 d.o.f.) are independent
\rightarrow Wigner function has $4=(2 \cdot 1 / 2+1)^{2}$ d.o.f. \checkmark

Equations of motion

- Wigner function follows three types of equations

1. Constraint equations (reduce number of independent d.o.f.)
2. Mass-shell equations
3. Boltzmann-like equations

Example: Spin 0

- Constraint equations absent (only 1 d.o.f.)

$$
\begin{aligned}
\left(k^{2}-m^{2}-\frac{\hbar^{2}}{4} \square\right) W(x, k) & =C+C^{*} & & \text { (Mass-shell equation) } \\
k \cdot \partial W(x, k) & =i\left(C-C^{*}\right) & & \text { (Boltzmann equation) }
\end{aligned}
$$

- Collisions determined by interaction $\rho:=\partial \mathcal{L}_{\text {int }} / \partial \Phi$

$$
\begin{equation*}
C(x, k):=\frac{\#}{(2 \pi \hbar)^{4}} \int \mathrm{~d}^{4} v e^{-i k \cdot v / \hbar}\left\langle: \Phi_{+}^{\dagger} \rho_{-}:\right\rangle \tag{5}
\end{equation*}
$$

$$
A_{ \pm}:=A(x \pm v / 2)
$$

Approximations and assumptions

- Equations are solved via a (formal) power series in \hbar
- Small parameter: $\hbar / m \partial \sim(\hbar / m) / L_{\text {hydro }} \equiv$ (Compton wavelength of the particle)/(macroscopic length scale)
- Truncate expansion at first order in \hbar

Approximations and assumptions

- Equations are solved via a (formal) power series in \hbar
- Small parameter: $\hbar / m \partial \sim(\hbar / m) / L_{\text {hydro }} \equiv$ (Compton wavelength of the particle)/(macroscopic length scale)
- Truncate expansion at first order in \hbar
- Assumptions have to be made about the structure of $W^{a b}$ at zeroth order
- We assume that the system is not prepared in a polarized state
\rightarrow Motivation: Want to describe how an unpolarized system acquires polarization
- Concrete form of the assumptions:
- Spin $1 / 2: W^{a b}(x, k)=(1 / 4) \delta^{a b} \mathcal{F}(x, k)+\mathcal{O}(\hbar)$
- Spin 1: $W^{\mu \nu}(x, k)=\left(g^{\mu \nu}-k^{\mu} k^{\nu} / m^{2}\right) f_{K}(x, k)+\mathcal{O}(\hbar)$

Extending phase space

- Reminder: Wigner function is matrix-valued
\rightarrow Not one, but $(2 s+1)^{2}$ independent Boltzmann equations
■ Spin $1 / 2: k \cdot \partial \mathcal{F}=\mathcal{C}_{\mathcal{F}}, k \cdot \partial \mathcal{A}^{\mu}=\mathcal{C}_{\mathcal{A}}^{\mu}$

Extending phase space

- Reminder: Wigner function is matrix-valued
\rightarrow Not one, but $(2 s+1)^{2}$ independent Boltzmann equations
- Spin $1 / 2: k \cdot \partial \mathcal{F}=\mathcal{C}_{\mathcal{F}}, k \cdot \partial \mathcal{A}^{\mu}=\mathcal{C}_{\mathcal{A}}^{\mu}$
- Way to compactify this: Enlarge phase space from (x, k) to (x, k, \mathfrak{s})
- Idea: Instead of $(2 s+1)^{2}$ equations in 8 -dimensional phase space: one equation in 10 -dimensional enlarged phase space

Extending phase space

- Reminder: Wigner function is matrix-valued
\rightarrow Not one, but $(2 s+1)^{2}$ independent Boltzmann equations
- Spin $1 / 2: k \cdot \partial \mathcal{F}=\mathcal{C}_{\mathcal{F}}, k \cdot \partial \mathcal{A}^{\mu}=\mathcal{C}_{\mathcal{A}}^{\mu}$
- Way to compactify this: Enlarge phase space from (x, k) to (x, k, \mathfrak{s})
- Idea: Instead of $(2 s+1)^{2}$ equations in 8 -dimensional phase space: one equation in 10 -dimensional enlarged phase space
- Measure $\mathrm{d} S:=\# \mathrm{~d}^{4} \mathfrak{s} \delta\left[\mathfrak{s}^{2}+\sigma^{2}\right] \delta(k \cdot \mathfrak{s})$
\rightarrow Spacelike normalized "spin vector" \mathfrak{s}^{μ} orthogonal to k^{μ}

Extending phase space

- Reminder: Wigner function is matrix-valued
\rightarrow Not one, but $(2 s+1)^{2}$ independent Boltzmann equations
- Spin $1 / 2: k \cdot \partial \mathcal{F}=\mathcal{C}_{\mathcal{F}}, k \cdot \partial \mathcal{A}^{\mu}=\mathcal{C}_{\mathcal{A}}^{\mu}$
- Way to compactify this: Enlarge phase space from (x, k) to (x, k, \mathfrak{s})
- Idea: Instead of $(2 s+1)^{2}$ equations in 8 -dimensional phase space: one equation in 10 -dimensional enlarged phase space
- Measure $\mathrm{d} S:=\# \mathrm{~d}^{4} \mathfrak{s} \delta\left[\mathfrak{s}^{2}+\sigma^{2}\right] \delta(k \cdot \mathfrak{s})$
\rightarrow Spacelike normalized "spin vector" \mathfrak{s}^{μ} orthogonal to k^{μ}

