MOAT REGIMES & THEIR SIGNATURES IN HEAVY-ION COLLISIONS

Fabian Rennecke

- HFHF THEORY RETREAT -CASTIGLIONE DELLA PESCAIA - 12/09/2022

[Caerlaverock Castle, Scotland (source: Wikipedia)]

energy dispersion of particle ϕ :

$$E_{\phi}(\mathbf{p}^2) = \sqrt{Z \mathbf{p}^2 + W(\mathbf{p}^2)^2 + m^2}$$

WHERE DOES THE MOAT COME FROM?

heuristic picture:

• particles subject to a spatial modulation are favored to have momentum k_0

moat energy dispersion
(minimal energy at
$$k_0$$
) $k_0^2 = -Z/(2W)$

• typical for inhomogeneous/crystalline phases or a quantum pion liquid ($Q\pi L$)

WHERE CAN MOAT REGIMES APPEAR?

Expected at large µ. Also QCD phase diagram?!

• indication for extended region with Z < 0 in QCD: moat regime

IMPLICATIONS OF THE MOAT

The energy gap might close at lower T and larger μ_B :

instability towards formation of an inhomogeneous condensate

INHOMOGENEOUS PHASE

emerges if energy gap closes

- $E_{\phi}(k_0^2) = 0$: particles with momentum k_0 condense
- basic example: O(N) chiral spiral

IMPLICATIONS OF THE MOAT

option I: moat is a precursor for an inhomogeneous phase

possibilities: inhomogeneous chiral condensate or crystalline CSC

INHOM. PHASES & FLUCTUATIONS

Inhomogeneous phases are mostly studied in mean-field.

But associated spontaneous symmetry breaking gives rise to massless modes.

Their fluctuations must be relevant!

Two types of symmetry breaking for inhomogeneous phases:

- continuous spatial symmetries (rotations, translations) broken down to discrete ones
- global flavor symmetries are broken (e.g. $O(N) \rightarrow O(N-2)$ for chiral spiral)

SPATIAL SYMMETRY BREAKING

It has been argued that Id modulations are favored against higher-dimensional ones

[Abuki, Ishibashi, Suzuki '12] [Carignano, Buballa '12]

Goldstone bosons from spatial symmetry breaking (e.g. phonons) lead to Landau-Peierls instability of I d inhomogeneous condensates (e.g. chiral spiral)

• Goldstone fluctuations lead to logarithmic IR divergences

Id condensate is destroyed; the system is disordered

algebraically instead of exponentially decaying correlations still possible

quasi-long-range order (e.g. liquid crystals)

[Landau, Lifshitz, Stat. Phys. I, §137] [Lee, Nakano, Tsue, Tatsumi, Friman '15]

Option 2: moat is a precursor for a liquid-crystal-like phase

FLAVOR SYMMETRY BREAKING

even "worse" for fluctuations of Goldstones from broken flavor symmetry

• basic example: fluctuations around O(N) chiral spiral

$$\phi = \Delta \begin{pmatrix} \cos(k_0 z) \\ \sin(k_0 z) \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} \delta \phi_{\parallel} \\ \delta \phi_{\perp} \end{pmatrix} \longrightarrow \begin{pmatrix} \phi_{\perp} \\ \phi_{\perp} \\ \phi_{\perp} \end{pmatrix} \sim \frac{T}{W} k_0^{d-3} \int_{|\mathbf{p}| \sim k_0} \frac{d |\mathbf{p}|}{(|\mathbf{p}| - k_0)^2}$$

• transverse fluctuations lead to linear IR divergences at finite T in any dimension

 $\delta \phi_{\perp}$ disorders the system: no inhomogeneous phase for N > 2not even quasi-long-range order (rigorous for O(N) chiral spiral at $N \to \infty$)

instead, there is a quantum pion liquid

- disordered phase with a moat spectrum (E > 0 for all \mathbf{p}^2)
- spatial modulations: $\langle \phi(x)\phi(0) \rangle \sim e^{-m_r x} \cos(m_i x)$ for large x

[Pisarski, Tsvelik, Valgushev '20] [Pisarski '21]

Option 3: moat signals a quantum pion liquid

IMPLICATIONS OF THE MOAT

the moat regime could be an indication that dense QCD has:

this will occur in the regions where inhomogeneous phases are expected

PROBING THE PHASE DIAGRAM

imprints of the phase structure at freeze-out?

