
Fachbereich 7  |  Institut für Theoretische Physik  |  Lorenz von Smekal  |            01

Real-time methods for spectral functions

Johannes Roth, Dominik Schweitzer, Leon Sieke, & LvS
Phys. Rev. D 105 (2022) 116017 [arXiv:2112.12568 [hep-ph]]

Riva del Sole, 12 September 2022



12 September 2022  |  Lorenz von Smekal  |  p.

Outline

2

• spectral functions

• real-time methods

• field theory applications
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finite lifetime/width
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(i)   Classical-statistical simulations

(ii)  Gaussian state approximation

(iii) Real-time FRG
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anharmonic oscillator:

2

classical time evolution according to Langevin-type equa-
tions of motion, the Gaussian state approximation (GSA)
introduced in Refs. [22, 23], where one additionally con-
siders the time evolution of two-point functions, and the
functional renormalization group (FRG) [24–32] which
we use here on the closed time path (CTP, also called
the Schwinger-Keldysh contour) [33–38], where we build
on the previous study of Ref. [33] and take a closer look
at the necessary causal structure of the regulators [37].

This paper is organized as follows. In Section II we
start by briefly summarizing the discretization scheme
and formulas needed for an exact calculation of the spec-
tral function. The following three Sections III to V de-
scribe in detail the three real-time calculation methods
for the spectral function, i.e. the classical-statistical sim-
ulations in Section III, the Gaussian state approximation
in Section IV, and the real-time FRG in Section V. Our
results from the di↵erent methods are presented, com-
pared and discussed in detail in Section VI, and our con-
clusions are given with a brief outlook on possible fur-
ther studies in Section VII. Several appendices are added
with further technical details and derivations especially
for the Heisenberg-Langevin equations of motion in the
GSA, and our regulators and truncation scheme for the
real-time FRG flows.

II. QUARTIC ANHARMONIC OSCILLATOR

We consider a single quartic anharmonic oscillator of
unit mass, defined by the Hamiltonian

Ĥ =
p̂2

2
+

!2
0

2
x̂2 +

�

4!
x̂4, (2.1)

in thermal contact with an external heat bath in equi-
librium. The heat bath is modeled as an ensemble of
harmonic oscillators, which is generally known as the
Caldeira-Leggett model in the literature [13–16].

The anharmonic oscillator can be interpreted as a self-
interacting single-component real scalar field theory in
(0 + 1) dimensions. It serves here as a benchmark sys-
tem for comparing di↵erent methods for calculating spec-
tral functions, since its spectrum can be numerically
determined with essentially arbitrary precision using a
discretization of the Schrödinger equation on a lattice.
Therefore, we will refer to the Schrödinger discretization
method as the exact-diagonalization solution.

The spectral function is defined as the real distribution
given by the thermal expectation value of the commuta-
tor of two Heisenberg (field) operators taken at unequal
times as follows [39, 40],

⇢(t � t0) = ih[x̂(t), x̂(t0)]i� , (2.2)

where the average is taken over the canonical ensem-
ble e��Ĥ/Z at temperature T = 1/� with the parti-

tion function Z = Tr e��Ĥ . To obtain a real distribu-
tion also in the frequency domain from the real and odd

⇢(�t) = �⇢(t), a factor of 2⇡i is commonly absorbed in
the definition of its Fourier transform,

⇢(!) ⌘
1

2⇡i

Z
dt ⇢(t) ei!t, (2.3)

which is then positive, ⇢(!) � 0, for ! > 0, also odd
⇢(�!) = �⇢(!), and normalized according to

Z 1

�1
d! !⇢(!) = 1. (2.4)

Without dissipation, this spectral function may be ex-
pressed as a sum over energy-eigenstates (see for example
Chapter 6.2 of Ref. [2]),

⇢(!) =
1

Z

X

m,n

e��En

⇣
�(! � Em + En)

� �(! + Em � En)
⌘

|hn|x̂|mi|
2. (2.5)

For the non-interacting theory (� = 0), i.e. the harmonic
oscillator with frequency !0, this reduces to

⇢0(!) = sgn(!) �(!2
� !2

0) =
1

⇡
Im GR

0 (!). (2.6)

When the free oscillator is coupled to an Ohmic heat
bath, the retarded Green function GR

0 acquires an addi-
tional damping term with constant � > 0, corresponding

to GR

0,�

�1
= �(!2

� !2
0 + i�!), and the spectral function

becomes

⇢0,�(!) =
1

⇡
Im GR

0,�
(!) (2.7)

=
1

⇡

�!

(!2 � !2
0)2 + �2!2

=

Z 1

�1
d!0!0⇢0(!

0)
1

⇡

�!

(!2 � !02)2 + �2!2
.

This of course describes the collisional broadening of the
free spectral function ⇢0(!) due to the Ohmic heat bath,
together with the frequency shift of the damped harmonic
oscillator from the poles in GR

0,�
(!) at

! = ±

q
!2

0 � �2/4 � i�/2. (2.8)

Applying the same collisional broadening to the spec-
tral function of the anharmonic oscillator in (2.5), one
analogously obtains

⇢�(!) =
1

Z

X

m,n

e��En |hn|x̂|mi|
2 2�Emn

⇥
1

⇡

�!

(!2 � �E2
mn

)2 + �2!2
, (2.9)

with �Emn = Em � En. The only assumption here is
that the width � is not a↵ected by the anharmonicity, in
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classical time evolution according to Langevin-type equa-
tions of motion, the Gaussian state approximation (GSA)
introduced in Refs. [22, 23], where one additionally con-
siders the time evolution of two-point functions, and the
functional renormalization group (FRG) [24–32] which
we use here on the closed time path (CTP, also called
the Schwinger-Keldysh contour) [33–38], where we build
on the previous study of Ref. [33] and take a closer look
at the necessary causal structure of the regulators [37].

This paper is organized as follows. In Section II we
start by briefly summarizing the discretization scheme
and formulas needed for an exact calculation of the spec-
tral function. The following three Sections III to V de-
scribe in detail the three real-time calculation methods
for the spectral function, i.e. the classical-statistical sim-
ulations in Section III, the Gaussian state approximation
in Section IV, and the real-time FRG in Section V. Our
results from the di↵erent methods are presented, com-
pared and discussed in detail in Section VI, and our con-
clusions are given with a brief outlook on possible fur-
ther studies in Section VII. Several appendices are added
with further technical details and derivations especially
for the Heisenberg-Langevin equations of motion in the
GSA, and our regulators and truncation scheme for the
real-time FRG flows.

II. QUARTIC ANHARMONIC OSCILLATOR

We consider a single quartic anharmonic oscillator of
unit mass, defined by the Hamiltonian

Ĥ =
p̂2

2
+

!2
0

2
x̂2 +

�

4!
x̂4, (2.1)

in thermal contact with an external heat bath in equi-
librium. The heat bath is modeled as an ensemble of
harmonic oscillators, which is generally known as the
Caldeira-Leggett model in the literature [13–16].

The anharmonic oscillator can be interpreted as a self-
interacting single-component real scalar field theory in
(0 + 1) dimensions. It serves here as a benchmark sys-
tem for comparing di↵erent methods for calculating spec-
tral functions, since its spectrum can be numerically
determined with essentially arbitrary precision using a
discretization of the Schrödinger equation on a lattice.
Therefore, we will refer to the Schrödinger discretization
method as the exact-diagonalization solution.