Boltzmann equation in enlarged phase space

- Only on-shell parts $\mathfrak{f}(x, k, \mathfrak{s})=\delta\left(k^{2}-m^{2}\right) f(x, k, \mathfrak{s})$ contribute

$$
\begin{equation*}
k \cdot \partial f(x, k, \mathfrak{s})=\mathfrak{C}[f] \tag{6}
\end{equation*}
$$

Extending phase space: Spin $1 / 2$

$$
\int \mathrm{d} S=2, \int \mathrm{~d} S \mathfrak{s}^{\mu} \mathfrak{s}^{\nu}=-2 K^{\mu \nu}
$$

- Via integration over spin space the individual equations can be recovered

Distribution function: Spin 1/2

$$
\begin{align*}
\mathfrak{f}^{(1 / 2)}(x, k, \mathfrak{s}) & :=\frac{1}{2}\left(\mathcal{F}-\mathfrak{s}^{\mu} \mathcal{A}_{\mu}\right) \tag{7}\\
\Longrightarrow \mathcal{F}(x, k) & =\int \mathrm{d} S \mathfrak{f}^{(1 / 2)}(x, k, \mathfrak{s}) \tag{8}\\
\Longrightarrow \mathcal{A}^{\mu}(x, k) & =\int \mathrm{d} S \mathfrak{s}^{\mu} \mathfrak{f}^{(1 / 2)}(x, k, \mathfrak{s}) \tag{9}
\end{align*}
$$

$K^{\mu \nu}:=g^{\mu \nu}-k^{\mu} k^{\nu} / m^{2}$

Extending phase space: Spin 1

$$
\int \mathrm{d} S=3, \int \mathrm{~d} S \mathfrak{s}^{\mu} \mathfrak{s}^{\nu}=-2 K^{\mu \nu}, \int \mathrm{d} S K_{\rho \sigma}^{\mu \nu} \mathfrak{s}^{\rho} \mathfrak{s}^{\sigma} \mathfrak{s}_{\alpha} \mathfrak{S}_{\beta}=(8 / 5) K_{\alpha \beta}^{\mu \nu}
$$

- Spin-1 density matrix has a richer structure
\rightarrow Have to include more structures in \mathfrak{f}

Distribution function: Spin 1

$$
\begin{align*}
\mathfrak{f}^{(1)}(x, k, \mathfrak{s}) & :=f_{K}-\mathfrak{s}^{\mu} G_{\mu}+\frac{5}{4} \mathfrak{s}^{\mu} \mathfrak{s}^{\nu} F_{K, \mu \nu} \tag{10}\\
\Longrightarrow f_{K}(x, k) & =\frac{1}{3} \int \mathrm{~d} S \mathfrak{f}^{(1)}(x, k, \mathfrak{s}) \tag{11}\\
\Longrightarrow G^{\mu}(x, k) & =\frac{1}{2} \int \mathrm{~d} S \mathfrak{s}^{\mu} \mathfrak{f}^{(1)}(x, k, \mathfrak{s}) \tag{12}\\
\Longrightarrow F_{K}^{\mu \nu}(x, k) & =\frac{1}{2} \int \mathrm{~d} S K_{\alpha \beta^{\prime}}^{\mu \nu} \mathfrak{s}^{\beta} \mathfrak{f}^{(1)}(x, k, \mathfrak{s}) \tag{13}
\end{align*}
$$

$$
\begin{aligned}
& K_{\alpha \beta}^{\mu \nu}:=\left(K_{\alpha}^{\mu} K_{\beta}^{\nu}+K_{\beta}^{\mu} K_{\alpha}^{\nu}\right) / 2-1 / 3 K^{\mu \nu} K_{\alpha \beta} \\
& f_{K}:=(1 / 3) K^{\mu \nu} W_{\mu \nu}, \quad G^{\mu}:=-[i /(2 m)] \epsilon^{\mu \nu \alpha \beta} k_{\nu} W_{\alpha \beta}, \quad F_{K}^{\mu \nu}:=K_{\alpha \beta}^{\mu \nu} W^{\alpha \beta} \\
& \quad \text { David Wagner }
\end{aligned}
$$

Computing the collision term

- The Boltzmann equation still has to be closed in terms of $f(x, k, \mathfrak{s})$

Computing the collision term

- The Boltzmann equation still has to be closed in terms of $f(x, k, \mathfrak{s})$
- How to express the collision term \mathfrak{C} in terms of the distribution function?

Computing the collision term

- The Boltzmann equation still has to be closed in terms of $f(x, k, \mathfrak{s})$
- How to express the collision term \mathfrak{C} in terms of the distribution function?
- Long calculation based on using a basis of "in" states, not shown explicitly

Computing the collision term

- The Boltzmann equation still has to be closed in terms of $f(x, k, \mathfrak{s})$
- How to express the collision term \mathfrak{C} in terms of the distribution function?
- Long calculation based on using a basis of "in" states, not shown explicitly
- Main assumptions that enter:
- Molecular chaos \rightarrow particles are uncorrelated prior to collision

■ Low-density approximation \rightarrow Boltzmann statistics

Computing the collision term

- The Boltzmann equation still has to be closed in terms of $f(x, k, \mathfrak{s})$
- How to express the collision term \mathfrak{C} in terms of the distribution function?
- Long calculation based on using a basis of "in" states, not shown explicitly
- Main assumptions that enter:
- Molecular chaos \rightarrow particles are uncorrelated prior to collision

■ Low-density approximation \rightarrow Boltzmann statistics

- Approximations that are made:
- Consistent expansion to first order in \hbar
- Consider only binary elastic collisions ($2 \rightarrow 2$ - scattering)

Computing the collision term

- The Boltzmann equation still has to be closed in terms of $f(x, k, \mathfrak{s})$
- How to express the collision term \mathfrak{C} in terms of the distribution function?
- Long calculation based on using a basis of "in" states, not shown explicitly
- Main assumptions that enter:
- Molecular chaos \rightarrow particles are uncorrelated prior to collision

