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A MOAT

[Caerlaverock Castle, Scotland (source: Wikipedia)]



A MOAT
energy dispersion of particle :ϕ

Eϕ(p2) = Z p2 + W(p2)2 + m2

Z = 1
Z = 0.5
Z = -0.003
Z = -0.05
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particles are favored to have a nonzero momentum
"gain energy by going faster"

moat regime



WHERE DOES THE MOAT COME FROM?

spatial oscillation
cos(2π k0 x)

momentum space peak
δ(p− k0 )

pk0x
1/k0

• particles subject to a spatial modulation are favored to have momentum k0

moat energy dispersion
(minimal energy at )k0

• typical for inhomogeneous/crystalline phases or a quantum pion liquid (Q L)π

heuristic picture:

k2
0 = − Z /(2W )



WHERE CAN MOAT REGIMES APPEAR?

[Fu, Pawlowski, FR (2019)]

indication for extended region with  in QCD:  moat regimeZ < 0

Lattice: [Bazavov et al. '18]
Lattice: [Borsanyi et al. '20]

FRG: crossover

� ��� ��� ��� ��� ����
�

��

���

���

μ� [���]

�
[�
��

]

not computed

Z < 0

μB

T
= 4

Expected at large μ. Also QCD phase diagram?!



IMPLICATIONS OF THE MOAT

The energy gap might close at lower T and larger  :μB

Lattice: [Bazavov et al. '18]
Lattice: [Borsanyi et al. '20]

FRG: crossover

� ��� ��� ��� ��� ����
�

��

���

���

μ� [���]

�
[�
��

]

E

p20
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p20

 for all E > 0 p2

 at :E = 0 p2 > 0

instability towards formation of an inhomogeneous condensate



INHOMOGENEOUS PHASE

• : particles with momentum  condense

• basic example:  chiral spiral

Eϕ(k2
0) = 0 k0

O(N )

ϕ0 = Δ

cos(k0 z)
sin(k0 z)

0
⋮
0

ϕ =

σ
πN−1
πN−2

⋮
π1

,

field condensate/VEV
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[Carignano, Buballa, Schaefer '14]

emerges if energy gap closes

mean-field phase diagram



IMPLICATIONS OF THE MOAT

option 1: moat is a precursor for an inhomogeneous phase

THE PHASES OF QCD

hadrons
color superconductor

quark-gluon plasma
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αS

?

possibilities: inhomogeneous chiral condensate or crystalline CSC



INHOM. PHASES & FLUCTUATIONS

Inhomogeneous phases are mostly studied in mean-field.

But associated spontaneous symmetry breaking gives rise to massless modes.

Their fluctuations must be relevant!

Two types of symmetry breaking for inhomogeneous phases:

• continuous spatial symmetries (rotations, translations) broken down to 
discrete ones

• global flavor symmetries are broken (e.g.  for chiral spiral)O(N ) → O(N − 2)



SPATIAL SYMMETRY BREAKING

It has been argued that 1d modulations are favored against higher-dimensional ones 
[Abuki, Ishibashi, Suzuki '12]
[Carignano, Buballa '12]

Goldstone bosons from spatial symmetry breaking (e.g. phonons) lead to Landau-Peierls 
instability of 1d inhomogeneous condensates (e.g. chiral spiral)

• Goldstone fluctuations lead to logarithmic IR divergences

1d condensate is destroyed; the system is disordered

• algebraically instead of exponentially decaying correlations still possible

quasi-long-range order (e.g. liquid crystals) [Landau, Lifshitz, Stat. Phys. I, §137]
[Lee, Nakano, Tsue, Tatsumi, Friman '15]

Option 2: moat is a precursor for a liquid-crystal-like phase



• basic example: fluctuations around  chiral spiralO(N )

even "worse" for fluctuations of Goldstones from broken flavor symmetry 

ϕ = Δ

cos(k0 z)
sin(k0 z)

0
⋮
0

+ (
δϕ∥

δϕ⊥)

 disorders the system: no inhomogeneous phase for 

not even quasi-long-range order
δϕ⊥ N > 2

(rigorous for  chiral spiral at )O(N ) N → ∞

• transverse fluctuations lead to linear IR divergences at finite T in any dimension

FLAVOR SYMMETRY BREAKING

[Pisarski, Tsvelik, Valgushev '20]
[Pisarski '21]

• disordered phase with a moat spectrum (  for all )E > 0 p2

• spatial modulations:   for large ⟨ϕ(x)ϕ(0)⟩ ∼ e−mr x cos(mi x) x

instead, there is a quantum pion liquid

Option 3: moat signals a quantum pion liquid

ϕ⊥ ∼
T
W

kd−3
0 ∫|p|∼k0

d |p|
( |p| − k0)2



IMPLICATIONS OF THE MOAT

option 1: 

inhomogeneous phase

THE PHASES OF QCD

hadrons
color superconductor

quark-gluon plasma
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αS

?

the moat regime could be an indication that dense QCD has:

option 2: 

liquid-crystal-like

option 3: 

quantum pion liquid

this will occur in the regions 
where inhomogeneous 
phases are expected 

• only if there are no 
Goldstone bosons

• only if there are only 
Goldstones from spatial 
symmetry breaking from 
1d condensates

• only if there are 
Goldstones flavor 
symmetry breaking



PROBING THE PHASE DIAGRAM

imprints of the phase structure at freeze-out?