The spectral function is defined as the real distribution
given by the thermal expectation value of the commuta-
tor of two Heisenberg (field) operators taken at unequal
times as follows [39, 40],

⇢(t � t0) = ih[x̂(t), x̂(t0)]i� , (2.2)

where the average is taken over the canonical ensem-
ble e��Ĥ/Z at temperature T = 1/� with the parti-

tion function Z = Tr e��Ĥ . To obtain a real distribu-
tion also in the frequency domain from the real and odd

⇢(�t) = �⇢(t), a factor of 2⇡i is commonly absorbed in
the definition of its Fourier transform,

⇢(!) ⌘
1

2⇡i

Z
dt ⇢(t) ei!t, (2.3)

which is then positive, ⇢(!) � 0, for ! > 0, also odd
⇢(�!) = �⇢(!), and normalized according to

Z 1

�1
d! !⇢(!) = 1. (2.4)

Without dissipation, this spectral function may be ex-
pressed as a sum over energy-eigenstates (see for example
Chapter 6.2 of Ref. [2]),
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For the non-interacting theory (� = 0), i.e. the harmonic
oscillator with frequency !0, this reduces to

⇢0(!) = sgn(!) �(!2
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1
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0 (!). (2.6)

When the free oscillator is coupled to an Ohmic heat
bath, the retarded Green function GR

0 acquires an addi-
tional damping term with constant � > 0, corresponding

to GR
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This of course describes the collisional broadening of the
free spectral function ⇢0(!) due to the Ohmic heat bath,
together with the frequency shift of the damped harmonic
oscillator from the poles in GR

0,�
(!) at

! = ±

q
!2

0 � �2/4 � i�/2. (2.8)

Applying the same collisional broadening to the spec-
tral function of the anharmonic oscillator in (2.5), one
analogously obtains
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1
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with �Emn = Em � En. The only assumption here is
that the width � is not a↵ected by the anharmonicity, in

• Fourier transform:

• Ohmic damping 
(Caldeira-Leggett):
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classical time evolution according to Langevin-type equa-
tions of motion, the Gaussian state approximation (GSA)
introduced in Refs. [22, 23], where one additionally con-
siders the time evolution of two-point functions, and the
functional renormalization group (FRG) [24–32] which
we use here on the closed time path (CTP, also called
the Schwinger-Keldysh contour) [33–38], where we build
on the previous study of Ref. [33] and take a closer look
at the necessary causal structure of the regulators [37].

This paper is organized as follows. In Section II we
start by briefly summarizing the discretization scheme
and formulas needed for an exact calculation of the spec-
tral function. The following three Sections III to V de-
scribe in detail the three real-time calculation methods
for the spectral function, i.e. the classical-statistical sim-
ulations in Section III, the Gaussian state approximation
in Section IV, and the real-time FRG in Section V. Our
results from the di↵erent methods are presented, com-
pared and discussed in detail in Section VI, and our con-
clusions are given with a brief outlook on possible fur-
ther studies in Section VII. Several appendices are added
with further technical details and derivations especially
for the Heisenberg-Langevin equations of motion in the
GSA, and our regulators and truncation scheme for the
real-time FRG flows.

II. QUARTIC ANHARMONIC OSCILLATOR

We consider a single quartic anharmonic oscillator of
unit mass, defined by the Hamiltonian

Ĥ =
p̂2

2
+

!2
0

2
x̂2 +

�

4!
x̂4, (2.1)

in thermal contact with an external heat bath in equi-
librium. The heat bath is modeled as an ensemble of
harmonic oscillators, which is generally known as the
Caldeira-Leggett model in the literature [13–16].

The anharmonic oscillator can be interpreted as a self-
interacting single-component real scalar field theory in
(0 + 1) dimensions. It serves here as a benchmark sys-
tem for comparing di↵erent methods for calculating spec-
tral functions, since its spectrum can be numerically
determined with essentially arbitrary precision using a
discretization of the Schrödinger equation on a lattice.
Therefore, we will refer to the Schrödinger discretization
method as the exact-diagonalization solution.

The spectral function is defined as the real distribution
given by the thermal expectation value of the commuta-
tor of two Heisenberg (field) operators taken at unequal
times as follows [39, 40],

⇢(t � t0) = ih[x̂(t), x̂(t0)]i� , (2.2)

where the average is taken over the canonical ensem-
ble e��Ĥ/Z at temperature T = 1/� with the parti-

tion function Z = Tr e��Ĥ . To obtain a real distribu-
tion also in the frequency domain from the real and odd

⇢(�t) = �⇢(t), a factor of 2⇡i is commonly absorbed in
the definition of its Fourier transform,

⇢(!) ⌘
1

2⇡i

Z
dt ⇢(t) ei!t, (2.3)

which is then positive, ⇢(!) � 0, for ! > 0, also odd
⇢(�!) = �⇢(!), and normalized according to

Z 1

�1
d! !⇢(!) = 1. (2.4)

Without dissipation, this spectral function may be ex-
pressed as a sum over energy-eigenstates (see for example
Chapter 6.2 of Ref. [2]),
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⇣
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For the non-interacting theory (� = 0), i.e. the harmonic
oscillator with frequency !0, this reduces to
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0) =
1
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When the free oscillator is coupled to an Ohmic heat
bath, the retarded Green function GR

0 acquires an addi-
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This of course describes the collisional broadening of the
free spectral function ⇢0(!) due to the Ohmic heat bath,
together with the frequency shift of the damped harmonic
oscillator from the poles in GR

0,�
(!) at
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q
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Applying the same collisional broadening to the spec-
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with �Emn = Em � En. The only assumption here is
that the width � is not a↵ected by the anharmonicity, in
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with their interactions I, and reads [18, 19]

Ĥ = ĤS + ĤB + ĤI , (4.11a)

ĤS =
p̂2

2
+

!2
0

2
x̂2 +

�

4!
x̂4, (4.11b)

ĤB =
X

s

⇣ ⇡̂2
s

2
+

!2
s

2
'̂2

s

⌘
, (4.11c)

ĤI = �x̂
X

s

gs'̂s + x̂2
X

s

g2
s

2!2
s

, (4.11d)

where '̂s, ⇡̂s denote the coordinate and the conjugate mo-
mentum of the heat-bath oscillator with index s, !s is its
eigenfrequency, and gs the coupling constant of its linear
coupling to the coordinate x. The quadratic term in ĤI

serves to exactly compensate the bath-induced (negative)
shift of the oscillator frequency squared,

�!2
0 =

X

s

g2
s

!2
s

, (4.12)

that would otherwise arise. This guarantees that !2
0 is

the physically measured natural frequency of the non-
interacting system oscillator with damping. Completing
the square, we can then write the interaction-plus-bath
part as

ĤB + ĤI =
X

s

✓
⇡̂2

s

2
+

!2
s

2

✓
'̂s �

gs

!2
s

x̂

◆2 ◆
. (4.13)

1. Heisenberg-Langevin equations of motion

Introducing a spectral function to describe the ensem-
ble of bath modes by

J(!) = ⇡
X

s

g2
s

!s

�
�(! � !s) � �(! + !s)

�
, (4.14)

which corresponds to a positive-definite spectral density,
one can eliminate the heat bath from the full set of
Heisenberg equations to derive the quantum equations
of motion of the Caldeira-Leggett model for a general
heat bath described by J(!), see e.g. Refs. [18, 19],

d

dt
x̂(t) = p̂(t), (4.15a)

d

dt
p̂(t) = �

Z
t

0
dt0 �(t � t0)p̂(t0) � V 0(x̂(t)) + ⇠̂(t),

(4.15b)

with an operator-valued fluctuating force

⇠̂(t) =
X

s

gs

⇣
'̂s(0) �

gs

!2
s

x̂(0)
⌘

cos(!st)

+
⇡̂s(0)

!s

sin(!st)

�

⌘ ⌘̂(t) � �(t)x̂(0). (4.16)

Here ⌘̂(t) is defined such that it only acts in the bath’s
Hilbert space, and we have furthermore introduced the
damping kernel

�(t) = 2

Z 1

0

d!

2⇡

J(!)

!
cos(!t). (4.17)

For the simplest case of an Ohmic bath with damping
constant � and a sharp cuto↵ at ! = ⇤, we have

J⇤(!) = 2�! ⇥(⇤ � |!|), (4.18)

and thus

�sharp(t) =
2�⇤

⇡

sin(⇤t)

⇤t
⇤!1
����! 2��(t). (4.19)

Note that the ‘transient term’ ��(t)x̂(0) in Eq. (4.16)
corresponds to a sudden initial shift in the thermal dis-
tribution when the particle is connected to the bath [18]
at t = 0. It can therefore safely be omitted in all calcu-
lations as long as we are interested in times ⇤t � 1, or
analogously for !Dt � 1 with �(t) = �!D exp{�!Dt} in
the Drude model for the bath [19].

