

Critical dynamics from the real-time functional renormalization group

Johannes Roth

University of Giessen

HFHF Theory Retreat Castiglione della Pescaia, September 12, 2022

Based on JR, D. Schweitzer, L. J. Sieke, L. von Smekal, Phys. Rev. D **105**, 116017 (2022) JR, L. von Smekal, in preparation

Performing calculations directly in real time

- avoids the need of analytic continuation in comparison with the imaginary-time formalism
- allows treating phenomena off-equilibrium, e.g. many aspects of heavyion collisions, including ...

Figure: Spectral functions of the quartic oscillator at finite temperature, stemming from various computational techniques, including the real-time FRG.

JR, D. Schweitzer, L. J. Sieke, L. von Smekal, Phys. Rev. D 105, 116017 (2022)

... dynamic universality (classified into 'Models')

Proper theoretical description needs methods which can handle nonperturbative real-time physics

Figure adapted from L. von Smekal, Nucl. Phys. B Proc. Suppl. 228 (2012)

Figure adapted from C. S. Fischer, Prog. Part. Nucl. Phys. 105, 1 (2019)

Causality in the functional renormalization group

Causality in the FRG

$$G_k^R(\omega, \boldsymbol{p}) = -\frac{1}{\Gamma_k^{qc}(\omega, \boldsymbol{p}) + R_k^R(\boldsymbol{\omega}, \boldsymbol{p})} \qquad G_k^A(\omega, \boldsymbol{p}) = -\frac{1}{\Gamma_k^{cq}(\omega, \boldsymbol{p}) + R_k^A(\boldsymbol{\omega}, \boldsymbol{p})}$$

What are the consequences?

HFHF Theory Retreat

Test:

Observe general property of Keldysh action:

$$S = \frac{1}{2} \int_{xx'} \phi^T(x) \begin{pmatrix} \mathbf{0} & \cdots \\ \cdots & \cdots \end{pmatrix} \phi(x') + \cdots$$

see for example A. Kamenev, *Field Theory of Non-Equilibrium Systems* (Cambridge University Press, 2011)

Necessary condition for correctness of flow

Find:

- Popular regulators produce such an unphysical component during the flow
- Problem of causality is not trivial
 C. Duclut and B. Delamotte, Phys. Rev. E 95, 012107 (2017)
- An insufficient regulator leads to an incorrect Keldysh action

What *can* we do?

(Start with 0+1 dimensional case, i.e. quantum mechanics)

Most simple regulator has form of a purely mass-like shift (Callan-Symanzik regulator)

$$R_k^{R/A}(\omega) = -k^2$$

- ► Trivially causal, only induces mass shift $m^2 \rightarrow m^2 + k^2$
- Too simple?
- Flow no longer consistent with Wilson's idea of integrating out momentum (energy) shells?

Regulator motivated by physics:

(Causality guaranteed!)

Imagine ΔS_k is the result of integrating out an external heat bath (HB), modelled as an ensemble of harmonic oscillators attached to the particle

$$\begin{array}{c} \omega_s \\ \varphi_s \\ \varphi_s \\ x \end{array}$$
 A. O. Caldeira and A. J. Leggett, Physics A **121**, 587 (1983)
$$H_I + H_B = \sum_s \left(\frac{\pi_s^2}{2} + \frac{\omega_s^2}{2} \varphi_s^2 - g_s \varphi_s x \right)$$

$$\Sigma^{R}(\omega) = -\int_{0}^{\infty} \frac{d\omega'}{2\pi} \frac{2\omega' J(\omega')}{(\omega + i\varepsilon)^{2} - \omega'^{2}}$$

• Fully controlled by spectral density: $J(\omega) = \pi \sum_{s} \frac{g_s^2}{\omega_s} \delta(\omega - \omega_s) = 2 \operatorname{Im} \Sigma^R(\omega)$

But self-energy also has a non-vanishing real part!

Causal regulators

Now make the spectral density *k*-dependent, and choose it so as to *damp* infrared modes.