SEARCH FOR MOAT REGIMES

Characteristic feature: minimal energy at nonzero momentum 

 enhanced particle production at nonzero momentum


 look for signatures in the momentum dependence of particle numbers and correlations

⇒

→

 [Pisarski, FR '21]
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[Floerchinger, Wiedemann '13]

defines 3d hypersurface: 
freeze-out surface Σ

How does the moat regime affect particles on ?Σ

• consider heavy-ion collision

• particles at freeze-out "mapped" onto detector 

• freeze out at certain temperature Tf



PARTICLE PRODUCTION

• study particle numbers and correlations, e.g.,

How does a moat regime affect particle production?

(2π)3Ep
dN1

dp3
= Ep ⟨a†

pap⟩ (2π)6EpEq
dN2

dp3dq3
= Ep Eq ⟨a†

pa†
qapaq⟩

single-particle spectrum two-particle spectrum: particle number correlation

• if particle number is not conserved, it can only be defined 'asymptotically' (quasi-particles). 
Then, e.g., for a real scalar field:

• possible sources for correlations: thermodynamic fluctuations, critical fluctuations, 
interference (HBT) and all sorts of interactions 

develop unified framework to study all this (work in progress)

2 p̄0 ap = i∫ d3x eip̄x (∂x0
− ip̄0) ϕ(x)

on-shell: p̄0 = Ep

• cf. LSZ reduction, but here  could be any time where a quasi-particle picture applies     
(not necessarily )

x0
x0 = ± ∞

 might differ from free dispersionp̄0 = Ep



GENERALIZED COOPER-FRYE FORMULA
• QFT expression of (mixed) single-particle spectrum (relevant for HBT; work in progress)

p̄0 q̄0 ⟨a†
paq⟩ =

1
2(2π)3 ∫ d3X eiP̄X ∫

dQ0

2π [ 1
4

∂2
X0

−
i
2

P0∂X0
+ (Q0 + Q̄0)2 −

1
4

P̄2
0] [F(X, Q) −

1
2

ρ(X, Q)]

• Wigner-transformed two-point functions

ρ(X, Q) = ∫ d4Y eiQY ⟨[ϕ(X +
1
2

Y), ϕ(X −
1
2

Y)]⟩
F(X, Q) = ∫ d4Y eiQY ⟨{ϕ(X +

1
2

Y), ϕ(X −
1
2

Y)}⟩
spectral function:

statistical function:

• assume local thermal equilibrium + only relative position matters: F(Q) ≈ [1
2

+ f(Q)] ρ(Q)

e.g.  f = nB

• particles on (freeze-out) surface  move with fluid velocity , described by current  
with  ; set  

Σ uμ Nμ
N = uμNμ p = q

generalized Cooper-Frye formula:

˘̄Q0
dN1

dQ3
=

1
2(2π3) ∫ dΣμ ∫

dQ0

2π (Qμ + Q̄μ)(Q̆0 + ˘̄Q0) f(Q̆0) ρ(Q̆)

boosted momenta:

 

Q̆0 = uμQμ

Q̆2 = (uμuν − gμν) QμQν

relative momentum P = p − q average momentum Q = (p + q)/2



PARTICLE SPECTRUM IN A MOAT REGIME
transverse momentum spectrum

Z = 1
Z = 0.5
Z = -0.003
Z = -0.05
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• compare normal phase (gray, ) to moat phase (yellow, )W = 0 W = 2.5 GeV−2

enhanced particle production at nonzero momentum!

maximum related to the wavenumber of the spatial modulation

dN1

pT dpT dy dϕp

• use simple models for illustration (quasi-particle in moat regime, boost-inv. and transverse isotropic 
freeze-out at fixed proper time, blast wave fluid velocity)

[Pisarski, FR (2021)]



PARTICLE NUMBER CORRELATIONS
• correlations sensitive to in-medium modifications

• consider only thermal fluctuations for now (no HBT, interaction effects etc.)