Equations (4.15a), (4.15b) together are commonly re-
ferred to as the Heisenberg-Langevin equations (HLEs)
in the literature [55, 56]. They generalize the classi-
cal Langevin equations (3.1), (3.2) which describe the
dissipative dynamics of the expectation values of posi-
tion and momentum. The corresponding HLEs, on the
other hand, encode the full dynamics of the quantum-
mechanical operators in the Heisenberg picture [56]. A
common approximation is to replace the operators in the
HLEs by their expectation values and the quantum noise
by a classical colored-noise source, which results in the
so-called quasiclassical Langevin equations [18]. While
these can provide a reasonable description of nearly har-
monic systems [57, 58], other important general features
of the HLEs such as the Heisenberg uncertainty principle
for the operators x̂ and p̂ are lost. Finally, the classical
Langevin equations are obtained in the Markovian limit
in which all memory e↵ects are disregarded and the noise
becomes local in time (white noise limit).

As a first step towards a solution of the Heisenberg-
Langevin equations in the GSA, we assume that at the
initial time t = 0 the bath is in equilibrium, while the
system particle is described by some density matrix ⇢̂S

with Gaussian Wigner function as defined in Eq. (4.5),
i.e. we assume that the initial state is given by

⇢̂0 ⌘ ⇢̂(t0) = ⇢̂S ⌦ ⇢̂B . (4.20)

We defer the precise specification of the equilibrium den-
sity matrix ⇢̂B of the heat bath to Section IV B 2 where
we discuss some further subtleties associated with its
GSA description.

Our goal here is to formulate a Langevin-type equation
in the Gaussian state formalism, which preserves more of
the features of the HLE than the quasiclassical or classi-
cal approach, thus having extended applicability. First of
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anharmonic oscillator:
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classical time evolution according to Langevin-type equa-
tions of motion, the Gaussian state approximation (GSA)
introduced in Refs. [22, 23], where one additionally con-
siders the time evolution of two-point functions, and the
functional renormalization group (FRG) [24–32] which
we use here on the closed time path (CTP, also called
the Schwinger-Keldysh contour) [33–38], where we build
on the previous study of Ref. [33] and take a closer look
at the necessary causal structure of the regulators [37].

This paper is organized as follows. In Section II we
start by briefly summarizing the discretization scheme
and formulas needed for an exact calculation of the spec-
tral function. The following three Sections III to V de-
scribe in detail the three real-time calculation methods
for the spectral function, i.e. the classical-statistical sim-
ulations in Section III, the Gaussian state approximation
in Section IV, and the real-time FRG in Section V. Our
results from the di↵erent methods are presented, com-
pared and discussed in detail in Section VI, and our con-
clusions are given with a brief outlook on possible fur-
ther studies in Section VII. Several appendices are added
with further technical details and derivations especially
for the Heisenberg-Langevin equations of motion in the
GSA, and our regulators and truncation scheme for the
real-time FRG flows.

II. QUARTIC ANHARMONIC OSCILLATOR

We consider a single quartic anharmonic oscillator of
unit mass, defined by the Hamiltonian

Ĥ =
p̂2

2
+

!2
0

2
x̂2 +

�

4!
x̂4, (2.1)

in thermal contact with an external heat bath in equi-
librium. The heat bath is modeled as an ensemble of
harmonic oscillators, which is generally known as the
Caldeira-Leggett model in the literature [13–16].

The anharmonic oscillator can be interpreted as a self-
interacting single-component real scalar field theory in
(0 + 1) dimensions. It serves here as a benchmark sys-
tem for comparing di↵erent methods for calculating spec-
tral functions, since its spectrum can be numerically
determined with essentially arbitrary precision using a
discretization of the Schrödinger equation on a lattice.
Therefore, we will refer to the Schrödinger discretization
method as the exact-diagonalization solution.

The spectral function is defined as the real distribution
given by the thermal expectation value of the commuta-
tor of two Heisenberg (field) operators taken at unequal
times as follows [39, 40],

⇢(t � t0) = ih[x̂(t), x̂(t0)]i� , (2.2)

where the average is taken over the canonical ensem-
ble e��Ĥ/Z at temperature T = 1/� with the parti-

tion function Z = Tr e��Ĥ . To obtain a real distribu-
tion also in the frequency domain from the real and odd

⇢(�t) = �⇢(t), a factor of 2⇡i is commonly absorbed in
the definition of its Fourier transform,

⇢(!) ⌘
1

2⇡i

Z
dt ⇢(t) ei!t, (2.3)

which is then positive, ⇢(!) � 0, for ! > 0, also odd
⇢(�!) = �⇢(!), and normalized according to

Z 1

�1
d! !⇢(!) = 1. (2.4)

Without dissipation, this spectral function may be ex-
pressed as a sum over energy-eigenstates (see for example
Chapter 6.2 of Ref. [2]),

⇢(!) =
1

Z

X

m,n

e��En

⇣
�(! � Em + En)

� �(! + Em � En)
⌘

|hn|x̂|mi|
2. (2.5)

For the non-interacting theory (� = 0), i.e. the harmonic
oscillator with frequency !0, this reduces to

⇢0(!) = sgn(!) �(!2
� !2

0) =
1

⇡
Im GR

0 (!). (2.6)

When the free oscillator is coupled to an Ohmic heat
bath, the retarded Green function GR

0 acquires an addi-
tional damping term with constant � > 0, corresponding

to GR

0,�

�1
= �(!2

� !2
0 + i�!), and the spectral function

becomes

⇢0,�(!) =
1

⇡
Im GR

0,�
(!) (2.7)

=
1

⇡

�!

(!2 � !2
0)2 + �2!2

=

Z 1

�1
d!0!0⇢0(!

0)
1

⇡

�!

(!2 � !02)2 + �2!2
.

This of course describes the collisional broadening of the
free spectral function ⇢0(!) due to the Ohmic heat bath,
together with the frequency shift of the damped harmonic
oscillator from the poles in GR

0,�
(!) at

! = ±

q
!2

0 � �2/4 � i�/2. (2.8)

Applying the same collisional broadening to the spec-
tral function of the anharmonic oscillator in (2.5), one
analogously obtains

⇢�(!) =
1

Z

X

m,n

e��En |hn|x̂|mi|
2 2�Emn

⇥
1

⇡

�!

(!2 � �E2
mn

)2 + �2!2
, (2.9)

with �Emn = Em � En. The only assumption here is
that the width � is not a↵ected by the anharmonicity, in
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FIG. 1. Exemplary spectral function (in units of !
�2
0 ) from

exact diagonalization with damping according to Eq. (2.9), for
T/!0 = 1, �/!

3
0 = 4 and �/!0 = 0.03. The dashed vertical

lines mark the discrete energy di↵erences of the individual
transitions as obtained from the exact diagonalization.

particular, that it does not acquire a frequency depen-
dence for � 6= 0.1 Otherwise this is an exact expression
which we will use for our benchmark calculations.

To compute the spectral function of the anharmonic
oscillator with this constant broadening we discretize the
coordinate x on a su�ciently large interval and solve the
eigenvalue problem for the corresponding finite Hamilto-
nian matrix, obtained from (2.1) in coordinate space, by
exact diagonalization. We then verify that the interval is
large enough to cover the support of all relevant eigen-
functions at a given temperature and that the discretiza-
tion is fine enough to obtain precise results su�ciently
high up in the spectrum. For the parameters �, � and
T used in Sec. VI typical interval sizes are x 2 [�20, 20]
(in units of 1/

p
!0) with ⇠ 3000 grid points. An ex-

ample is shown in Figure 1 where we plot the spectral
function of the quartic anharmonic oscillator at a rather
large coupling of �/!3

0 = 4 for a temperature T/!0 = 1,
and with a comparatively small damping of �/!0 = 0.03,
from Eq. (2.9). In particular, the small damping allows
resolving the individual transitions: (a) between adja-
cent energy levels |ni and |n + 1i in the main peak which
are split up because they are no-longer equidistant when
� 6= 0, (b) transitions across three levels between |ni and
|n + 3i in the second sequence of peaks at higher fre-
quencies which are also due to the sizable � > 0, and (c)
analogous transitions across five levels |ni and |n + 5i,
here for frequencies above 8!0. The finite temperature

1
Although this is reasonable for small � in the Ohmic bath, it

will not hold in more realistic situations with ultraviolet cuto↵

!D as in the Drude model for the bath, where memory e↵ects

will necessarily occur on time scales shorter than !�1
D , inducing

a frequency dependent damping �(!) on scales ! ⇠ !D [16].

manifests itself in the contributions from the individual
transitions with n � 1 in each sequence which vanish for
T ! 0 where only the corresponding ground-state tran-
sitions |0i $ |1i, |3i, |5i, . . . , survive. In the results
section below we will implicitly assume all dimensionful
quantities to be quoted in the appropriate units of !0.