Resulting self-energy is the regulator,

Example:

$$J_k(\omega) = k\omega \exp\left\{-\omega^2/k^2\right\}$$

But: Heat bath induces *negative* (!) shift in the squared mass

$$\Delta m_{\rm HB}^2(k) = \int_0^\infty \frac{d\omega}{\pi} \frac{J_k(\omega)}{\omega} = \frac{k^2}{\sqrt{4\pi}}$$

$$m^2 \to m^2 \stackrel{(!)}{-} \Delta m^2_{\rm HB}(k)$$

which makes the theory *unstable* and *acausal* for sufficiently large values of *k* !

Way out: Remember that a mass-like shift is causal

Add mass-like 'counter-term' – ak² with a > 0 to compensate unwanted shift in squared mass

$$R_k^{R/A}(\omega) = -\int_0^\infty \frac{d\omega'}{2\pi} \frac{2\omega' J_k(\omega')}{(\omega \pm i\varepsilon)^2 - \omega'^2} - \frac{\alpha k^2}{\sqrt{2}}$$
mass-like counter-term

spectral representation of ω -dependence

Flow of retarded-propagator poles: JR, D. Schweitzer, L. J. Sieke, L. von Smekal, Phys. Rev. D 105, 116017 (2022)

What about a *field* theory?

- Imagine an independent bath of harmonic oscillators 'attached' to every spatial momentum mode p
- Spectral representation just acquires an additional *p*-dependence

$$R_k^{R/A}(\omega, \boldsymbol{p}) = -\int_0^\infty \frac{d\omega'}{2\pi} \frac{2\omega' J_k(\omega', \boldsymbol{p})}{(\omega \pm i\varepsilon)^2 - \omega'^2} - \alpha_k(\boldsymbol{p})k^2$$

Figure: Real (left, mass shift) and imaginary (right, damping) parts of regulator.

And when there is no preferred frame of reference, e.g. no external medium? What about *Lorentz invariance*?

- Regulator like above would break Lorentz symmetry.
- Imagine the heat bath to be an ensemble of Klein-Gordon fields with a relativistic dispersion relation $\omega^2 = m_s^2 + p^2$.
- Our field gains a self-energy (Källén-Lehmann representation)

$$\Sigma_k^R(\omega, \boldsymbol{p}) = -\int_0^\infty \frac{d\mu^2}{2\pi} \frac{\widetilde{J}_k(\mu^2)}{(\omega + i\varepsilon)^2 - \boldsymbol{p}^2 - \mu^2}$$

- ► with *invariant* spectral density: $\tilde{J}(\mu^2) = 2\pi \sum_s g_s^2 \delta(\mu^2 m_s^2)$ connected to the general one above via $J(\omega, \mathbf{p}) = \operatorname{sgn}(\omega) \ \theta(p^2) \ \tilde{J}(p^2)$
- Reintroduce mass-like counter-term $-\alpha k^2$, and then ...

... find general form of a Lorentz-invariant heat-bath regulator

$$R_{k}^{R/A}(\omega, p) = -\int_{0}^{\infty} \frac{d\mu^{2}}{2\pi} \frac{\tilde{J}_{k}(\mu^{2})}{(\omega + i\varepsilon)^{2} - p^{2} - \mu^{2}} - \alpha k^{2}$$
Intrinsically not UV finite!
(for a positive-definite spectral density) (special case of general spectral representation from above)
$$Example: \quad \tilde{J}_{k}(\mu^{2}) = \frac{4k\mu}{(1 + \mu^{2}/k^{2})^{2}}$$

$$\int_{0.5}^{0.5} \frac{1}{(1 + \mu^{2}/k^{2})^{2}}$$

$$\int_{0.5}^{0.5} \frac{1}{(1 + \mu^{2}/k^{2})^{2}} \frac{1}{(1 + \mu^{2}/k^{2})^{2}}$$

$$\int_{0.5}^{0.5} \frac{1}{(1 + \mu^{2}/k^{2})^{2}} \frac{1}{(1 + \mu^{2}/k^$$

Figure: Imaginary part of the resulting causal, Lorentz invariant, but not-UV-finite, regulator.