■ Low-density approximation \rightarrow Boltzmann statistics

- Approximations that are made:
- Consistent expansion to first order in \hbar
- Consider only binary elastic collisions ($2 \rightarrow 2$ - scattering)
- At order $\mathcal{O}(\hbar)$, nonlocal collisions enter

Computing the collision term

- The Boltzmann equation still has to be closed in terms of $f(x, k, \mathfrak{s})$
- How to express the collision term \mathfrak{C} in terms of the distribution function?
- Long calculation based on using a basis of "in" states, not shown explicitly
- Main assumptions that enter:
- Molecular chaos \rightarrow particles are uncorrelated prior to collision
- Low-density approximation \rightarrow Boltzmann statistics
- Approximations that are made:
- Consistent expansion to first order in \hbar
- Consider only binary elastic collisions ($2 \rightarrow 2$ - scattering)
- At order $\mathcal{O}(\hbar)$, nonlocal collisions enter
\rightarrow What do we mean by this?

Local and nonlocal collisions

- Contributions up to order $\mathcal{O}(\hbar)$ go as

$$
f(x, k)+\Delta^{\mu} \partial_{\mu} f(x, k)=f(x+\Delta, k)+\mathcal{O}\left(\hbar^{2}\right)
$$

- A (momentum- and spin-dependent) spacetime shift $\Delta^{\mu} \sim \mathcal{O}(\hbar)$ enters
\rightarrow Particles do not scatter at the same spacetime point!

Collision kernel

$$
\begin{align*}
\mathfrak{C}[f]= & \int \mathrm{d} \Gamma_{1} \mathrm{~d} \Gamma_{2} \mathrm{~d} \Gamma^{\prime} \mathrm{d} \bar{S}(k) \mathcal{W}\left[f\left(x+\Delta_{1}, k_{1}, \mathfrak{s}_{1}\right) f\left(x+\Delta_{2}, k_{2}, \mathfrak{s}_{2}\right)\right. \\
& \left.-f(x+\Delta, k, \overline{\mathfrak{s}}) f\left(x+\Delta^{\prime}, k^{\prime}, \mathfrak{s}^{\prime}\right)\right] \\
+ & \int \mathrm{d} \Gamma_{2} \mathrm{~d} S_{1}(k) \mathfrak{W} f\left(x+\Delta, k, \mathfrak{s}_{1}\right) f\left(x+\Delta_{2}, k_{2}, \mathfrak{s}_{2}\right) \tag{14}
\end{align*}
$$

$$
\mathrm{d} \Gamma:=\mathrm{d}^{4} k \delta\left(k^{2}-m^{2}\right) \mathrm{d} S
$$

Equilibrium

- Local equilibrium distribution function fulfills $\mathfrak{C}\left[f_{\text {eq }}\right]=0$

Equilibrium

- Local equilibrium distribution function fulfills $\mathfrak{C}\left[f_{\text {eq }}\right]=0$
- Has to depend on the collisional invariants
\rightarrow Charge, four-momentum k^{μ} and total angular momentum $(x+\Delta)^{[\mu} k^{\nu]}+s \hbar \Sigma_{\mathfrak{s}}^{\mu \nu}$

Equilibrium

- Local equilibrium distribution function fulfills $\mathfrak{C}\left[f_{\text {eq }}\right]=0$
- Has to depend on the collisional invariants
\rightarrow Charge, four-momentum k^{μ} and total angular momentum $(x+\Delta)^{[\mu} k^{\nu]}+s \hbar \Sigma_{\mathfrak{s}}^{\mu \nu}$

Local-equilibrium distribution function

$$
\begin{equation*}
f_{\mathrm{eq}}(x, k, \mathfrak{s})=\exp \left(\alpha_{0}-\beta_{0} E_{\mathbf{k}}+s \frac{\hbar}{2} \Omega_{\mu \nu} \Sigma_{\mathfrak{s}}^{\mu \nu}\right) \tag{15}
\end{equation*}
$$

$\Sigma_{\mathfrak{s}}^{\mu \nu}:=-\frac{1}{m} \epsilon^{\mu \nu \alpha \beta} k_{\alpha \mathfrak{s} \beta}, E_{\mathbf{k}}:=k \cdot u$

Equilibrium

- Local equilibrium distribution function fulfills $\mathfrak{C}\left[f_{\text {eq }}\right]=0$
- Has to depend on the collisional invariants
\rightarrow Charge, four-momentum k^{μ} and total angular momentum $(x+\Delta)^{[\mu} k^{\nu]}+s \hbar \Sigma_{\mathfrak{s}}^{\mu \nu}$

Local-equilibrium distribution function

$$
\begin{equation*}
f_{\mathrm{eq}}(x, k, \mathfrak{s})=\exp \left(\alpha_{0}-\beta_{0} E_{\mathbf{k}}+s \frac{\hbar}{2} \Omega_{\mu \nu} \Sigma_{\mathfrak{s}}^{\mu \nu}\right) \tag{15}
\end{equation*}
$$

- Necessary conditions on Lagrange multipliers $\alpha_{0}, \beta_{0} u^{\mu}, \Omega^{\mu \nu}$ for a vanishing collision term:

$$
\partial^{\mu} \alpha_{0}=0, \partial^{(\mu}\left(\beta_{0} u^{\nu)}\right)=0, \Omega^{\mu \nu}=-\frac{1}{2} \partial^{[\mu}\left(\beta_{0} u^{\nu]}\right)
$$

- Same conditions as for global equilibrium
\rightarrow Rigorously, there is no local equilibrium!