• moat regime is disordered: single particle distributions can capture relevant features

correlations on  from generalized Cooper-Frye formulaΣ

⟨
n

∏
i=1

˘̄Q0
i

d3N1

dQ3
i ⟩ = [

n

∏
i=1

1
2(2π)3 ∫ d(Σi)μ ∫

dQ0
i

2π (Qμ
i + Q̄μ

i )(Q̆0
i + ˘̄Q0

i )] ⟨
n

∏
i=1

f(Q̆0
i ) ρ(Q̆i)⟩

[Pisarski, FR (2021)]
[Floerchinger et al. (2022)]

• consider small thermodynamic fluctuations in , , , with  T μB u κμ
i (x) = (T(x), μB(x), uμ(x))i

thermodynamic average

-particle 
correlation:
n

⟨fρ fρ⟩c
=

∂( fρ)
∂κμ

i

∂( fρ)
∂κν

j κ̄
⟨δκμ

i δκν
j ⟩ + 𝒪(δκ3)

connected correlator fluctuations of , , T μB u

• fluctuations, e.g., of thermodynamic quantities generate particle correlations



THERMODYNAMIC CORRELATIONS
• correlations  from thermodynamic average

• weight configurations with the change in entropy due to fluctuations, 

⟨…⟩

Δsμ

generating functional of (connected) thermodynamic correlations

[Landau, Lifshitz (vol. 5)]

W[J] = ln∫ 𝒟κ(x) exp∫ dΣμ [Δsμ(x) + J(x)iν ̂vμ κν
i (x)]

normal to Σ

• connected n-point correlations  from⟨κn⟩c
δnW[J]

δJn
J=0

• change of entropy in an ideal fluid ( ) with Gaussian fluctuations:Tμν = ϵ uμuν + pΔμν

̂vμΔsμ = −
1
2

κiμ(x) ℱμν
ij (x) κjν(x) ℱμν

ij =
1
T

̂u
∂s
∂T

̂u
∂s

∂μB
s ̂vν

̂u
∂s

∂μB
̂u
∂nB

∂μB
nB ̂vν

s ̂vμ nB ̂vμ − ̂u (Ts + μB nB)gμν
ij

fluctuation matrix ( )̂u = ̂vμ uμ
local fluctuations!



TRANSVERSE MOMENTUM CORRELATIONS

normal phase

Δn12

(relatively) flat two-particle  
correlation in the normal phase

pT

• normalized two-particle correlation Δn12 =
⟨ dN1

dp3
1

dN1

dp3
2 ⟩c

⟨ dN1

dp3
1 ⟩⟨ dN1

dp3
2 ⟩

[Pisarski, FR (2021)]



moat regime

pronounced peak and ridges at 
nonzero  related to wavenumber 

of spatial modulation!
pT

Δn12

huge enhancement:

 
Δn12(ppeak)

moat

Δn12(ppeak)
normal

≈ 102

• normalized two-particle correlation

TRANSVERSE MOMENTUM CORRELATIONS
[Pisarski, FR (2021)]

Δn12 =
⟨ dN1

dp3
1

dN1

dp3
2 ⟩c

⟨ dN1

dp3
1 ⟩⟨ dN1

dp3
2 ⟩



CONCLUSION

I think this is an opportunity for FAIR!

• measure differential particle spectra

• good resolution at low momentum required

Questions to address here

• other sources of correlations?

• evolving through a moat regime with your favorite transport code?

• what's for dinner?



BACKUP



PARTICLE SPECTRUM IN A MOAT PHASE

• low-energy model of free bosons in a moat regime ( , ):Z < 0 W > 0

ℒ0 =
1
2 (∂0ϕ)2 +

Z
2 (∂i ϕ)2 +

W
2 (∂2

i ϕ)2 +
m2

eff

2
ϕ2

• gives simple in-medium spectral function

  with  ρϕ(p0, p2) = 2π sign(p0) δ[p2
0 − E2

ϕ(p2)] Eϕ(p2) = Z p2 + W(p2)2 + m2
eff

use simple models to show general structure

• boost invariant, transverse-isotropic freeze-out at fixed temperature  and fixed 
proper time  ( )

Tf
τf = t2 − z2

Particle in a moat regime:

• boost symmetry broken! (but spatial rotation symmetry still intact)

Fluid velocity and freeze-out surface from hydro evolution

• blast wave approximation 
for the fluid velocity: ur = ū

r
R̄

θ(R̄ − r)

time

radial size of the system

[Schnedermann, Sollfrank, Heinz (1993)]
[Teaney (2003)]



PARTICLE SPECTRUM IN A MOAT PHASE
use simple models to show general structure

model parameters:

• pick a beam energy of  and read off thermodynamic and blast wave parameters:s = 5 GeV

Tf = 115 MeV
μB, f = 536 MeV

ū = 0.3
R̄ = 8 fm
τf = 5 fm/c

[Andronic, Braun-Munzinger, Redlich, Stachel (2018)] [Zhang, Ma, Chen, Zhong (2016)]

• thermodynamics (used later) from a hadron resonance gas [Braun-Munzinger, Redlich, Stachel (2003)]

• moat parameters: purely illustrative

if :   Z < 0 W = 2.5 GeV−2