 $\mathsf{Im}[R^R_k(\omega,\mathsf{p})/k^2]$

Critical dynamics

Spectral function defined as

$$\rho(\omega) = \frac{1}{2\pi i} \int dt \ e^{i\omega t} \int d^d x \ i \langle [\phi(t, \boldsymbol{x}), \phi(0, \boldsymbol{0})] \rangle$$

which

- behaves like $\rho(\omega) \sim |\omega|^{-\sigma}$ at critical point, with ['reduced' temperature $\tau = (T T_c)/T_c$]
 - ▶ scaling exponent $\sigma = (2 \eta)/z$, which is related to
 - dynamical critical exponent *z*, defined by $\xi_t \sim \xi^z$

'critical slowing down'

(called 'Models' in the classification scheme by Halperin and Hohenberg)

CRC-TR 211

Model A

 $z = 2 + c\eta$

Consider classical $\lambda \phi^4$ -theory with Landau-Ginzburg free energy (statics)

• equations of motion (dynamics) with dissipative coupling γ to heat bath

$$\partial_t^2 \varphi + \gamma \partial_t \varphi = -\frac{\delta F}{\delta \varphi} + \boldsymbol{\xi}$$

Gaussian white noise(s)

$$\langle \xi(x) \rangle_{\beta} = 0$$

 $\langle \xi(x)\xi(x') \rangle_{\beta} = 2\gamma T \delta(x - x')$

• discrete Z_2 symmetry breaks spontaneously for $T < T_c$ when $m^2 < 0$

Johannes Roth

Critical dynamics from the real-time FRG

HFHF Theory Retreat 17

see Son and Stephanov, Phys. Rev. D 70, 056001 (2004)

• discrete Z_2 symmetry breaks spontaneously for $T < T_c$ when $m^2 < 0$

 $\langle \xi(x) \rangle_{\beta} = 0$

Gaussian white noise(s)

e.g. uniaxial ferromagnet

 $\partial_t^2 \varphi + \gamma \partial_t \varphi = -\frac{\delta F}{\delta \varphi} + \xi \qquad \qquad \tau$

 $\tau_R \partial_t^2 n + \partial_t n = \bar{\lambda} \vec{\nabla}^2 \frac{\delta F}{\delta n} + \vec{\nabla} \cdot \vec{\zeta}$

total divergence (*n* is conserved density)

 $\langle \zeta^i(x)\zeta^j(x')\rangle_{\beta} = 2\bar{\lambda}T\delta^{ij}\delta(x-x')$

include shear modes of energy-momentum tensor ~ Model H

 $\langle \zeta^i(x) \rangle_\beta = 0$

• equations of motion (dynamics) with dissipative coupling γ to heat bath

free energy (statics)

$$F = \int d^d x \,\left\{ \frac{1}{2} (\vec{\nabla}\varphi)^2 + V(\varphi) + B\varphi n + \frac{n^2}{2\chi_0} \right\}$$

Consider classical $\lambda \phi^4$ -theory with Landau-Ginzburg

equilibrium partition function: $Z = \int \mathcal{D}\varphi \, \mathcal{D}n \, e^{-\beta F}$

Model B

z = 4 - n

Consider classical $\lambda \phi^4$ -theory with Landau-Ginzburg free energy (statics)

 $F = \int d^d x \left\{ \frac{1}{2} (\vec{\nabla} \varphi)^2 + V(\varphi) + \frac{n^2}{2\chi_0} + \frac{g}{2} \varphi^2 n \right\}$

• equations of motion (dynamics) with dissipative coupling γ to heat bath

$$\partial_t^2 \varphi + \gamma \partial_t \varphi = -\frac{\delta F}{\delta \varphi} + \xi \qquad \qquad \tau_R \partial_t^2 n + \partial_t n = \bar{\lambda} \vec{\nabla}^2 \frac{\delta F}{\delta n} + \vec{\nabla} \cdot \vec{\zeta}$$