$$
\Sigma_{\mathfrak{s}}^{\mu \nu}:=-\frac{1}{m} \epsilon^{\mu \nu \alpha \beta} k_{\alpha} \mathfrak{s}_{\beta}, E_{\mathbf{k}}:=k \cdot u
$$

Equilibrium

- Local equilibrium distribution function fulfills $\mathfrak{C}\left[f_{\text {eq }}\right]=0$
- Has to depend on the collisional invariants
\rightarrow Charge, four-momentum k^{μ} and total angular momentum $(x+\Delta)^{[\mu} k^{\nu]}+s \hbar \Sigma_{\mathfrak{s}}^{\mu \nu}$

Local-equilibrium distribution function

$$
\begin{equation*}
f_{\mathrm{eq}}(x, k, \mathfrak{s})=\exp \left(\alpha_{0}-\beta_{0} E_{\mathbf{k}}+s \frac{\hbar}{2} \Omega_{\mu \nu} \Sigma_{\mathfrak{s}}^{\mu \nu}\right) \tag{15}
\end{equation*}
$$

- Necessary conditions on Lagrange multipliers $\alpha_{0}, \beta_{0} u^{\mu}, \Omega^{\mu \nu}$ for a vanishing collision term:

$$
\partial^{\mu} \alpha_{0}=0, \partial^{(\mu}\left(\beta_{0} u^{\nu)}\right)=0, \Omega^{\mu \nu}=-\frac{1}{2} \partial^{[\mu}\left(\beta_{0} u^{\nu]}\right)
$$

- Same conditions as for global equilibrium
\rightarrow Rigorously, there is no local equilibrium!
- However...

$$
\Sigma_{\mathfrak{s}}^{\mu \nu}:=-\frac{1}{m} \epsilon^{\mu \nu \alpha \beta} k_{\alpha} \mathfrak{s}_{\beta}, E_{\mathbf{k}}:=k \cdot u
$$

Relevant scales and modified equilibrium

- Knudsen number is defined as $\mathrm{Kn}:=\lambda_{\mathrm{mfp}} / L_{\text {hydro }}$
- A new scale $\Delta \sim \hbar / m \sim \ell_{\text {int }}$ was introduced

Relevant scales and modified equilibrium

- Knudsen number is defined as $\mathrm{Kn}:=\lambda_{\mathrm{mfp}} / L_{\text {hydro }}$
- A new scale $\Delta \sim \hbar / m \sim \ell_{\text {int }}$ was introduced
- Of the order of the Compton wavelength of the particle
\rightarrow Much smaller than $\lambda_{\text {mfp }}$
- The ratio $\Delta / L_{\text {hydro }}$ is a lot smaller than Kn

Relevant scales and modified equilibrium

- Knudsen number is defined as $\mathrm{Kn}:=\lambda_{\mathrm{mfp}} / L_{\text {hydro }}$
- A new scale $\Delta \sim \hbar / m \sim \ell_{\text {int }}$ was introduced
- Of the order of the Compton wavelength of the particle
\rightarrow Much smaller than $\lambda_{\text {mfp }}$
- The ratio $\Delta / L_{\text {hydro }}$ is a lot smaller than Kn
- Propose modified definition of local equilibrium:
$\mathfrak{C}\left[f_{\text {eq }}\right]=0+\mathcal{O}\left(\Delta / L_{\text {hydro }}\right)$

Local-equilibrium distribution function

$$
\begin{equation*}
f_{\mathrm{eq}}(x, k, \mathfrak{s})=\exp \left(\alpha_{0}-\beta_{0} E_{\mathbf{k}}+s \frac{\hbar}{2} \Omega_{\mu \nu} \Sigma_{\mathfrak{s}}^{\mu \nu}\right) \tag{16}
\end{equation*}
$$

- Now we can formulate spin hydro in the usual way as an expansion around local equilibrium

Moment expansion

- Split distribution function $f=f_{\text {eq }}+\delta f$

Moment expansion

- Split distribution function $f=f_{\text {eq }}+\delta f$
- Perform moment expansion including spin degrees of freedom

Irreducible moments

Moment expansion

- Split distribution function $f=f_{\text {eq }}+\delta f$
- Perform moment expansion including spin degrees of freedom

Irreducible moments

$$
\begin{equation*}
\rho_{r}^{\mu_{1} \cdots \mu_{\ell}}(x):=\int \mathrm{d} \Gamma E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{17}
\end{equation*}
$$

Moment expansion

- Split distribution function $f=f_{\text {eq }}+\delta f$
- Perform moment expansion including spin degrees of freedom

Irreducible moments

$$
\begin{align*}
\rho_{r}^{\mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{17}\\
\tau_{r}^{\mu, \mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma \mathfrak{s}^{\mu} E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{18}
\end{align*}
$$

Moment expansion

- Split distribution function $f=f_{\text {eq }}+\delta f$
- Perform moment expansion including spin degrees of freedom

Irreducible moments

$$
\begin{align*}
\rho_{r}^{\mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{17}\\
\tau_{r}^{\mu, \mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma \mathfrak{s}^{\mu} E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{18}\\
\psi_{r}^{\mu \nu, \mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma K_{\alpha \beta^{\prime}}^{\mu \nu} \mathfrak{s}^{\alpha} \mathfrak{s}^{\beta} E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{19}
\end{align*}
$$

- Only moments of spin-rank $\leq 2 s$ are present

Moment expansion

- Split distribution function $f=f_{\text {eq }}+\delta f$
- Perform moment expansion including spin degrees of freedom

Irreducible moments

$$
\begin{align*}
\rho_{r}^{\mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{17}\\
\tau_{r}^{\mu, \mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma \mathfrak{s}^{\mu} E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{18}\\
\psi_{r}^{\mu \nu, \mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma K_{\alpha \beta^{\prime}}^{\mu \nu} \mathfrak{s}^{\alpha} \mathfrak{s}^{\beta} E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{19}
\end{align*}
$$

- Only moments of spin-rank $\leq 2 s$ are present
- Equations of motion can be derived from Boltzmann equation
- How to truncate this system?

