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Bound State Formation in HIC’s

Hadronic bound states in strongly interacting matter in high-energy heavy-ion
collisions

bound states can be formed and destroyed during specific stages of
evolution of the medium

two important kinds of bound states: heavy quarkonia (J/Ψ,Υ and excited
states) and (anti-)deuterons (d , d̄); other light nuclei

‘snowballs in hell’: light nuclei appear in the statistical hadronization
model at chemical freeze out temperature (∼ 150 MeV), while binding
energy much lower (Deuteron ∼ 2.3 MeV)

possible reactions cc̄ ↔ J/Ψg (c), bb̄ ↔ Υg (c), pn↔ dc(W), p̄n̄↔ d̄c(W)
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Stationary solutions

Solving the stationary Schrödinger equation with boundary conditions[
− ℏ

2

2m
∇2 + V (x)

]
k(x) = Ek(x)
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and iℏmtk(x , t) =
[
− ℏ2

2m m2
x + V̂ (x , t)

]
k(x , t) = Ĥk(x , t) with Ĥ = Ĥ0 + V (x , t);

k(x , t) = ∑
n cn (t)kn (x) and therefore

Ĥ |k〉 = ∑
n cn (t)

[
En + V̂ (t)

]
|kn〉 , |kn〉 = kn (x) leeds to ODE ∈ C

i ¤̃cj (t) =
∑
n

Vjn exp
(
i(Ej − En)t

)
c̃n (t) with c̃j = cj exp

(
iEj t

)
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2a = 1.2 fm

L = 197 fm

V0 = −15 MeV

m =
mp+mn
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Single Pulse, starting with a bound state

V (x , t) = V exp

(
− (x − x0)2

2f2
x

)
exp

(
− (t − t0)

2

2f2
t

)
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⇒ Vmn =

∫
dxk∗mV (x , t)kn

⇒ i ¤̃cm (t) =
∑
n

Vmnei(Em−En)t c̃n (t)

|cn (t) |2 depends on ft , fx
and V

since mtV (x , t) = 0,
mt |cn (t) |2 = 0

here ft = 1 fm, fx = 1.2 fm
and V = 100 MeV

Is Heisenberg’s uncertainty relation
in energy and time fulfilled ???
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Find Heisenberg’s energy-time uncertainty relation ( arXiv:2207.04898 )

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  20  40  60  80  100  120  140

|c
n
|2

E [MeV]

V=100MeV,  σt =1fm
V=100MeV,  σt =5fm
V=100MeV,  σt =10fm
V=100MeV,  σt =20fm
V=100MeV,  σt =30fm

ft = 1, 5, 10, 20, 30 fm

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  20  40  60  80  100  120  140

|c
n
|2

E [MeV]

V=100MeV,  σt =1fm
V=100MeV,  σt =5fm
V=100MeV,  σt =10fm
V=100MeV,  σt =20fm
V=100MeV,  σt =30fm

|c0,50 (t = 0) |2 = 1

ΔtΔE ≥ ℏ
2

⇔ ftΔE ≥
1

2

”gformation”
E
≠

ℏ

EB
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  20  40  60  80  100

|c
3

0
|2

t [fm]

σt = 10fm
σt = 1fm
σt = 0.1fm, x50
V(σt = 10fm)
V(σt = 1fm)
V(σt = 0.1fm)

6 / 18



Extension to Equidistant Pulses ( arXiv:2207.04898 )

2000 pulses with

V (x , t) = ∑N
j=1 Vb exp

(
− x2

2f2
x

)
[Θ(t − jnΔt) − Θ(t − j (n + 1)Δt)]
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Mean Energy, System blows up
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Need of an approach, that includes damping
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Density Matrices and Reduced Density Matrix

Consider Hamiltonian

H (t) = HS + HB + HI (t)
where bath is in equilibrium. In terms of density matrices

dSB (t) = dS ⊗ dB

Trace out bath variables reduced density matrix → partial trace

TrB [dSB ] :=
∑
j

(IS ⊗ 〈j |B ) dSB (IS ⊗ |j〉B )

with {|j〉} ∈ ONB for HB of subsystem B → dR = TrB [dSB ]. Further need of
von Neumann equation

d

dt
d(t) = i [HI , d(t)] with d(t) = d(0) − i

ℏ

∫ t

0
ds [HI (s), d(s)]

which is inserted to obtain in Schrödinger picture

d

dt
dS (t) = −

i

ℏ
[HS , dS ] −

i

ℏ2

∫ t

0
dgtrB [HI, [HI (g), dS (t) ⊗ dB ]]

= − i

ℏ
[HS , dS ] −

i

ℏ2

∫ t

0
dttrB [HI (t), [HI (t − s), dS (t) ⊗ dB ]]

in terms of the system. Born-Markov approximation → d(t) ≈ dS (t) ⊗ dB (0)
Substitution of s → g = |t − s | � gB . ⇒ Redfield equation
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Caldeira-Leggett Model

Still Hamiltonian

H (t) = HS + HB + HI (t) (+Hc )

with

HS =
1

2M
p2 + V (x),

HB =
∑
n

(
1

2mn
p2
n +

1

2
mnl

2
nx

2
n

)
,

HI = −x
∑
n

^nxn ≡ −xB

with B =
∑
n ^n

√
ℏ

2mnln

(
bn + b†n

)
and Hc = x2 ∑

n
^2
n

2mnl
2
n
.