SEARCH FOR MOAT REGIMES [Pisarski, FR '21]

Characteristic feature: minimal energy at nonzero momentum

 \Rightarrow enhanced particle production at nonzero momentum

 \rightarrow look for signatures in the **momentum dependence** of particle numbers and correlations

- consider heavy-ion collision
- particles at freeze-out "mapped" onto detector
- freeze out at certain temperature T_f

defines 3d hypersurface: freeze-out surface Σ

How does the moat regime affect particles on Σ ?

PARTICLE PRODUCTION

How does a moat regime affect particle production?

• study particle numbers and correlations, e.g.,

single-particle spectrum two-particle spectrum: particle number correlation

$$(2\pi)^{3} E_{\mathbf{p}} \frac{dN_{1}}{dp^{3}} = E_{\mathbf{p}} \langle a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \rangle \qquad (2\pi)^{6} E_{\mathbf{p}} E_{\mathbf{q}} \frac{dN_{2}}{dp^{3} dq^{3}} = E_{\mathbf{p}} E_{\mathbf{q}} \langle a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}}^{\dagger} a_{\mathbf{p}} a_{\mathbf{q}} \rangle$$

possible sources for correlations: thermodynamic fluctuations, critical fluctuations, interference (HBT) and all sorts of interactions

develop unified framework to study all this (work in progress)

• if particle number is not conserved, it can only be defined 'asymptotically' (quasi-particles). Then, e.g., for a real scalar field:

on-shell:
$$\bar{p}_0 = E_p$$

 $\sqrt{2\bar{p}_0} a_p = i \int d^3x \, e^{i\bar{p}x} \left(\partial_{x_0} - i\bar{p}_0\right) \phi(x)$

• cf. LSZ reduction, but here x_0 could be any time where a quasi-particle picture applies (not necessarily $x_0 = \pm \infty$)

 \rightarrow $\bar{p}_0 = E_p$ might differ from free dispersion

GENERALIZED COOPER-FRYE FORMULA

• QFT expression of (mixed) single-particle spectrum (relevant for HBT; work in progress)

$$\begin{split} \sqrt{\bar{p}_0 \,\bar{q}_0} \left\langle a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} \right\rangle = \frac{1}{2(2\pi)^3} \int d^3 X \, e^{i\bar{P}X} \int \frac{dQ_0}{2\pi} \left[\frac{1}{4} \partial_{X_0}^2 - \frac{i}{2} \frac{P_0}{P_0} \partial_{X_0} + \left(Q_0 + \bar{Q}_0 \right)^2 - \frac{1}{4} \bar{P}_0^2 \right] \left[F(X, Q) - \frac{1}{2} \rho(X, Q) \right] \\ \text{relative momentum } P = p - q \qquad \text{average momentum } Q = (p + q)/2 \end{split}$$

Wigner-transformed two-point functions

spectral function:
$$\rho(X,Q) = \int d^4Y e^{iQY} \left\langle \left[\phi \left(X + \frac{1}{2}Y \right), \phi \left(X - \frac{1}{2}Y \right) \right] \right\rangle$$

statistical function: $F(X,Q) = \int d^4Y e^{iQY} \left\langle \left\{ \phi \left(X + \frac{1}{2}Y \right), \phi \left(X - \frac{1}{2}Y \right) \right\} \right\rangle$
e.g. $f = n_B$
assume local thermal equilibrium + only relative position matters: $F(Q) \approx \left[\frac{1}{2} + f(Q) \right] \rho(Q)$