Connecting back to Hydro

- Spin-rank zero moments: $\Pi=m^{2} \rho_{0} / 3, n^{\mu}=\rho_{0}^{\mu}, \pi^{\mu \nu}=\rho_{0}^{\mu \nu}$
- Which moments are contained in the spin tensor?

Spin tensor (HW pseudogauge)

$$
\begin{equation*}
S^{\lambda \mu \nu}=s \int \mathrm{~d} \Gamma k^{\lambda} \Sigma_{\mathfrak{s}}^{\mu \nu}+\frac{s \hbar}{m^{2}(2 s+1)} \partial^{[\mu} T^{\nu] \lambda} \tag{20}
\end{equation*}
$$

- Contains $\tau_{0}^{\mu}, \tau_{2}^{\mu}, \tau_{1}^{\mu, \nu}, \tau_{0}^{\mu, \nu \lambda}$
- Six d.o.f. are removed by matching $u_{\lambda} J^{\lambda \mu \nu}=u_{\lambda} J_{\mathrm{eq}}^{\lambda \mu \nu}$
- The independent moments in the spin tensor (after matching) are

$$
\mathfrak{p}^{\mu}:=\tau_{0}^{\mu}, \quad \mathfrak{z}^{\mu \nu}:=\tau_{1}^{(\langle\mu\rangle,\langle\nu\rangle)}, \quad \mathfrak{q}^{\lambda \mu \nu}:=\tau_{0}^{\lambda, \mu \nu}
$$

- These are the spin-analogues to Π, n^{μ} and $\pi^{\mu \nu}$

Spin-1/2 Hydrodynamics: Truncation

- Lowest-order truncation: Only consider dynamical moments of the spin tensor

Spin-1/2 Hydrodynamics: Truncation

- Lowest-order truncation: Only consider dynamical moments of the spin tensor
\rightarrow 14+24-moment approximation
- Road from here is straightforward:

■ Consider equations of motion for $\mathfrak{p}^{\mu}, \mathfrak{z}^{\mu \nu}, \mathfrak{q}^{\lambda \mu \nu}$

Spin-1/2 Hydrodynamics: Truncation

- Lowest-order truncation: Only consider dynamical moments of the spin tensor
\rightarrow 14+24-moment approximation
- Road from here is straightforward:
- Consider equations of motion for $\mathfrak{p}^{\mu}, \mathfrak{z}^{\mu \nu}, \mathfrak{q}^{\lambda \mu \nu}$
- Express all moments outside of the employed basis by the dynamical ones

$$
\tau_{r}^{\mu, \mu_{1} \cdots \mu_{\ell}}=\sum_{n \in \mathbb{S}_{\ell}^{(1)}} \mathcal{F}_{-r, n}^{(1, \ell)} \tau_{n}^{\mu, \mu_{1} \cdots \mu_{\ell}}
$$

Spin-1/2 Hydrodynamics: Truncation

- Lowest-order truncation: Only consider dynamical moments of the spin tensor
\rightarrow 14+24-moment approximation
- Road from here is straightforward:
- Consider equations of motion for $\mathfrak{p}^{\mu}, \mathfrak{z}^{\mu \nu}, \mathfrak{q}^{\lambda \mu \nu}$
- Express all moments outside of the employed basis by the dynamical ones

$$
\tau_{r}^{\mu, \mu_{1} \cdots \mu_{\ell}}=\sum_{n \in \mathbb{S}_{\ell}^{(1)}} \mathcal{F}_{-r, n}^{(1, \ell)} \tau_{n}^{\mu, \mu_{1} \cdots \mu_{\ell}}
$$

- Read off first- and second-order transport coefficients
$\mathbb{S}_{0}^{(1)}:=\{0\}, \mathbb{S}_{1}^{(1)}:=\{1\}, \mathbb{S}_{2}^{(1)}:=\{0\}, \mathbb{S}_{n}^{(1)}:=\emptyset \forall n>2$

Spin-1/2 Hydrodynamics: Truncation

- Lowest-order truncation: Only consider dynamical moments of the spin tensor
\rightarrow 14+24-moment approximation
- Road from here is straightforward:
- Consider equations of motion for $\mathfrak{p}^{\mu}, \mathfrak{z}^{\mu \nu}, \mathfrak{q}^{\lambda \mu \nu}$
- Express all moments outside of the employed basis by the dynamical ones

$$
\tau_{r}^{\mu, \mu_{1} \cdots \mu_{\ell}}=\sum_{n \in \mathbb{S}_{\ell}^{(1)}} \mathcal{F}_{-r, n}^{(1, \ell)} \tau_{n}^{\mu, \mu_{1} \cdots \mu_{\ell}}
$$

- Read off first- and second-order transport coefficients
- Construction of spin hydro completed
$\mathbb{S}_{0}^{(1)}:=\{0\}, \mathbb{S}_{1}^{(1)}:=\{1\}, \mathbb{S}_{2}^{(1)}:=\{0\}, \mathbb{S}_{n}^{(1)}:=\emptyset \forall n>2$