III. CLASSICAL SPECTRAL FUNCTIONS

In the classical-statistical limit [17–21], the full Heisen-
berg equations of motion are truncated by approximating
all quantum mechanical expectation values of products of
operators by the corresponding products of their expec-
tation values, i.e. hÔ1 . . . Ôni ! hÔ1i . . . hÔni, which can
be formalized via the real-time path integral formulation
for classical-statistical systems [14, 41, 42]. One then ar-
rives at the well-known Langevin equations of motion de-
scribing the purely classical dissipative dynamics [14, 15],

d

dt
X = P, (3.1)

d

dt
P = �!2

0X �
�

6
X3

� �P + ⇠(t), (3.2)

where X(t) and P (t) are the expectation values of x̂(t)
and p̂(t) in coherent states, and the stochastic fluctuating
force ⇠ is given by a Gaussian white noise with zero mean
and variance 2�T ,

h⇠(t)i� = 0, (3.3)

h⇠(t)⇠(t0)i� = 2�T �(t � t0). (3.4)

As mentioned in the previous section, the spectral func-
tion ⇢ can be defined as the thermal expectation value of
the commutator of two operators, cf. (2.2) for our oscilla-
tor here. It is related to the corresponding time-ordered
Green’s function GT via

GT(t, t0) = F (t, t0)�
i

2
⇢(t, t0)[⇥(t� t0)�⇥(t0 � t)], (3.5)

where F (t, t0) is the statistical two-point function de-
fined as the expectation value of the corresponding anti-
commutator [39, 40], i.e. here,

F (t, t0) =
1

2
h{x̂(t), x̂(t0)}i� . (3.6)

Since these equilibrium two-point functions all depend
only on the time di↵erence t�t0, their Fourier transforms
F (!), ⇢(!) depend on a single frequency !, where for
⇢(!) we use the definition in Eq. (2.3), but for the even
function F (�!) = F (!) the conventional form so that

F (t � t0) =

Z
d!

2⇡
F (!) e�i!(t�t

0). (3.7)

In thermal equilibrium one furthermore applies the peri-
odicity or Kubo-Martin-Schwinger (KMS) condition,

GT(t, t0) = GT(t0, t + i�), (3.8)
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0 ) from

exact diagonalization with damping according to Eq. (2.9), for
T/!0 = 1, �/!

3
0 = 4 and �/!0 = 0.03. The dashed vertical

lines mark the discrete energy di↵erences of the individual
transitions as obtained from the exact diagonalization.

particular, that it does not acquire a frequency depen-
dence for � 6= 0.1 Otherwise this is an exact expression
which we will use for our benchmark calculations.

To compute the spectral function of the anharmonic
oscillator with this constant broadening we discretize the
coordinate x on a su�ciently large interval and solve the
eigenvalue problem for the corresponding finite Hamilto-
nian matrix, obtained from (2.1) in coordinate space, by
exact diagonalization. We then verify that the interval is
large enough to cover the support of all relevant eigen-
functions at a given temperature and that the discretiza-
tion is fine enough to obtain precise results su�ciently
high up in the spectrum. For the parameters �, � and
T used in Sec. VI typical interval sizes are x 2 [�20, 20]
(in units of 1/

p
!0) with ⇠ 3000 grid points. An ex-

ample is shown in Figure 1 where we plot the spectral
function of the quartic anharmonic oscillator at a rather
large coupling of �/!3

0 = 4 for a temperature T/!0 = 1,
and with a comparatively small damping of �/!0 = 0.03,
from Eq. (2.9). In particular, the small damping allows
resolving the individual transitions: (a) between adja-
cent energy levels |ni and |n + 1i in the main peak which
are split up because they are no-longer equidistant when
� 6= 0, (b) transitions across three levels between |ni and
|n + 3i in the second sequence of peaks at higher fre-
quencies which are also due to the sizable � > 0, and (c)
analogous transitions across five levels |ni and |n + 5i,
here for frequencies above 8!0. The finite temperature

1
Although this is reasonable for small � in the Ohmic bath, it

will not hold in more realistic situations with ultraviolet cuto↵

!D as in the Drude model for the bath, where memory e↵ects

will necessarily occur on time scales shorter than !�1
D , inducing

a frequency dependent damping �(!) on scales ! ⇠ !D [16].

manifests itself in the contributions from the individual
transitions with n � 1 in each sequence which vanish for
T ! 0 where only the corresponding ground-state tran-
sitions |0i $ |1i, |3i, |5i, . . . , survive. In the results
section below we will implicitly assume all dimensionful
quantities to be quoted in the appropriate units of !0.

III. CLASSICAL SPECTRAL FUNCTIONS

In the classical-statistical limit [17–21], the full Heisen-
berg equations of motion are truncated by approximating
all quantum mechanical expectation values of products of
operators by the corresponding products of their expec-
tation values, i.e. hÔ1 . . . Ôni ! hÔ1i . . . hÔni, which can
be formalized via the real-time path integral formulation
for classical-statistical systems [14, 41, 42]. One then ar-
rives at the well-known Langevin equations of motion de-
scribing the purely classical dissipative dynamics [14, 15],

d

dt
X = P, (3.1)
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P = �!2
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� �P + ⇠(t), (3.2)

where X(t) and P (t) are the expectation values of x̂(t)
and p̂(t) in coherent states, and the stochastic fluctuating
force ⇠ is given by a Gaussian white noise with zero mean
and variance 2�T ,

h⇠(t)i� = 0, (3.3)

h⇠(t)⇠(t0)i� = 2�T �(t � t0). (3.4)

As mentioned in the previous section, the spectral func-
tion ⇢ can be defined as the thermal expectation value of
the commutator of two operators, cf. (2.2) for our oscilla-
tor here. It is related to the corresponding time-ordered
Green’s function GT via

GT(t, t0) = F (t, t0)�
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2
⇢(t, t0)[⇥(t� t0)�⇥(t0 � t)], (3.5)

where F (t, t0) is the statistical two-point function de-
fined as the expectation value of the corresponding anti-
commutator [39, 40], i.e. here,

F (t, t0) =
1

2
h{x̂(t), x̂(t0)}i� . (3.6)

Since these equilibrium two-point functions all depend
only on the time di↵erence t�t0, their Fourier transforms
F (!), ⇢(!) depend on a single frequency !, where for
⇢(!) we use the definition in Eq. (2.3), but for the even
function F (�!) = F (!) the conventional form so that

F (t � t0) =
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F (!) e�i!(t�t

0). (3.7)

In thermal equilibrium one furthermore applies the peri-
odicity or Kubo-Martin-Schwinger (KMS) condition,
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particular, that it does not acquire a frequency depen-
dence for � 6= 0.1 Otherwise this is an exact expression
which we will use for our benchmark calculations.

To compute the spectral function of the anharmonic
oscillator with this constant broadening we discretize the
coordinate x on a su�ciently large interval and solve the
eigenvalue problem for the corresponding finite Hamilto-
nian matrix, obtained from (2.1) in coordinate space, by
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are split up because they are no-longer equidistant when
� 6= 0, (b) transitions across three levels between |ni and
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quencies which are also due to the sizable � > 0, and (c)
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transitions with n � 1 in each sequence which vanish for
T ! 0 where only the corresponding ground-state tran-
sitions |0i $ |1i, |3i, |5i, . . . , survive. In the results
section below we will implicitly assume all dimensionful
quantities to be quoted in the appropriate units of !0.
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In the classical-statistical limit [17–21], the full Heisen-
berg equations of motion are truncated by approximating
all quantum mechanical expectation values of products of
operators by the corresponding products of their expec-
tation values, i.e. hÔ1 . . . Ôni ! hÔ1i . . . hÔni, which can
be formalized via the real-time path integral formulation
for classical-statistical systems [14, 41, 42]. One then ar-
rives at the well-known Langevin equations of motion de-
scribing the purely classical dissipative dynamics [14, 15],

d

dt
X = P, (3.1)

d

dt
P = �!2

0X �
�

6
X3

� �P + ⇠(t), (3.2)

where X(t) and P (t) are the expectation values of x̂(t)
and p̂(t) in coherent states, and the stochastic fluctuating
force ⇠ is given by a Gaussian white noise with zero mean
and variance 2�T ,

h⇠(t)i� = 0, (3.3)

h⇠(t)⇠(t0)i� = 2�T �(t � t0). (3.4)

As mentioned in the previous section, the spectral func-
tion ⇢ can be defined as the thermal expectation value of
the commutator of two operators, cf. (2.2) for our oscilla-
tor here. It is related to the corresponding time-ordered
Green’s function GT via

GT(t, t0) = F (t, t0)�
i

2
⇢(t, t0)[⇥(t� t0)�⇥(t0 � t)], (3.5)

where F (t, t0) is the statistical two-point function de-
fined as the expectation value of the corresponding anti-
commutator [39, 40], i.e. here,

F (t, t0) =
1

2
h{x̂(t), x̂(t0)}i� . (3.6)

Since these equilibrium two-point functions all depend
only on the time di↵erence t�t0, their Fourier transforms
F (!), ⇢(!) depend on a single frequency !, where for
⇢(!) we use the definition in Eq. (2.3), but for the even
function F (�!) = F (!) the conventional form so that

F (t � t0) =

Z
d!

