Bound State Formation in Open Quantum Systems

Jan Rais

Institut für theoretische Physik,
Universität Frankfurt am Main, HFHF-Retreat in Castiglione

September 12, 2022
(1) Bound State Formation in HIC's
(2) Model and Gaussian Potentials
(3) Single Pulse

44 Heisenberg's Uncertainty Relation and Population Time
(5) Noisy Potential
(6) Open Quantum Systems
(7) Caldeira-Leggett Model
(8) Lindblad Master Equation vs. Caldeira-Leggett Master Equation
(9) Results
(10) Conclusions and Outlook

Hadronic bound states in strongly interacting matter in high-energy heavy-ion collisions

- bound states can be formed and destroyed during specific stages of evolution of the medium
- two important kinds of bound states: heavy quarkonia (J/ Ψ, Υ and excited states) and (anti-)deuterons (d, \bar{d}); other light nuclei
- 'snowballs in hell': light nuclei appear in the statistical hadronization model at chemical freeze out temperature ($\sim 150 \mathrm{MeV}$), while binding energy much lower (Deuteron $\sim 2.3 \mathrm{MeV}$)
- possible reactions $c \bar{c} \leftrightarrow J / \Psi g(\pi), b \bar{b} \leftrightarrow \Upsilon g(\pi), p n \leftrightarrow d \pi(\gamma), \bar{p} \bar{n} \leftrightarrow \bar{d} \pi(\gamma)$

$$
\begin{aligned}
& \mathbf{c}, \mathbf{b} ; \mathbf{p}, \overline{\mathbf{p}} \quad \mathrm{J} / \psi, \mathrm{Y} ; \mathbf{d}, \overline{\mathbf{d}} \\
& \text { (} \\
& \bar{c}, \bar{b} ; \mathbf{n}, \bar{n} \\
& \text { g, } \pi, \gamma
\end{aligned}
$$

Solving the stationary Schrödinger equation with boundary conditions

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x)\right] \psi(x)=E \psi(x)
$$

and $i \hbar \partial_{t} \psi(x, t)=\left[-\frac{\hbar^{2}}{2 m} \partial_{x}^{2}+\hat{V}(x, t)\right] \psi(x, t)=\hat{H} \psi(x, t)$ with $\hat{H}=\hat{H}_{0}+V(x, t)$;
$\psi(x, t)=\sum_{n} c_{n}(t) \psi_{n}(x)$ and therefore
$\hat{H}|\psi\rangle=\sum_{n} c_{n}(t)\left[E_{n}+\hat{V}(t)\right]\left|\psi_{n}\right\rangle, \quad\left|\psi_{n}\right\rangle=\psi_{n}(x)$ leeds to ODE $\in \mathbb{C}$

$$
\dot{\mathrm{i}} \dot{\tilde{c}}_{j}(t)=\sum_{n} V_{j n} \exp \left(\mathrm{i}\left(E_{j}-E_{n}\right) t\right) \tilde{c}_{n}(t) \quad \text { with } \tilde{c}_{j}=c_{j} \exp \left(\mathrm{i} E_{j} t\right)
$$

$$
V(x, t)=V \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma_{x}^{2}}\right) \exp \left(-\frac{\left(t-t_{0}\right)^{2}}{2 \sigma_{t}^{2}}\right)
$$

$\Rightarrow V_{m n}=\int \mathrm{d} x \psi_{m}^{*} V(x, t) \psi_{n}$
$\Rightarrow \mathrm{i} \dot{\tilde{c}}_{m}(t)=\sum_{n} V_{m n} \mathrm{e}^{\mathrm{i}\left(E_{m}-E_{n}\right) t} \tilde{c}_{n}(t)$

- $\left|c_{n}(t)\right|^{2}$ depends on σ_{t}, σ_{x} and V
- since $\partial_{t} V(x, t)=0$, $\partial_{t}\left|c_{n}(t)\right|^{2}=0$
- here $\sigma_{t}=1 \mathrm{fm}, \sigma_{x}=1.2 \mathrm{fm}$ and $V=100 \mathrm{MeV}$

Is Heisenberg's uncertainty relation in energy and time fulfilled ???