Spin-1/2 Hydrodynamics: Truncation

- Lowest-order truncation: Only consider dynamical moments of the spin tensor
\rightarrow 14+24-moment approximation
- Road from here is straightforward:
- Consider equations of motion for $\mathfrak{p}^{\mu}, \mathfrak{z}^{\mu \nu}, \mathfrak{q}^{\lambda \mu \nu}$
- Express all moments outside of the employed basis by the dynamical ones

$$
\tau_{r}^{\mu, \mu_{1} \cdots \mu_{\ell}}=\sum_{n \in \mathbb{S}_{\ell}^{(1)}} \mathcal{F}_{-r, n}^{(1, \ell)} \tau_{n}^{\mu, \mu_{1} \cdots \mu_{\ell}}
$$

- Read off first- and second-order transport coefficients
- Construction of spin hydro completed
\rightarrow What can we learn?
$\mathbb{S}_{0}^{(1)}:=\{0\}, \mathbb{S}_{1}^{(1)}:=\{1\}, \mathbb{S}_{2}^{(1)}:=\{0\}, \mathbb{S}_{n}^{(1)}:=\emptyset \forall n>2$

Results I: Ideal Spin Hydro

Conservation equations

$$
\begin{equation*}
\partial_{\mu} N^{\mu}=0, \quad \partial_{\mu} T^{\mu \nu}=0, \quad \partial_{\lambda} S^{\lambda \mu \nu}=T^{[\nu \mu]} \tag{21}
\end{equation*}
$$

- Ideal case: conservation equations suffice, combine evolution equations for

Results I: Ideal Spin Hydro

Conservation equations

$$
\begin{equation*}
\partial_{\mu} N^{\mu}=0, \quad \partial_{\mu} T^{\mu \nu}=0, \quad \partial_{\lambda} S^{\lambda \mu \nu}=T^{[\nu \mu]} \tag{21}
\end{equation*}
$$

- Ideal case: conservation equations suffice, combine evolution equations for

1. n and ϵ (or equivalently α_{0} and β_{0}),

Results I: Ideal Spin Hydro

Conservation equations

$$
\begin{equation*}
\partial_{\mu} N^{\mu}=0, \quad \partial_{\mu} T^{\mu \nu}=0, \quad \partial_{\lambda} S^{\lambda \mu \nu}=T^{[\nu \mu]} \tag{21}
\end{equation*}
$$

- Ideal case: conservation equations suffice, combine evolution equations for

1. n and ϵ (or equivalently α_{0} and β_{0}),
2. u^{μ}, and

Results I: Ideal Spin Hydro

Conservation equations

$$
\begin{equation*}
\partial_{\mu} N^{\mu}=0, \quad \partial_{\mu} T^{\mu \nu}=0, \quad \partial_{\lambda} S^{\lambda \mu \nu}=T^{[\nu \mu]} \tag{21}
\end{equation*}
$$

- Ideal case: conservation equations suffice, combine evolution equations for

1. n and ϵ (or equivalently α_{0} and β_{0}),
2. u^{μ}, and
3. $\mathfrak{N}^{\mu \nu}:=u_{\lambda} S^{\lambda \mu \nu}$, or equivalently $\Omega^{\mu \nu} \equiv u^{[\mu} \kappa_{0}^{\nu]}+\epsilon^{\mu \nu \alpha \beta} u_{\alpha} \omega_{0 \beta}$

Results I: Ideal Spin Hydro

Conservation equations

$$
\begin{equation*}
\partial_{\mu} N^{\mu}=0, \quad \partial_{\mu} T^{\mu \nu}=0, \quad \partial_{\lambda} S^{\lambda \mu \nu}=T^{[\nu \mu]} \tag{21}
\end{equation*}
$$

- Ideal case: conservation equations suffice, combine evolution equations for

1. n and ϵ (or equivalently α_{0} and β_{0}),
2. u^{μ}, and
3. $\mathfrak{N}^{\mu \nu}:=u_{\lambda} S^{\lambda \mu \nu}$, or equivalently $\Omega^{\mu \nu} \equiv u^{[\mu} \kappa_{0}^{\nu]}+\epsilon^{\mu \nu \alpha \beta} u_{\alpha} \omega_{0 \beta}$

- In the linearized limit for a nonrotating background, equations of motion for $\omega_{0}^{\mu}, \kappa_{0}^{\mu}$ show wavelike behaviour
V. E. Ambruș, R. Singh, 2202.03952 (2022)

Results II: Dissipative Spin Hydro

- General (dissipative) case: have to provide evolution equations for dissipative quantities

Dissipative Hydro: Evolution equations

$$
\begin{align*}
\tau_{\Pi} \dot{\Pi}+\Pi & =-\zeta \theta+\text { h.o.t. } \tag{22}\\
\tau_{n} \dot{n}^{\langle\mu\rangle}+n^{\mu} & =\kappa \nabla^{\mu} \alpha_{0}+\text { h.o.t. } \tag{23}\\
\tau_{\pi} \dot{\pi}^{\langle\mu \nu\rangle}+\pi^{\mu \nu} & =2 \eta \sigma^{\mu \nu}+\text { h.o.t. } \tag{24}\\
\tau_{\mathfrak{p}} \dot{\mathfrak{p}}^{\langle\mu\rangle}+\mathfrak{p}^{\langle\mu\rangle} & =\mathfrak{e}^{(0)}\left(\tilde{\Omega}^{\mu \nu}-\tilde{\varpi}^{\mu \nu}\right) u_{\nu}+\text { h.o.t. } \tag{25}\\
\tau_{\mathfrak{z}} \dot{\mathfrak{d}}^{\langle\mu\rangle\langle\nu\rangle}+\mathfrak{z}^{\langle\mu\rangle\langle\nu\rangle} & =\text { h.o.t. } \tag{26}\\
\tau_{\mathfrak{q}} \dot{\mathfrak{q}}^{\langle\lambda\rangle\langle\mu \nu\rangle}+\mathfrak{q}^{\langle\lambda\rangle\langle\mu \nu\rangle} & =\mathfrak{d}^{(2)} \beta_{0} \sigma_{\alpha}{ }^{\langle\mu} \epsilon^{\nu\rangle \lambda \alpha \beta} u_{\beta}+\text { h.o.t. } \tag{27}
\end{align*}
$$