2⇡
F (!) e�i!(t�t

0). (3.7)

In thermal equilibrium one furthermore applies the peri-
odicity or Kubo-Martin-Schwinger (KMS) condition,

GT(t, t0) = GT(t0, t + i�), (3.8)

• classical SF from FDR:
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in the decomposition of Eq. (3.5), in order to derive the
fluctuation-dissipation relation (FDR), e.g. see [43],

F (!) =
�
2nB(!) + 1

�
⇡⇢(!)

= coth

✓
!

2T

◆
⇡⇢(!), (3.9)

where we have used the special convention for the defini-
tion of ⇢(!) in (2.3), and nB(!) = 1/(e�!

�1). In the clas-
sical limit T � ! we approximate coth(!/2T ) ⇡ 2T/!.
The classical FDR from (3.9) then relates the correspond-
ing classical two-point functions,

Fc(!) =
T

!
2⇡⇢c(!). (3.10)

In the time domain, undoing the Fourier transform, this
reads

⇢c(t � t0) = �
1

T
@tFc(t � t0). (3.11)

Furthermore, because the statistical two-point function
is in the classical limit given by the purely thermal cor-
relation function

Fc(t � t0) = hX(t)X(t0)i� � hX(t)i�hX(t0)i� , (3.12)

the spectral function (3.11) can be written as [20]

⇢c(t � t0) = �
1

2T

⌦
P (t)X(t0) � X(t)P (t0)

↵
�
, (3.13)

where P = Ẋ is the conjugate momentum which has zero
mean in the thermal ensemble, hP (t)i

�
= 0. Because of

time-reversal invariance of the thermal expectation val-
ues, the two terms in (3.13) are the same, and the explicit
anti-symmetrization in this definition of ⇢c(�t) = �⇢c(t)
can be introduced without loss. Evaluating Eq. (3.13)
provides a straightforward way of calculating the spec-
tral function in the classical-statistical limit [17–21].

IV. GAUSSIAN-STATE APPROXIMATION

A. Closed system

Before considering the coupling to an environment,
we first briefly discuss the Gaussian state approxima-
tion (GSA) for a closed system. The GSA is obtained
by truncating the full Heisenberg equations of motion

d

dt
Ô = i

h
Ĥ, Ô

i
(4.1)

for the canonically conjugate Heisenberg operators x̂(t)
and p̂(t):

d

dt
x̂ = p̂, (4.2a)

d

dt
p̂ = �!2

0 x̂ �
�

6
x̂3

⌘ �V 0(x̂). (4.2b)

The equations of motion for the expectation values can
be obtained by averaging equations (4.2a) and (4.2b) over
some density operator ⇢̂ describing the mixed initial state
of the ensemble. These equations then contain expecta-
tion values of the form hx̂2(t)i and hx̂3(t)i, whose evolu-
tion equations in turn include expectation values of even
higher-order combinations of x̂ and p̂. This leads to an
infinite hierarchy of equations that cannot be solved ana-
lytically or numerically without further approximations.
Moreover, to deal with expectation values of products of
x̂ and p̂ we follow Ref. [23] and introduce the Wigner
transform of the density matrix in position eigenstates,

w(x, p) =

Z
dy e�ipy

hx + y/2|⇢̂|x � y/2i, (4.3)

which allows expressing the expectation values of sym-
metrized products of x̂ and p̂ in the form of classical
phase space integrals, such as e.g.

1

2
hx̂p̂ + p̂x̂i =

Z
dx dp

2⇡
x p w(x, p). (4.4)

To truncate the infinite set of equations given by (4.2a)
and (4.2b), the density matrix is itself approximated by a
Gaussian, and can therefore be characterized by a Gaus-
sian Wigner function likewise [22],

w(x, p) = (4.5)

N exp

(
�

1

2

✓
x � X
p � P

◆T✓
�xx �xp

�xp �pp

◆�1✓
x � X
p � P

◆)
.

Here, the parameters X ⌘ hx̂i, P ⌘ hp̂i describe the
center of the Gaussian wave packet in coordinate and
momentum space. As such they are not necessarily the
expectation values in coherent states yet, here. The sym-
metrized connected expectation values

�ab ⌘ hhâb̂ii ⌘ hâb̂ + b̂âi/2 � hâihb̂i

characterize the dispersions of the wave packet, and N is
a normalization factor.

Equations (4.2a) and (4.2b) are then averaged over the
Gaussian state with the Wigner function (4.5). Applying
Wick’s theorem as needed, one then obtains

d

dt
X = P, (4.6a)

d

dt
P = �!2

0X �
�

6

⇣
X3 + 3X�xx

⌘
. (4.6b)

To evolve the dispersions �xx, �xp, and �pp, the Heisen-
berg equations for the corresponding symmetrized oper-
ator products are employed

d

dt
x̂2 = x̂p̂ + p̂x̂, (4.7a)

d

dt

x̂p̂ + p̂x̂

2
= p̂2

� !2
0 x̂2

�
�

6
x̂4, (4.7b)

d

dt
p̂2 = �!2

0 (p̂x̂ + x̂p̂) �
�

6

⇣
p̂x̂3 + x̂3p̂

⌘
. (4.7c)
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we first briefly discuss the Gaussian state approxima-
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by truncating the full Heisenberg equations of motion
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of the ensemble. These equations then contain expecta-
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tion equations in turn include expectation values of even
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which allows expressing the expectation values of sym-
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phase space integrals, such as e.g.
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hx̂p̂ + p̂x̂i =

Z
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momentum space. As such they are not necessarily the
expectation values in coherent states yet, here. The sym-
metrized connected expectation values
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12 September 2022  |  Lorenz von Smekal  |  p.

Dissipative Quantum Systems

9

G.-L. Ingold, Lect. Notes Phys., 611 (2002) 1 - 53• Heisenberg-Langevin:

6

that would otherwise arise. This guarantees that !2
0 is

the physically measured natural frequency of the non-
interacting system oscillator with damping. Completing
the square, we can then write the interaction-plus-bath
part as

ĤB + ĤI =
X

s

✓
⇡̂2

s

2
+

!2
s

2

✓
'̂s �

gs

!2
s

x̂

◆2 ◆
. (4.13)

1. Heisenberg-Langevin equations of motion

Introducing a spectral function to describe the ensem-
ble of bath modes by

J(!) = ⇡
X

s

g2
s

!s

�
�(! � !s) � �(! + !s)

�
, (4.14)

which corresponds to a positive-definite spectral density,
one can eliminate the heat bath from the full set of
Heisenberg equations to derive the quantum equations
of motion of the Caldeira-Leggett model for a general
heat bath described by J(!), see e.g. Refs. [15, 16],

d

dt
x̂(t) = p̂(t), (4.15a)

d

dt
p̂(t) = �

Z
t

0
dt0 �(t � t0)p̂(t0) � V 0(x̂(t)) + ⇠̂(t),

(4.15b)

with an operator-valued fluctuating force

⇠̂(t) =
X

s

gs

⇣
'̂s(0) �

gs

!2
s

x̂(0)
⌘

cos(!st)

+
⇡̂s(0)

!s

sin(!st)

�

⌘ ⌘̂(t) � �(t)x̂(0). (4.16)

Here ⌘̂(t) is defined such that it only acts in the bath’s
Hilbert space, and we have furthermore introduced the
damping kernel

�(t) = 2

Z 1

0

d!