Need of spectral density

J (l) =
∑
n

^2
n

2mnln
X(l − ln) →

2mW

c
l

Ω2

Ω2 + l2
(Lorentz-Drude cutoff)

For Brownian motion define correlation functions

〈B (0)B (−g)〉B =

∫ ∞

0
dlJ (l) coth( ℏl

2kBT
)cos (lg)︸                                          ︷︷                                          ︸

noise kernel

− i

∫ ∞

0
dlJ (l) sin(lg)︸                        ︷︷                        ︸

dissipation kernel
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Caldeira-Leggett Master Equation

which finally leads to

¤dS (t) = −
i

ℏ
[HS + Hc , dS ] −

1

ℏ2

∫ ∞

0
dgtrB [HI , [HI (g), dS (t) ⊗ dB ]]

= − i

ℏ
[HS + Hc , dS ] +

i

ℏ
[Hc , dS ] −

iW

ℏ
[x , {p, dS (t)}] −

2mkBTW

ℏ2
[x , [x , dS (t)]]

= − i

ℏ
[HS , dS ]︸          ︷︷          ︸

free coherent dynamics

− iW

ℏ
[x , {p, dS (t)}]︸                 ︷︷                 ︸

dissipation ∼D (g)

− 2mkBTW

ℏ2
[x , [x , dS (t)]]︸                            ︷︷                            ︸

thermal fluctuations (decoherence)

W = [/2m, characteristic damping rate of oscillator with m and H
[ ∈ friction coefficient

Fokker-Planck equation, kBT/ℏ � Ω � l⇒ Caldeira-Leggett limit

Satisfies 〈F (t + g)F (t)〉 = 2WkBT

Problems of the Caldeira-Leggett Master equation

_dB = ℏ√
4MkBT

; the coherent length pertaining to state dnn must always

be greater than _dB ; otherwise ME tends to violate the positivity of d

Particular coarse-graining of CLME lead to Lindblad form

not a priori norm-conserving
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Lindblad vs. Caldeira-Leggett

Has similarity to Lindblad equation (Markovian process)

LdS = −i [H , dS ] +
N2−1∑
ij=1

aij

(
Fi dSF

†
j
− 1

2
F †
j
Fi dS −

1

2
dSF

†
j
Fi

)

with Lindblad Operators F1 = x and F2 = ip and aij =

(
4mWkBT

ℏ2 W/ℏ
W/ℏ W

4mkBT

)

¤dS (t) = −
i

ℏ
[H , dS ] − ia12 [x , {p, dS (t)}] −

a11

2
[x , [x , dS (t)]] − a22 [p, [p, dS ]]

with H = HS − Wxp

ME’s of Lindblad class do not violate positivity

Lindblad operator has vanishing trace ⇒ norm-conserving

¤d = Ld, from Liouville equation ¤d = 1
iℏ [H , d]

p−commutator term comes from Markovian approximation; memory kernel
is MWX(g − s) which leads to Ω � lR , characteristic frequency of the
particle dynamics and kT � ℏΩ (Diosi, Europhys. Lett, 22 (1), pp. 1-3
(1993))
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Solving the Caldeira-Leggett Master Equation

To solve dS (t) we need ansatz

dS (x , x ′, t) =
∑
mn

dmn (t)Φm (x)Φn (x ′), where dmn (t) = d̃mn (t) exp

(
i
Em − En

ℏ
t

)
insert and multiply

∫ L
−L dx

′ ∫ L
−L dxΦk (x)Φl (x ′) from left to CL-master equation

to obtain

d

dt
dkl (t) =

∑
mn

[
− i

ℏ
Akl ,mn + WBkl ,mn −

2mkBTW

ℏ2
Ckl ,mn +

Wℏ2

4mkBT
Dkl ,mn

]
dmn (t)

Runge-Kutta solver 4th order to solve differential equation

Dependence on W and T

Comparison Caldeira Leggett to Lindblad equation

Discontinuities in 2nd derivatives!!
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Formation and Destruction of a Bound State

(above) T=40 MeV, W = 0.1 fm−1, left d00 (t = 0) = 1, right d88 (t = 0) = 1
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W = 0.1 fm−1 T = 40 MeV

Initial condition d00 (t = 0) = 1



Formation and Destruction of a Bound State
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Initial condition d88 (t = 0) = 1



Energy Distribution (Under Construction!!) ⇒ No Equilibrium Yet!!

Bound state initially populated (above), 8th initially populated (below),
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Decoherence

Interaction of open quantum system with its surroundings creates
correlations between the states of the system and of the environment

Environment carries information on the open system in the form of these
correlations

Dynamical destruction of quantum coherence is called decoherence.
Counteracts the superposition principle in the Hilbert space of the open
system.

define decoherence function Γnm (t) ≤ 0, | 〈qn (t) |qm (t)〉 = exp [Γnm (t)]

Showing 0th row,
q = 4, 8, 12→ dn,m≠q = 0

Correlation of higher
frequencies start to
decrease

Equilibrium after all
non-diagonal elements
vanish
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Conclusions and Outlook

Conclusions:

states populate immediately with appearance of potential

Heisenberg’s uncertainty relation in distribution of states

Damping introduced via Caldeira-Leggett master equation

This leads to an equilibrated system, T and W dependent

Equilibrium not reached after 1/W → violates assumption

try Lindblad formalism

Outlook:

Will Lindblad be numerically advantageous over Caldeira Leggett?

Extension to three dimensions

Damping/Bath Temperature/Oscillator Spectrum

Introducing Fermions??

Smooth the potential
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