- $\sigma_{t}=1,5,10,20,30 \mathrm{fm}$
- $\left|c_{0,50}(t=0)\right|^{2}=1$

$$
" \tau_{\text {formation }} " \stackrel{k}{\neq \frac{\hbar}{E_{B}}}
$$

Extension to Equidistant Pulses (arXiv:2207.04898)

- 2000 pulses with

$$
V(x, t)=\sum_{j=1}^{N} V_{\xi} \exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}}\right)[\Theta(t-j n \Delta t)-\Theta(t-j(n+1) \Delta t)]
$$

- randomly distributed pulse strength
- formation of states on a long time scale
- initial state destruction on very long time
- no equilibration
- final distribution similar to case
 with one pulse

Need of an approach, that includes damping

Consider Hamiltonian

$$
H(t)=H_{S}+H_{B}+H_{1}(t)
$$

where bath is in equilibrium. In terms of density matrices

$$
\rho_{S B}(t)=\rho_{S} \otimes \rho_{B}
$$

Trace out bath variables reduced density matrix \rightarrow partial trace

$$
\operatorname{Tr}_{B}\left[\rho_{S B}\right]:=\sum_{j}\left(I_{S} \otimes\left\langle\left. j\right|_{B}\right) \rho_{S B}\left(I_{S} \otimes|j\rangle_{B}\right)\right.
$$

with $\{|j\rangle\} \in$ ONB for \mathcal{H}_{B} of subsystem $B \rightarrow \rho_{R}=\operatorname{Tr}_{B}\left[\rho_{S B}\right]$. Further need of von Neumann equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \rho(t)=\mathrm{i}\left[H_{l}, \rho(t)\right] \quad \text { with } \quad \rho(t)=\rho(0)-\frac{\mathrm{i}}{\hbar} \int_{0}^{t} \mathrm{~d} s\left[H_{l}(s), \rho(s)\right]
$$

which is inserted to obtain in Schrödinger picture

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \rho_{S}(t) & =-\frac{\mathrm{i}}{\hbar}\left[H_{S}, \rho_{S}\right]-\frac{\mathrm{i}}{\hbar^{2}} \int_{0}^{t} \mathrm{~d} \tau \operatorname{tr}_{B}\left[H_{\mathrm{l}},\left[H_{\mathrm{l}}(\tau), \rho_{S}(t) \otimes \rho_{B}\right]\right] \\
& =-\frac{\mathrm{i}}{\hbar}\left[H_{S}, \rho_{S}\right]-\frac{\mathrm{i}}{\hbar^{2}} \int_{0}^{t} \mathrm{~d} t \operatorname{tr}_{B}\left[H_{l}(t),\left[H_{l}(t-s), \rho_{S}(t) \otimes \rho_{B}\right]\right]
\end{aligned}
$$

in terms of the system. Born-Markov approximation $\rightarrow \rho(t) \approx \rho_{S}(t) \otimes \rho_{B}(0)$ Substitution of $s \rightarrow \tau=|t-s| \ll \tau_{B} . \quad \Rightarrow$ Redfield equation

Caldeira-Leggett Model

Still Hamiltonian

$$
H(t)=H_{S}+H_{B}+H_{l}(t)\left(+H_{c}\right)
$$

with

$$
\begin{aligned}
H_{S} & =\frac{1}{2 M} p^{2}+V(x), \\
H_{B} & =\sum_{n}\left(\frac{1}{2 m_{n}} p_{n}^{2}+\frac{1}{2} m_{n} \omega_{n}^{2} x_{n}^{2}\right), \\
H_{l} & =-x \sum_{n} \kappa_{n} x_{n} \equiv-x B
\end{aligned}
$$

with $B=\sum_{n} \kappa_{n} \sqrt{\frac{\hbar}{2 m_{n} \omega_{n}}}\left(b_{n}+b_{n}^{\dagger}\right)$ and $H_{c}=x^{2} \sum_{n} \frac{\kappa_{n}^{2}}{2 m_{n} \omega_{n}^{2}}$.
Need of spectral density

$$
J(\omega)=\sum_{n} \frac{\kappa_{n}^{2}}{2 m_{n} \omega_{n}} \delta\left(\omega-\omega_{n}\right) \rightarrow \frac{2 m \gamma}{\pi} \omega \frac{\Omega^{2}}{\Omega^{2}+\omega^{2}} \quad \text { (Lorentz-Drude cutoff) }
$$