2⇡

J(!)

!
cos(!t). (4.17)

For the simplest case of an Ohmic bath with damping
constant � and a sharp cuto↵ at ! = ⇤, we have

J⇤(!) = 2�! ⇥(⇤ � |!|), (4.18)

and thus

�sharp(t) =
2�⇤

⇡

sin(⇤t)

⇤t
⇤!1
����! 2��(t). (4.19)

Note that the ‘transient term’ ��(t)x̂(0) in Eq. (4.16)
corresponds to a sudden initial shift in the thermal dis-
tribution when the particle is connected to the bath [15]

at t = 0. It can therefore safely be omitted in all calcu-
lations as long as we are interested in times ⇤t � 1, or
analogously for !Dt � 1 with �(t) = �!D exp{�!Dt} in
the Drude model for the bath [16].

Equations (4.15a), (4.15b) together are commonly re-
ferred to as the Heisenberg-Langevin equations (HLEs)
in the literature [52, 53]. They generalize the classi-
cal Langevin equations (3.1), (3.2) which describe the
dissipative dynamics of the expectation values of posi-
tion and momentum. The corresponding HLEs, on the
other hand, encode the full dynamics of the quantum-
mechanical operators in the Heisenberg picture [53]. A
common approximation is to replace the operators in the
HLEs by their expectation values and the quantum noise
by a classical colored-noise source, which results in the
so-called quasiclassical Langevin equations [15]. While
these can provide a reasonable description of nearly har-
monic systems [54, 55], other important general features
of the HLEs such as the Heisenberg uncertainty principle
for the operators x̂ and p̂ are lost. Finally, the classical
Langevin equations are obtained in the Markovian limit
in which all memory e↵ects are disregarded and the noise
becomes local in time (white noise limit).

As a first step towards a solution of the Heisenberg-
Langevin equations in the GSA, we assume that at the
initial time t = 0 the bath is in equilibrium, while the
system particle is described by some density matrix ⇢̂S

with Gaussian Wigner function as defined in Eq. (4.5),
i.e. we assume that the initial state is given by

⇢̂0 ⌘ ⇢̂(t0) = ⇢̂S ⌦ ⇢̂B . (4.20)

We defer the precise specification of the equilibrium den-
sity matrix ⇢̂B of the heat bath to Section IV B 2 where
we discuss some further subtleties associated with its
GSA description.

Our goal here is to formulate a Langevin-type equation
in the Gaussian state formalism, which preserves more of
the features of the HLE than the quasiclassical or classi-
cal approach, thus having extended applicability. First of
all, we consider the most general Gaussian Wigner func-
tion W that describes the entire system of oscillator and
heat bath,

W (~⇣, t) = N exp

⇢
�

1

2
(~⇣ � ~Z(t))T ⌃�1(t)(~⇣ � ~Z(t))

�
,

(4.21)

where the vector ~⇣ = (x, p, ..., 's, ⇡s, ...) 2 � denotes a
point in the full phase space � of the system, ~Z(t) =
(X(t), P (t), ..., �s(t), ⇧s(t), ...) are the expectation values
of the corresponding Heisenberg operators, and

⌃ =

0

BBBBBBBB@

�xx �xp ... �x's �x⇡s ...
�xp �pp ... �p's �p⇡s ...
...

...
. . .

�'sx �'sp �'s's �'s⇡s

�⇡sx �⇡sp �'s⇡s �⇡s⇡s

...
...

. . .

1

CCCCCCCCA
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one can eliminate the heat bath from the full set of
Heisenberg equations to derive the quantum equations
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heat bath described by J(!), see e.g. Refs. [15, 16],
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the Drude model for the bath [16].

Equations (4.15a), (4.15b) together are commonly re-
ferred to as the Heisenberg-Langevin equations (HLEs)
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with an operator-valued fluctuating force

⇠̂(t) =
X

s

gs

⇣
'̂s(0) �

gs

!2
s

x̂(0)
⌘

cos(!st)

+
⇡̂s(0)

!s

sin(!st)

�

⌘ ⌘̂(t) � �(t)x̂(0). (4.16)

Here ⌘̂(t) is defined such that it only acts in the bath’s
Hilbert space, and we have furthermore introduced the
damping kernel

�(t) = 2

Z 1

0

d!

2⇡

J(!)

!
cos(!t). (4.17)

For the simplest case of an Ohmic bath with damping
constant � and a sharp cuto↵ at ! = ⇤, we have

J⇤(!) = 2�! ⇥(⇤ � |!|), (4.18)

and thus

�sharp(t) =
2�⇤

⇡

sin(⇤t)

⇤t
⇤!1
����! 2��(t). (4.19)

Note that the ‘transient term’ ��(t)x̂(0) in Eq. (4.16)
corresponds to a sudden initial shift in the thermal dis-
tribution when the particle is connected to the bath [15]

at t = 0. It can therefore safely be omitted in all calcu-
lations as long as we are interested in times ⇤t � 1, or
analogously for !Dt � 1 with �(t) = �!D exp{�!Dt} in
the Drude model for the bath [16].

Equations (4.15a), (4.15b) together are commonly re-
ferred to as the Heisenberg-Langevin equations (HLEs)
in the literature [52, 53]. They generalize the classi-
cal Langevin equations (3.1), (3.2) which describe the
dissipative dynamics of the expectation values of posi-
tion and momentum. The corresponding HLEs, on the
other hand, encode the full dynamics of the quantum-
mechanical operators in the Heisenberg picture [53]. A
common approximation is to replace the operators in the
HLEs by their expectation values and the quantum noise
by a classical colored-noise source, which results in the
so-called quasiclassical Langevin equations [15]. While
these can provide a reasonable description of nearly har-
monic systems [54, 55], other important general features
of the HLEs such as the Heisenberg uncertainty principle
for the operators x̂ and p̂ are lost. Finally, the classical
Langevin equations are obtained in the Markovian limit
in which all memory e↵ects are disregarded and the noise
becomes local in time (white noise limit).

As a first step towards a solution of the Heisenberg-
Langevin equations in the GSA, we assume that at the
initial time t = 0 the bath is in equilibrium, while the
system particle is described by some density matrix ⇢̂S

with Gaussian Wigner function as defined in Eq. (4.5),
i.e. we assume that the initial state is given by

⇢̂0 ⌘ ⇢̂(t0) = ⇢̂S ⌦ ⇢̂B . (4.20)

We defer the precise specification of the equilibrium den-
sity matrix ⇢̂B of the heat bath to Section IV B 2 where
we discuss some further subtleties associated with its
GSA description.

Our goal here is to formulate a Langevin-type equation
in the Gaussian state formalism, which preserves more of
the features of the HLE than the quasiclassical or classi-
cal approach, thus having extended applicability. First of
all, we consider the most general Gaussian Wigner func-
tion W that describes the entire system of oscillator and
heat bath,

W (~⇣, t) = N exp

⇢
�

1

2
(~⇣ � ~Z(t))T ⌃�1(t)(~⇣ � ~Z(t))

�
,

(4.21)

where the vector ~⇣ = (x, p, ..., 's, ⇡s, ...) 2 � denotes a
point in the full phase space � of the system, ~Z(t) =
(X(t), P (t), ..., �s(t), ⇧s(t), ...) are the expectation values
of the corresponding Heisenberg operators, and

⌃ =

0

BBBBBBBB@
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We therefore denote these coherent states simply by the
two real phase-space variables in the following, i.e.

|X, P i ⌘ |↵i. (4.28)

The coherent states of the harmonic oscillator have mini-
mal uncertainty with

�0
xx

⌘ hx̂2
i↵ � hx̂i

2
↵

=
1

2!0
, (4.29a)

�0
pp

⌘ hp̂2
i↵ � hp̂i

2
↵

=
!0

2
, (4.29b)

�0
xp

⌘
1

2
hx̂p̂ + p̂x̂i↵ � hx̂i↵hp̂i↵ = 0. (4.29c)

On the other hand, for the mixed equilibrium state in the
canonical ensemble from (4.24) at temperature T = 1/�,
with hÔi� = Tr Ô⇢̂HO, one has hx̂i� = 0 and hp̂i� = 0,
and the full variances �(�) in the thermal state are readily
computed (or read o↵ from (4.25)) as,

�(�)
xx

= hx̂2
i� =

1

!0

⇣
nB(!0) +

1

2

⌘
, (4.30a)

�(�)
pp

= hp̂2
i� = !0

⇣
nB(!0) +

1

2

⌘
, (4.30b)

�(�)
xp

=
1

2
hx̂p̂ + p̂x̂i� = 0, (4.30c)

where nB(!0) = 1/(exp(�!0) � 1) is the Bose-Einstein
distribution. We therefore see here explicitly that the

full thermal widths �(�)
xx and �(�)

pp of the oscillator’s phase-
space variables can be split into purely thermal or ‘clas-
sical’ parts �c

xx
, �c

pp
plus the purely ‘quantum’ parts �0

xx
,

�0
pp

from minimal uncertainty, as noted in Ref. [23], i.e.