Gaussian white noise(s)

$$\langle \xi(x) \rangle_{\beta} = 0 \qquad \langle \zeta^{i}(x) \rangle_{\beta} = 0 \langle \xi(x)\xi(x') \rangle_{\beta} = 2\gamma T \delta(x - x') \qquad \langle \zeta^{i}(x)\zeta^{j}(x') \rangle_{\beta} = 2\bar{\lambda}T \delta^{ij}\delta(x - x')$$

• discrete Z_2 symmetry breaks spontaneously for $T < T_c$ when $m^2 < 0$

equilibrium partition function: $Z = \int \mathcal{D}\varphi \, \mathcal{D}n \, e^{-\beta F}$

total divergence (*n* is conserved density)

Model C

z = 2 + a/v

CRC-TR 211

1PI vertex expansion ... around scale-dependent minimum $\phi_{0,k}$: use for Models A and B

effective average action:

$$\Gamma_{k} = \frac{1}{2} \int_{xx'} (\phi^{c} - \phi^{c}_{0,k}, \phi^{q})_{x} \begin{pmatrix} 0 & \Gamma_{k}^{cq}(x,x') \\ \Gamma_{k}^{qc}(x,x') & \Gamma_{k}^{qq}(x,x') \end{pmatrix} \begin{pmatrix} \phi^{c} - \phi^{c}_{0,k} \\ \phi^{q} \end{pmatrix}_{x} \\ - \frac{\kappa_{k}}{\sqrt{8}} \int_{x} (\phi^{c} - \phi^{c}_{0,k})^{2} \phi^{q} - \frac{\lambda_{k}}{12} \int_{x} (\phi^{c} - \phi^{c}_{0,k})^{3} \phi^{q}$$

expand 2-point function in spatial gradients, but keep full frequency dependence:

> $\Gamma_{k}^{qc}(\omega, \boldsymbol{p}) = \Gamma_{0,k}^{qc}(\omega) - Z_{k}^{\perp} \boldsymbol{p}^{2} + \cdots$ $\Gamma_{k}^{cq}(\omega, \boldsymbol{p}) = \Gamma_{0,k}^{cq}(\omega) - Z_{k}^{\perp} \boldsymbol{p}^{2} + \cdots$ $\Gamma_{k}^{qq}(\omega, \boldsymbol{p}) = \frac{2T}{\omega} \left(\Gamma_{0,k}^{qc}(\omega) - \Gamma_{0,k}^{cq}(\omega) \right)$

flow of effective potential:

$$\partial_k V'_k(\varphi) = -\frac{i}{\sqrt{8}} \bigcirc$$

use for squared mass and quartic coupling

for color coding and diagrammatic conventions, see S. Huelsmann, S. Schlichting, P. Scior, Phys. Rev. D **102**, 096004 (2020)

dependent minimum

flow of couplings to density: (Model B)

vanish! (coupling is linear → mixing)

Critical dynamics – truncation

1PI vertex expansion ... around $\phi = 0$: use for Models A and C

effective average action:

$$\begin{split} \Gamma_{k} = & \frac{1}{2} \int_{xx'} (\phi^{c}, \phi^{q})_{x} \begin{pmatrix} 0 & \Gamma_{k}^{cq}(x, x') \\ \Gamma_{k}^{qc}(x, x') & \Gamma_{k}^{qq}(x, x') \end{pmatrix} \begin{pmatrix} \phi^{c} \\ \phi^{q} \end{pmatrix}_{x'} + \\ & \frac{3 \cdot 2^{2}}{4!} \int_{xx'} \phi^{q}(x) \phi^{c}(x) V_{k}^{an}(x, x') \phi^{q}(x') \phi^{c}(x') + \\ & \frac{3 \cdot 2}{4!} \int_{xx'} \phi^{q}(x) \phi^{c}(x) V_{k}^{cl,R}(x, x') \phi^{c}(x') \phi^{c}(x') + \\ & \frac{3 \cdot 2}{4!} \int_{xx'} \phi^{c}(x) \phi^{c}(x) V_{k}^{cl,A}(x, x') \phi^{q}(x') \phi^{c}(x') \end{split}$$