• particles on (freeze-out) surface Σ move with fluid velocity u^{μ} , described by current N_{μ} with $N = u^{\mu}N_{\mu}$; set p = q

generalized Cooper-Frye formula:

boosted momenta:

PARTICLE SPECTRUM IN A MOAT REGIME

transverse momentum spectrum

[Pisarski, FR (2021)]

- use simple models for illustration (quasi-particle in moat regime, boost-inv. and transverse isotropic freeze-out at fixed proper time, blast wave fluid velocity)
- compare normal phase (gray, W = 0) to moat phase (yellow, $W = 2.5 \text{ GeV}^{-2}$)

enhanced particle production at nonzero momentum! maximum related to the wavenumber of the spatial modulation

PARTICLE NUMBER CORRELATIONS

- correlations sensitive to in-medium modifications
- consider only thermal fluctuations for now (no HBT, interaction effects etc.)
- moat regime is disordered: single particle distributions can capture relevant features

 \rightarrow correlations on Σ from generalized Cooper-Frye formula

[Pisarski, FR (2021)] [Floerchinger et al. (2022)]

$$\left\langle \prod_{i=1}^{n} \check{Q}_{i}^{0} \frac{d^{3}N_{1}}{dQ_{i}^{3}} \right\rangle = \left[\prod_{i=1}^{n} \frac{1}{2(2\pi)^{3}} \int d(\Sigma_{i})_{\mu} \int \frac{dQ_{i}^{0}}{2\pi} \left(Q_{i}^{\mu} + \bar{Q}_{i}^{\mu} \right) \left(\check{Q}_{i}^{0} + \check{\bar{Q}}_{i}^{0} \right) \right] \left\langle \prod_{i=1}^{n} f(\check{Q}_{i}^{0}) \rho(\check{Q}_{i}) \right\rangle$$

$$\left\langle \mathsf{thermodynamic average} \right\rangle$$

• consider small thermodynamic fluctuations in T, μ_B, u , with $\kappa_i^{\mu}(x) = (T(x), \mu_B(x), u^{\mu}(x))_i$

$$\left\langle f\rho f\rho \right\rangle_{c} = \frac{\partial(f\rho)}{\partial\kappa_{i}^{\mu}} \frac{\partial(f\rho)}{\partial\kappa_{j}^{\nu}} \left|_{\bar{\kappa}} \left\langle \delta\kappa_{i}^{\mu}\delta\kappa_{j}^{\nu} \right\rangle + \mathcal{O}\left(\delta\kappa^{3}\right) \right|_{\bar{\kappa}}$$
connected correlator fluctuations of T, μ_{B}, u

• fluctuations, e.g., of thermodynamic quantities generate particle correlations

THERMODYNAMIC CORRELATIONS

- correlations $\langle ... \rangle$ from thermodynamic average
- weight configurations with the change in entropy due to fluctuations, Δs^{μ} [Landau, Lifshitz (vol. 5)]

generating functional of (connected) thermodynamic correlations

$$W[J] = \ln \int \mathscr{D}\kappa(x) \exp \int d\Sigma_{\mu} \left[\Delta s^{\mu}(x) + J(x)_{i\nu} \hat{v}^{\mu} \kappa_{i}^{\nu}(x) \right]$$

normal to Σ

• connected n-point correlations $\langle \kappa^n \rangle_c$ from $\left. \frac{\delta^n W[J]}{\delta J^n} \right|_{J=0}$

• change of entropy in an ideal fluid $(T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} + p\Delta^{\mu\nu})$ with Gaussian fluctuations:

$$\hat{\nu}_{\mu}\Delta s^{\mu} = -\frac{1}{2}\kappa_{i\mu}(x) \mathcal{F}_{ij}^{\mu\nu}(x)\kappa_{j\nu}(x) \qquad \qquad \mathcal{F}_{ij}^{\mu\nu} = \frac{1}{T} \begin{pmatrix} \hat{u} \frac{\partial s}{\partial T} & \hat{u} \frac{\partial s}{\partial \mu_B} & s\hat{v}^{\nu} \\ \hat{u} \frac{\partial s}{\partial \mu_B} & \hat{u} \frac{\partial n_B}{\partial \mu_B} & n_B \hat{v}^{\nu} \\ s\hat{v}^{\mu} & n_B \hat{v}^{\mu} & -\hat{u} (Ts + \mu_B n_B) g^{\mu\nu} \end{pmatrix}_{ij}$$

Iocal fluctuations!