�(�)
xx

= �c

xx
+ �0

xx
, �(�)

pp
= �c

pp
+ �0

pp
, (4.31)

with

�c

xx
= nB(!0)/!0, �c

pp
= !0 nB(!0). (4.32)

The minimal-uncertainty variances are already included
in each coherent pure state. To define a mixed Gaussian
state ⇢̂G with the variances of the thermal equilibrium
ensemble, we therefore only include the classical thermal
widths of (4.32) in the incoherent sum [23], defining

⇢̂G = (4.33)

Ñ

Z
dX dP exp

(
�

X2

2�c
xx

�
P 2

2�c
pp

)
|X, P ihX, P |,

with normalization factor Ñ , ensuring that Tr ⇢̂G = 1,
and which is clearly of the form (4.10). The index G
here emphasizes that such a mixed Gaussian state is in
general not equal to the mixed thermal quantum state ⇢̂Q

in the canonical ensemble.2 For the harmonic oscillator
in Eq. (4.24), however, we have ⇢̂HO = ⇢̂G.

2
While every coherent state is Gaussian, the converse is not true.

There are pure states that are Gaussian, by the definition in

Eq. (4.5), which do not correspond to any coherent state (4.26)

and are therefore not contained in the incoherent sum (4.33).

One may directly verify that such a thermal state is
indeed a stationary solution of the harmonic Gaussian
equations of motion (4.6a), (4.6b) and (4.8a) – (4.8c). In
general, it maps Gaussian states to Gaussian states in the
Hilbert space, as required. This finishes the discussion of
the Gaussian thermal state of a single harmonic oscil-
lator, and we now continue to model the entire system
consisting of our anharmonic oscillator coupled to an en-
semble of harmonic oscillators, in mixed Gaussian states
with thermal variances as described here, reintroducing
the heat-bath index s.

3. Heisenberg-Langevin equations in the GSA

We now turn to the form of the Heisenberg-Langevin
equations of motion (4.15a), (4.15b) evaluated in the
Gaussian approximation. Steps (i) and (ii) from the
quantum equations of motion (4.15a), (4.15b) with the
Ohmic bath (4.18), on time scales ⇤t � 1 for a su�-
ciently large cuto↵ ⇤, cf. (4.19), lead to

d

dt
X = P, (4.34a)

d

dt
P = �

✓
!2

0 +
�

2
�xx

◆
X �

�

6
X3

� �P + ⇠(t),

(4.34b)

for the center (X, P ). The derivation is the same as the
one for the classical Langevin equations of motion, except
for the application of Wick’s theorem to the 3-point cor-
relator hx̂3(t)i. The fluctuating force term ⇠(t) is given
by the expectation value of the quantum stochastic force
⇠̂(t) from (4.16), where the transient initial shift vanishes
if the expectation value of x̂(0) does,

⇠(t) ⌘ h⇠̂(t)i = h⌘̂(t)i � �(t)hx̂(0)i (4.35)

=
X

s

gs


�s(0) cos(!st) +

⇧s(0)

!s

sin(!st)

�
.

It thus only depends on the initial conditions of the bath
oscillators’ phase-space variables �s(0), ⇧s(0). Although
no-longer operator valued and hence classical, this GSA
noise ⇠(t) is colored in general, however, as we will discuss
in Subsection IVB 5 below.

For the Gaussian widths, the analogous averaging of
step (i) leads to

d

dt
�xx = 2�xp, (4.36a)

d

dt
�xp = �pp � �xxC(X, �xx) � ��xp (4.36b)

+ hhx̂(t)⌘̂(t)ii � 2��(t)�xx(0),

d

dt
�pp = �2�xpC(X, �xx) � 2��pp (4.36c)

+ 2hhp̂(t)⌘̂(t)ii � 4��(t)�xp(0).
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beforehand. It can be obtained by maximizing the von
Neumann entropy at fixed energy.

For a mixed Gaussian state of our single bosonic degree
of freedom the von Neumann entropy S = �Tr(⇢̂ ln ⇢̂) can
be written in terms of the symplectic eigenvalue

f =
q

�xx�pp � �2
xp

of the correlation matrix

⌃ =

✓
�xx �xp

�xp �pp

◆
, (4.44)

which is related to the pair of eigenvalues �± = ±if of
⌃⌦, where ⌦ is the symplectic matrix for the canonically
conjugate variables x and p. Thermal equilibrium implies
�xp = 0 and we thus have f =

p
�xx�pp.

The von Neumann entropy can then be written as

S =
�
f + 1

2

�
ln
�
f + 1

2

�
�
�
f �

1
2

�
ln
�
f �

1
2

�
. (4.45)

Because we also have X = 0 and P = 0 in thermal equi-
librium, the expectation value of energy in the Gaussian
state reduces to

E =
1

2
�pp +

!2
0

2
�xx +

�

8
�2

xx
. (4.46)

We can thus express �pp in terms of E and �xx and write

f2 = 2E�xx � !2
0�2

xx
�

�

4
�3

xx
. (4.47)

Because the entropy (4.45) increases monotonically with
f , it reaches its maximum when f does, which is the case
when @f2/@�xx = 0. This yields

E = !2
0�xx +

3�

8
�2

xx
, (4.48)

f2 =

✓
!2

0 +
�

2
�xx

◆
�2

xx
. (4.49)

The temperature T is now introduced using

T =
@E

@S
=

@E

@f

✓
@S

@f

◆�1

=
@E

@�xx

✓
@f

@�xx

◆�1✓@S

@f

◆�1

.

Working out the partial derivatives with respect to f and
�xx, we thus obtain

T =

r
!2

0 +
�

2
�xx

0

B@ln
�xx

q
!2

0 + �

2 �xx + 1
2

�xx

q
!2

0 + �

2 �xx �
1
2

1

CA

�1

=
p

C0

 
ln

�
2C0 � �!2

0

�p
C0 + 1

2��
2C0 � �!2

0

�p
C0 �

1
2�

!�1

, (4.50)

with C0 = !2
0 + �

2 �xx in the interacting case for � 6= 0.
Before we start a simulation at a given the temperature,
we can therefore calculate C0 numerically via (4.50). In

the static approximation this is then fixed, and so is �xx

in the HLEs (4.34a) and (4.34b) for X and P .
The underlying initial conditions for the widths �'s's

and �⇡s⇡s of the heat-bath oscillators in Eq. (4.23)
correspond to the thermal harmonic-oscillator variances
Eqs. (4.30a) – (4.30c), with additional o↵-diagonal cou-
plings �x's between system and bath suddenly switched
on at t = 0 as explained in more detail in Appendix A1 b.

One crucial point left to mention here, however, is that
beyond the static approximation, the widths �xx, �pp, �xp

actually do evolve non-trivially in time, even in the adia-
batic approximation, when C(t) is assumed to vary slowly
in time. This is because the relaxation time for the
widths of the system particle to approach their stationary
limits is given by 1/�, and this relaxation time is in gen-
eral not negligible compared to the characteristic time
scale �t of the variations �C(t). Assuming, in the adi-
abatic approximation, that the heat-bath dof’s are fast
compared to this characteristic time �t is totally di↵erent
from assuming that 1/� is. In fact, for small damping �
we expect to have 1/� � �t � 2⇡/!s for the relevant
high frequencies that dominate the Ohmic bath. We will
further comment on this in Section IVB 6 below, after
elaborating on the colored noise needed in either case.