- Navier-Stokes values of spin-moments are determined by nonlocal collisions!
- Relaxation times follow from local collisions

$$
\varpi^{\mu \nu}:=-\frac{1}{2} \partial^{[\mu}\left(\beta_{0} u^{\nu]}\right), \tilde{A}^{\mu \nu}:=\epsilon^{\mu \nu \alpha \beta} A_{\alpha \beta}
$$

Relevant time scales: An estimation

- Simplest interaction: constant cross section
- Spin-related relaxation times shorter than standard dissipative time scales, but not much

Higher Spins

- Moments of order >1 in spin exist
\rightarrow Spin 1: $\psi_{r}^{\mu \nu, \mu_{1} \cdots \mu_{\ell}}(x)$

Higher Spins

- Moments of order >1 in spin exist
\rightarrow Spin 1: $\psi_{r}^{\mu \nu, \mu_{1} \cdots \mu_{\ell}}(x)$
- Questions:

1. What is their meaning?
2. How to truncate here?

Higher Spins

- Moments of order >1 in spin exist
\rightarrow Spin 1: $\psi_{r}^{\mu \nu, \mu_{1} \cdots \mu_{\ell}}(x)$
- Questions:

1. What is their meaning?
2. How to truncate here?

- Answers:

1. Higher-order polarization
\rightarrow Spin 1: Tensor polarization
2. Consider measured quantities!

Higher Spins

- Moments of order >1 in spin exist
\rightarrow Spin 1: $\psi_{r}^{\mu \nu, \mu_{1} \cdots \mu_{\ell}}(x)$
- Questions:

1. What is their meaning?
2. How to truncate here?

- Answers:

1. Higher-order polarization
\rightarrow Spin 1: Tensor polarization
2. Consider measured quantities!

STAR collaboration, arXiv:2204.02302 (2022)

Spin 1: Truncation

Tensor polarization

$$
\begin{equation*}
\Theta^{\mu \nu}(k)=\frac{1}{2} \sqrt{\frac{3}{2}} \frac{1}{N(k)} \int \mathrm{d} \Sigma_{\gamma} k^{\gamma} \int \mathrm{d} S(k) K_{\alpha \beta^{\prime}}^{\mu \nu} \mathfrak{s}^{\alpha} \mathfrak{s}^{\beta} f(x, k, \mathfrak{s}) \tag{28}
\end{equation*}
$$

Spin 1: Truncation

Tensor polarization

$$
\begin{equation*}
\Theta^{\mu \nu}(k)=\frac{1}{2} \sqrt{\frac{3}{2}} \frac{1}{N(k)} \int \mathrm{d} \Sigma_{\gamma} k^{\gamma} \int \mathrm{d} S(k) K_{\alpha \beta^{\prime}}^{\mu \nu} \mathfrak{s}^{\alpha} \mathfrak{s}^{\beta} f(x, k, \mathfrak{s}) \tag{28}
\end{equation*}
$$

- Not a conserved quantity, but important observable
- Consider moments that appear in total tensor polarization $\int \mathrm{d}^{4} k N(k) \Theta^{\mu \nu}(k)$

Spin 1: Truncation

Tensor polarization

$$
\begin{equation*}
\Theta^{\mu \nu}(k)=\frac{1}{2} \sqrt{\frac{3}{2}} \frac{1}{N(k)} \int \mathrm{d} \Sigma_{\gamma} k^{\gamma} \int \mathrm{d} S(k) K_{\alpha \beta^{\prime}}^{\mu \nu} \mathfrak{s}^{\alpha} \mathfrak{s}^{\beta} f(x, k, \mathfrak{s}) \tag{28}
\end{equation*}
$$

- Not a conserved quantity, but important observable
- Consider moments that appear in total tensor polarization $\int \mathrm{d}^{4} k N(k) \Theta^{\mu \nu}(k)$ $\rightarrow \psi_{1}^{\mu \nu}, \psi_{0}^{\mu \nu, \lambda}$

Spin 1: Truncation

Tensor polarization

$$
\begin{equation*}
\Theta^{\mu \nu}(k)=\frac{1}{2} \sqrt{\frac{3}{2}} \frac{1}{N(k)} \int \mathrm{d} \Sigma_{\gamma} k^{\gamma} \int \mathrm{d} S(k) K_{\alpha \beta^{\beta}}^{\mu \nu} \mathfrak{s}^{\alpha} \mathfrak{s}^{\beta} f(x, k, \mathfrak{s}) \tag{28}
\end{equation*}
$$

- Not a conserved quantity, but important observable
- Consider moments that appear in total tensor polarization $\int \mathrm{d}^{4} k N(k) \Theta^{\mu \nu}(k)$ $\rightarrow \psi_{1}^{\mu \nu}, \psi_{0}^{\mu \nu, \lambda}$
- Consider only them as dynamical
- Obtain hydrodynamic equations in the usual way

Spin 1: Truncation

Tensor polarization

$$
\begin{equation*}
\Theta^{\mu \nu}(k)=\frac{1}{2} \sqrt{\frac{3}{2}} \frac{1}{N(k)} \int \mathrm{d} \Sigma_{\gamma} k^{\gamma} \int \mathrm{d} S(k) K_{\alpha \beta^{\beta}}^{\mu \nu} \mathfrak{s}^{\alpha} \mathfrak{s}^{\beta} f(x, k, \mathfrak{s}) \tag{28}
\end{equation*}
$$

- Not a conserved quantity, but important observable
- Consider moments that appear in total tensor polarization $\int \mathrm{d}^{4} k N(k) \Theta^{\mu \nu}(k)$ $\rightarrow \psi_{1}^{\mu \nu}, \psi_{0}^{\mu \nu, \lambda}$
- Consider only them as dynamical
- Obtain hydrodynamic equations in the usual way
- What do we learn here?