For Brownian motion define correlation functions
$\langle B(0) B(-\tau)\rangle_{B}=\underbrace{\int_{0}^{\infty} \mathrm{d} \omega J(\omega) \operatorname{coth}\left(\frac{\hbar \omega}{2 k_{B} T}\right) \cos (\omega \tau)}_{\text {noise kernel }}-\underbrace{\mathrm{C}_{0}^{\infty} \mathrm{d} \omega J(\omega) \sin (\omega \tau)}_{\text {dissipation kernel }}$

Caldeira-Leggett Master Equation

which finally leads to

$$
\begin{aligned}
\dot{\rho}_{S}(t) & =-\frac{\mathrm{i}}{\hbar}\left[H_{S}+H_{c}, \rho_{S}\right]-\frac{1}{\hbar^{2}} \int_{0}^{\infty} \mathrm{d} \tau \operatorname{tr}_{B}\left[H_{l},\left[H_{l}(\tau), \rho_{S}(t) \otimes \rho_{B}\right]\right] \\
& =-\frac{\mathrm{i}}{\hbar}\left[H_{S}+H_{C}, \rho_{S}\right]+\frac{\mathrm{i}}{\hbar}\left[H_{c}, \rho_{S}\right]-\frac{\mathrm{i} \gamma}{\hbar}\left[x,\left\{p, \rho_{S}(t)\right\}\right]-\frac{2 m k_{B} T \gamma}{\hbar^{2}}\left[x,\left[x, \rho_{S}(t)\right]\right] \\
& =\underbrace{-\frac{i}{\hbar}\left[H_{S}, \rho_{S}\right]}_{\text {free coherent dynamics }}-\underbrace{\frac{\mathrm{i} \gamma}{\hbar}\left[x,\left\{p, \rho_{S}(t)\right\}\right]}_{\text {dissipation } \sim D(\tau)}-\underbrace{\frac{2 m k_{B} T \gamma}{\hbar^{2}}\left[x,\left[x, \rho_{S}(t)\right]\right]}_{\text {thermal fluctuations (decoherence) }}
\end{aligned}
$$

- $\gamma=\eta / 2 m$, characteristic damping rate of oscillator with m and H $\eta \in$ friction coefficient
- Fokker-Planck equation, $k_{B} T / \hbar \gg \Omega \gg \omega \Rightarrow$ Caldeira-Leggett limit
- Satisfies $\langle F(t+\tau) F(t)\rangle=2 \gamma k_{B} T$

Problems of the Caldeira-Leggett Master equation

- $\lambda_{d B}=\frac{\hbar}{\sqrt{4 M k_{B} T}}$; the coherent length pertaining to state $\rho_{n n}$ must always be greater than $\lambda_{d B}$; otherwise ME tends to violate the positivity of ρ
- Particular coarse-graining of CLME lead to Lindblad form
- not a priori norm-conserving

Lindblad vs. Caldeira-Leggett

Has similarity to Lindblad equation (Markovian process)

$$
\mathcal{L} \rho_{S}=-\mathrm{i}\left[\mathcal{H}, \rho_{S}\right]+\sum_{i j=1}^{N^{2}-1} a_{i j}\left(F_{i} \rho_{S} F_{j}^{\dagger}-\frac{1}{2} F_{j}^{\dagger} F_{i} \rho_{S}-\frac{1}{2} \rho_{S} F_{j}^{\dagger} F_{i}\right)
$$

with Lindblad Operators $F_{1}=x$ and $F_{2}=\mathrm{ip}$ and $a_{i j}=\left(\begin{array}{cc}\frac{4 m \gamma k_{B} T}{\hbar^{2}} & \frac{\gamma / \hbar}{\gamma / \hbar} \\ \frac{\gamma}{4 m k_{B} T}\end{array}\right)$

$$
\dot{\rho}_{S}(t)=-\frac{\mathrm{i}}{\hbar}\left[\mathcal{H}, \rho_{S}\right]-\mathrm{i} a_{12}\left[x,\left\{p, \rho_{S}(t)\right\}\right]-\frac{a_{11}}{2}\left[x,\left[x, \rho_{S}(t)\right]\right]-a_{22}\left[p,\left[p, \rho_{S}\right]\right]
$$