expand 2- and 4-point functions in spatial gradients, but keep full frequency dependence:

$$\Gamma_{k}^{qc}(\omega, \boldsymbol{p}) = \Gamma_{0,k}^{qc}(\omega) - Z_{k}^{\perp}\boldsymbol{p}^{2} + \cdots$$

$$\Gamma_{k}^{cq}(\omega, \boldsymbol{p}) = \Gamma_{0,k}^{cq}(\omega) - Z_{k}^{\perp}\boldsymbol{p}^{2} + \cdots$$

$$\Gamma_{k}^{qq}(\omega, \boldsymbol{p}) = \frac{2T}{\omega} \left(\Gamma_{0,k}^{qc}(\omega) - \Gamma_{0,k}^{cq}(\omega)\right)$$

$$V_{k}^{cl,A}(\omega, \boldsymbol{p}) = V_{0,k}^{cl,A}(\omega) + V_{1,k}^{cl,A}(0)\boldsymbol{p}^{2} + \cdots$$

$$V_{k}^{cl,R}(\omega, \boldsymbol{p}) = V_{0,k}^{cl,R}(\omega) + V_{1,k}^{cl,R}(0)\boldsymbol{p}^{2} + \cdots$$

$$V_{k}^{an}(\omega, \boldsymbol{p}) = \frac{2T}{\omega} \left(V_{k}^{cl,R}(\omega, \boldsymbol{p}) - V_{k}^{cl,A}(\omega, \boldsymbol{p})\right)$$

for the QM case, see

S. Huelsmann, S. Schlichting, P. Scior, Phys. Rev. D **102**, 096004 (2020) JR, D. Schweitzer, L. J. Sieke, L. von Smekal, Phys. Rev. D **105**, 116017 (2022)

flow of 2- and 4-point functions:

flow of couplings to density: (Model C)

Critical dynamics – results

Figure: Critical spectral functions of Model A in 2*d* and 3*d*. JR, L. vo

JR, L. von Smekal, in preparation

- visible power-law behaviour building up close to the critical point
- extract dynamical critical exponents z = 2.09 in 2d and z = 2.04 in 3d

Critical dynamics from the real-time FRG

Critical dynamics – results

Figure: Non-critical (left) and critical (right) spectral functions of Model B in 3d.

- sigma meson stays massive!
- It is the mixed diffusive mode between fluctuations in the sigma meson and the conserved baryon density which becomes critical

[reduced temperature $\tau = (T - T_c)/T_c$]

include shear modes of energy-momentum tensor ~ Model H

see Son and Stephanov, Phys. Rev. D 70, 056001 (2004)

Critical dynamics – results

Figure: Critical spectral functions of Model C in 2d and 3d.

JR, L. von Smekal, in preparation

- exact hyperscaling relation z = 2 + a/v
- extract dynamical critical exponents z = 2.56 in 2d and z = 2.31 in 3d

compare z = 2 (exact)

see Onsager's solution of 2d Ising model

[reduced temperature $\tau = (T - T_c)/T_c$]

compare z = 2.174749(19)

using high-precision conformal-bootstrap results of F. Kos, D. Poland, D. Simmons-Duffin, A. Vichi, JHEP **08**, 036 (2016)

We have

- constructed regulators in the real-time FRG, and shown that their frequency-dependence (if causal) admits a spectral representation,
- calculated critical spectral functions in Model A, B, and C, using one- and two-loop self-consistent truncation schemes.

For the future, we plan to

- extract universal scaling functions which describe universal behaviour in close vicinity of critical point,
- inspect real-time dynamics of Model G and H,
- include fermions (low-energy effective models of QCD in real time), and
- analyze non-equilibrium phenomena (Kibble-Zurek, ...)

Thank you for your attention!