TRANSVERSE MOMENTUM CORRELATIONS

[Pisarski, FR (2021)]

• normalized two-particle correlation
$$\Delta n_{12} = \frac{\left\langle \frac{dN_1}{dp_1^3} \frac{dN_1}{dp_2^3} \right\rangle_c}{\left\langle \frac{dN_1}{dp_1^3} \right\rangle \left\langle \frac{dN_1}{dp_2^3} \right\rangle}$$

normal phase

(relatively) flat two-particle p_T correlation in the normal phase

TRANSVERSE MOMENTUM CORRELATIONS

[Pisarski, FR (2021)]

• normalized two-particle correlation
$$\Delta n_{12} = \frac{\left\langle \frac{dN_1}{dp_1^3} \frac{dN_1}{dp_2^3} \right\rangle_c}{\left\langle \frac{dN_1}{dp_1^3} \right\rangle \left\langle \frac{dN_1}{dp_2^3} \right\rangle}$$

CONCLUSION

I think this is an opportunity for FAIR!

- measure differential particle spectra
- good resolution at low momentum required

Questions to address here

- other sources of correlations?
- evolving through a moat regime with your favorite transport code?
- what's for dinner?

PARTICLE SPECTRUM IN A MOAT PHASE

use simple models to show general structure

Particle in a moat regime:

• low-energy model of free bosons in a moat regime (Z < 0, W > 0):

$$\mathscr{L}_{0} = \frac{1}{2} \left(\partial_{0}\phi\right)^{2} + \frac{Z}{2} \left(\partial_{i}\phi\right)^{2} + \frac{W}{2} \left(\partial_{i}^{2}\phi\right)^{2} + \frac{m_{\text{eff}}^{2}}{2} \phi^{2}$$

• gives simple in-medium spectral function

$$\rho_{\phi}(p_0, \mathbf{p}^2) = 2\pi \operatorname{sign}(p_0) \,\delta\left[p_0^2 - E_{\phi}^2(\mathbf{p}^2)\right] \text{ with } E_{\phi}(\mathbf{p}^2) = \sqrt{Z \,\mathbf{p}^2 + W(\mathbf{p}^2)^2 + m_{\text{eff}}^2}$$

• boost symmetry broken! (but spatial rotation symmetry still intact)

Fluid velocity and freeze-out surface from hydro evolution

- boost invariant, transverse-isotropic freeze-out at fixed temperature T_f and fixed proper time $\tau_f (=\sqrt{t^2-z^2})$
- blast wave approximation for the fluid velocity:

$$u^r = \bar{u} \, \frac{r}{\bar{R}} \, \theta(\bar{R} - r)$$

[Schnedermann, Sollfrank, Heinz (1993)] [Teaney (2003)]

PARTICLE SPECTRUM IN A MOAT PHASE

use simple models to show general structure

model parameters:

• pick a beam energy of $\sqrt{s} = 5 \text{ GeV}$ and read off thermodynamic and blast wave parameters:

 $T_f = 115 \text{ MeV}$ $\mu_{B,f} = 536 \text{ MeV}$ $\bar{u} = 0.3$ $\bar{R} = 8 \text{ fm}$ $\tau_f = 5 \text{ fm/c}$

[Andronic, Braun-Munzinger, Redlich, Stachel (2018)]

[Zhang, Ma, Chen, Zhong (2016)]

• thermodynamics (used later) from a hadron resonance gas [Braun-Munzinger, Redlich, Stachel (2003)]

• moat parameters: purely illustrative

if Z < 0: $W = 2.5 \,\text{GeV}^{-2}$