Results III: Tensor polarization

Shear-induced tensor polarizaton

$$
\begin{equation*}
\psi_{1}^{\langle\mu \nu\rangle}=\xi \beta_{0} \pi^{\mu \nu} \tag{29}
\end{equation*}
$$

Results III: Tensor polarization

Shear-induced tensor polarizaton

$$
\begin{equation*}
\psi_{1}^{\langle\mu \nu\rangle}=\xi \beta_{0} \pi^{\mu \nu} \tag{29}
\end{equation*}
$$

- For an uncharged fluid in the Navier-Stokes limit, tensor polarization is induced by the shear-stress tensor $\pi^{\mu \nu}$

Results III: Tensor polarization

Shear-induced tensor polarizaton

$$
\begin{equation*}
\psi_{1}^{\langle\mu \nu\rangle}=\xi \beta_{0} \pi^{\mu \nu} \tag{29}
\end{equation*}
$$

- For an uncharged fluid in the Navier-Stokes limit, tensor polarization is induced by the shear-stress tensor $\pi^{\mu \nu}$
- Estimate the coefficient ξ for a four-point interaction $\mathcal{L}_{\text {int }}=\left(V^{\dagger} \cdot V\right)^{2} / 2$

Results III: Tensor polarization

Shear-induced tensor polarizaton

$$
\begin{equation*}
\psi_{1}^{\langle\mu \nu\rangle}=\xi \beta_{0} \pi^{\mu \nu} \tag{29}
\end{equation*}
$$

- For an uncharged fluid in the Navier-Stokes limit, tensor polarization is induced by the shear-stress tensor $\pi^{\mu \nu}$
- Estimate the coefficient ξ for a four-point interaction $\mathcal{L}_{\text {int }}=\left(V^{\dagger} \cdot V\right)^{2} / 2$

Summary

- Developed dissipative spin hydrodynamics from kinetic theory
- Developed dissipative spin hydrodynamics from kinetic theory
- Applied quantum kinetic theory consistently
\rightarrow Collisions become nonlocal at first order in \hbar
\rightarrow Concept of local equilibrium has to be refined
- Developed dissipative spin hydrodynamics from kinetic theory
- Applied quantum kinetic theory consistently
\rightarrow Collisions become nonlocal at first order in \hbar
\rightarrow Concept of local equilibrium has to be refined
- Employed method of moments to extract hydrodynamic limit
\rightarrow Introduce multiple sets of moments dependent on spin
\rightarrow Standard procedure to obtain equations of motion
\rightarrow Truncation such that evolution of $S^{\lambda \mu \nu}$ can be described
- Developed dissipative spin hydrodynamics from kinetic theory
- Applied quantum kinetic theory consistently
\rightarrow Collisions become nonlocal at first order in \hbar
\rightarrow Concept of local equilibrium has to be refined
- Employed method of moments to extract hydrodynamic limit
\rightarrow Introduce multiple sets of moments dependent on spin
\rightarrow Standard procedure to obtain equations of motion
\rightarrow Truncation such that evolution of $S^{\lambda \mu \nu}$ can be described
- Estimated relaxation times
\rightarrow Timescales of usual dissipative quantities $\Pi, n^{\mu}, \pi^{\mu \nu}$ and spin-related quantities $\mathfrak{p}^{\mu}, \mathfrak{z}^{\mu \nu}, \mathfrak{q}^{\lambda \mu \nu}$ are of the same order of magnitude

Summary

- Developed dissipative spin hydrodynamics from kinetic theory
- Applied quantum kinetic theory consistently
\rightarrow Collisions become nonlocal at first order in \hbar
\rightarrow Concept of local equilibrium has to be refined
- Employed method of moments to extract hydrodynamic limit
\rightarrow Introduce multiple sets of moments dependent on spin
\rightarrow Standard procedure to obtain equations of motion
\rightarrow Truncation such that evolution of $S^{\lambda \mu \nu}$ can be described
- Estimated relaxation times
\rightarrow Timescales of usual dissipative quantities $\Pi, n^{\mu}, \pi^{\mu \nu}$ and spin-related quantities $\mathfrak{p}^{\mu}, \mathfrak{z}^{\mu \nu}, \mathfrak{q}^{\lambda \mu \nu}$ are of the same order of magnitude
- Connected tensor polarization to fluid quantities in the Navier-Stokes limit

Future perspectives

- Analyze dissipative spin-1/2 hydro

■ Consider stability and causality

- Perform simulations to connect with experimental data
- Go to higher order in moment expansion

Future perspectives

- Analyze dissipative spin-1/2 hydro
- Consider stability and causality
- Perform simulations to connect with experimental data
- Go to higher order in moment expansion
- Higher spins
- Have to include dissipative dynamics for higher spin-moments
- Spin 1: Novel effects arise here from local collisions

Future perspectives

- Analyze dissipative spin-1/2 hydro

■ Consider stability and causality

- Perform simulations to connect with experimental data
- Go to higher order in moment expansion
- Higher spins
- Have to include dissipative dynamics for higher spin-moments
- Spin 1: Novel effects arise here from local collisions
- Spin-Magnetohydrodynamics
- Include electric and magnetic fields