with $\mathcal{H}=H_{S}-\gamma \times p$

- ME's of Lindblad class do not violate positivity
- Lindblad operator has vanishing trace \Rightarrow norm-conserving
- $\dot{\rho}=\mathcal{L} \rho$, from Liouville equation $\dot{\rho}=\frac{1}{i \hbar}[H, \rho]$
- p-commutator term comes from Markovian approximation; memory kernel is $M \gamma \delta(\tau-s)$ which leads to $\Omega \gg \omega_{R}$, characteristic frequency of the particle dynamics and $k T \gg \hbar \Omega$ (Diosi, Europhys. Lett, 22 (1), pp. 1-3 (1993))

To solve $\rho_{S}(t)$ we need ansatz
$\rho_{S}\left(x, x^{\prime}, t\right)=\sum_{m n} \rho_{m n}(t) \Phi_{m}(x) \Phi_{n}\left(x^{\prime}\right)$, where $\rho_{m n}(t)=\tilde{\rho}_{m n}(t) \exp \left(\mathrm{i} \frac{E_{m}-E_{n}}{\hbar} t\right)$
insert and multiply $\int_{-L}^{L} d x^{\prime} \int_{-L}^{L} d x \Phi_{k}(x) \Phi_{l}\left(x^{\prime}\right)$ from left to CL-master equation to obtain

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \rho_{k l}(t)=\sum_{m n}\left[-\frac{\mathrm{i}}{\hbar} \mathcal{A}_{k l, m n}+\gamma \mathcal{B}_{k l, m n}-\frac{2 m k_{B} T \gamma}{\hbar^{2}} C_{k l, m n}+\frac{\gamma \hbar^{2}}{4 m k_{B} T} \mathcal{D}_{k l, m n}\right] \rho_{m n}(t)
$$

- Runge-Kutta solver 4 th order to solve differential equation
- Dependence on γ and T
- Comparison Caldeira Leggett to Lindblad equation
- Discontinuities in 2nd derivatives!!
(above) $T=40 \mathrm{MeV}, \gamma=0.1 \mathrm{fm}^{-1}$, left $\rho_{00}(t=0)=1$, right $\rho_{88}(t=0)=1$

- bound state initially populated

- $8^{\text {th }}$ state init. populated $\approx 25 \mathrm{MeV}$

Depopulation of an originally populated bound state, T and γ dependent:

- different $T, \gamma=0.1 \mathrm{fm}^{-1}$

- different $\gamma, T=40 \mathrm{MeV}$
- $8^{\text {th }}$ corresponds to $\approx 25 \mathrm{MeV}$
- population of bound state faster, if T is higher
- population of bound state faster, if γ is higher

Equilibration after $\approx 2-3 \mathrm{fm} ?$?

- Bound state initially populated (above), 8th initially populated (below),

- depopulation of an originally populated bound state, T and γ dependent
- Interaction of open quantum system with its surroundings creates correlations between the states of the system and of the environment
- Environment carries information on the open system in the form of these correlations
- Dynamical destruction of quantum coherence is called decoherence. Counteracts the superposition principle in the Hilbert space of the open system.
- define decoherence function $\Gamma_{n m}(t) \leq 0, \mid\left\langle\phi_{n}(t) \mid \phi_{m}(t)\right\rangle=\exp \left[\Gamma_{n m}(t)\right]$
- Showing 0th row, $q=4,8,12 \rightarrow \rho_{n, m \neq q}=0$
- Correlation of higher frequencies start to decrease
- Equilibrium after all non-diagonal elements vanish

Conclusions:

- states populate immediately with appearance of potential
- Heisenberg's uncertainty relation in distribution of states
- Damping introduced via Caldeira-Leggett master equation
- This leads to an equilibrated system, T and γ dependent
- Equilibrium not reached after $1 / \gamma \rightarrow$ violates assumption
- try Lindblad formalism

Outlook:

- Will Lindblad be numerically advantageous over Caldeira Leggett?
- Extension to three dimensions
- Damping/Bath Temperature/Oscillator Spectrum
- Introducing Fermions??
- Smooth the potential