5. Colored Noise

Step (iii) in our approach to modelling the heat bath
in the GSA by the quantum mechanical expectation
value ⇠(t) = h⇠̂(t)i of the stochastic quantum force from
Eq. (4.35) requires specifying initial conditions for the
thermal correlations of the bath oscillator expectation
values �s = h'̂si↵ and ⇧s = h⇡̂si↵ in coherent states. In
particular, the discussion leading to (4.33) implies that
their initial thermal variances are given by the classical
variances (4.32) for each heat-bath oscillator,

h�s(0)�s0(0)i� = �c

's's0
(0) = �ss0 nB(!s)/!s ,

h⇧s(0)⇧s0(0)i� = �c

⇡s⇡s0
(0) = �ss0 !s nB(!s) ,

h�s(0)⇧s0(0)i� = �c

's⇡s0
(0) = 0 . (4.51)

Eq. (4.35) then yields

h⇠(t)⇠(t0)i� =
X

s

g2
s

!s

nB(!s) cos
�
!s(t � t0)

�
. (4.52)

With the definition of the spectral density of the heat
bath in Eq. (4.14) we can thus finally represent the
unequal-time correlations of ⇠(t) in the form,

h⇠(t)⇠(t0)i� =

Z 1

0

d!

⇡
J(!) nB(!) cos(!(t � t0)) (4.53)

for an arbitrary spectral distribution J(!) of oscillators in
the bath. For the Ohmic bath (4.18) in the limit ⇤ ! 1

- Ohmic bath: 

6

that would otherwise arise. This guarantees that !2
0 is

the physically measured natural frequency of the non-
interacting system oscillator with damping. Completing
the square, we can then write the interaction-plus-bath
part as

ĤB + ĤI =
X

s

✓
⇡̂2

s

2
+

!2
s

2

✓
'̂s �

gs

!2
s

x̂

◆2 ◆
. (4.13)

1. Heisenberg-Langevin equations of motion

Introducing a spectral function to describe the ensem-
ble of bath modes by

J(!) = ⇡
X

s

g2
s

!s

�
�(! � !s) � �(! + !s)

�
, (4.14)

which corresponds to a positive-definite spectral density,
one can eliminate the heat bath from the full set of
Heisenberg equations to derive the quantum equations
of motion of the Caldeira-Leggett model for a general
heat bath described by J(!), see e.g. Refs. [15, 16],

d

dt
x̂(t) = p̂(t), (4.15a)

d

dt
p̂(t) = �

Z
t

0
dt0 �(t � t0)p̂(t0) � V 0(x̂(t)) + ⇠̂(t),

(4.15b)

with an operator-valued fluctuating force

⇠̂(t) =
X

s

gs

⇣
'̂s(0) �

gs

!2
s

x̂(0)
⌘

cos(!st)

+
⇡̂s(0)

!s

sin(!st)

�

⌘ ⌘̂(t) � �(t)x̂(0). (4.16)

Here ⌘̂(t) is defined such that it only acts in the bath’s
Hilbert space, and we have furthermore introduced the
damping kernel

�(t) = 2

Z 1

0

d!

2⇡

J(!)

!
cos(!t). (4.17)

For the simplest case of an Ohmic bath with damping
constant � and a sharp cuto↵ at ! = ⇤, we have

J⇤(!) = 2�! ⇥(⇤ � |!|), (4.18)

and thus

�sharp(t) =
2�⇤

⇡

sin(⇤t)

⇤t
⇤!1
����! 2��(t). (4.19)

Note that the ‘transient term’ ��(t)x̂(0) in Eq. (4.16)
corresponds to a sudden initial shift in the thermal dis-
tribution when the particle is connected to the bath [15]

at t = 0. It can therefore safely be omitted in all calcu-
lations as long as we are interested in times ⇤t � 1, or
analogously for !Dt � 1 with �(t) = �!D exp{�!Dt} in
the Drude model for the bath [16].

Equations (4.15a), (4.15b) together are commonly re-
ferred to as the Heisenberg-Langevin equations (HLEs)
in the literature [52, 53]. They generalize the classi-
cal Langevin equations (3.1), (3.2) which describe the
dissipative dynamics of the expectation values of posi-
tion and momentum. The corresponding HLEs, on the
other hand, encode the full dynamics of the quantum-
mechanical operators in the Heisenberg picture [53]. A
common approximation is to replace the operators in the
HLEs by their expectation values and the quantum noise
by a classical colored-noise source, which results in the
so-called quasiclassical Langevin equations [15]. While
these can provide a reasonable description of nearly har-
monic systems [54, 55], other important general features
of the HLEs such as the Heisenberg uncertainty principle
for the operators x̂ and p̂ are lost. Finally, the classical
Langevin equations are obtained in the Markovian limit
in which all memory e↵ects are disregarded and the noise
becomes local in time (white noise limit).

As a first step towards a solution of the Heisenberg-
Langevin equations in the GSA, we assume that at the
initial time t = 0 the bath is in equilibrium, while the
system particle is described by some density matrix ⇢̂S

with Gaussian Wigner function as defined in Eq. (4.5),
i.e. we assume that the initial state is given by

⇢̂0 ⌘ ⇢̂(t0) = ⇢̂S ⌦ ⇢̂B . (4.20)

We defer the precise specification of the equilibrium den-
sity matrix ⇢̂B of the heat bath to Section IV B 2 where
we discuss some further subtleties associated with its
GSA description.

Our goal here is to formulate a Langevin-type equation
in the Gaussian state formalism, which preserves more of
the features of the HLE than the quasiclassical or classi-
cal approach, thus having extended applicability. First of
all, we consider the most general Gaussian Wigner func-
tion W that describes the entire system of oscillator and
heat bath,

W (~⇣, t) = N exp

⇢
�

1

2
(~⇣ � ~Z(t))T ⌃�1(t)(~⇣ � ~Z(t))

�
,

(4.21)

where the vector ~⇣ = (x, p, ..., 's, ⇡s, ...) 2 � denotes a
point in the full phase space � of the system, ~Z(t) =
(X(t), P (t), ..., �s(t), ⇧s(t), ...) are the expectation values
of the corresponding Heisenberg operators, and

⌃ =

0
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the integral can be solved analytically, yielding

h⇠(t)⇠(t0)i� = �T

✓
�

⇡T

sinh2(⇡T (t � t0))
(4.54)

+
1

⇡T (t � t0)2

◆

in the time domain, where the terms in brackets approach
2�(t � t0) for T ! 1, i.e. the classical-statistical limit
with a noise term ⇠(t) in the equations of motion which is
Gaussian and local in time [20]. For numerical purposes
and completeness, in frequency space the noise in (4.54)
corresponds to

h|⇠(!)|2i� = h⇠(�!)⇠(!)i� (4.55)

= �T
⇣
1 +

!

T
nB(!)

⌘
,

where the white-noise limit is recovered from the classical
Rayleigh-Jeans law with nB(!) ! T/! at high temper-
atures. Therefore, ⇠(t) represents a ‘colored’ noise term
with a Gaussian autocorrelation, but with the quantum
contribution subtracted, in the sense that ⇠(t) vanishes
identically at T = 0. This is due to the fact that in our
framework, zero-point fluctuations are already naturally
taken into account by the Gaussian widths, �0

xx
, �0

xp
, �0

pp

and therefore do not contribute to the fluctuation of the
mean coordinate and momentum.

6. Extracting the Gaussian spectral function

In order to extend the definition of the (anti-
symmetrized) classical-statistical spectral function in
Eq. (3.13) to the correct quantum spectral function
that respects the fluctuation-dissipation relation with the
colored-noise distribution of the heat bath in the GSA,
first note that the FDR (3.9) must be replaced by

iF (!) =
K(!)

2�!
2⇡i ⇢(!), (4.56)

for a general heat-bath kernel K(!) = h|⇠(!)|2i� . Now
we use the definition (3.10) of the classical-statistical
spectral function to arrive at a balance-type equation

⇢(!) =
2�T

K(!)
⇢c(!) =

2

1 + !

T
nB(!)

⇢c(!), (4.57)

which allows us to use the classical-statistical extraction
scheme for the spectral function, i.e. using Eq. (3.13) in
the GSA as well, and just rescale the result to obtain the
corresponding quantum spectral function.

Having defined the extraction scheme of the spectral
function in the GSA, we can further elaborate on the
problems that occur when we keep the full time evo-
lution of the Gaussian widths (4.38a) – (4.38c). Since
the GSA is only an approximation to the infinite hier-
archy of the time evolution of higher moments of the

(in principle exact) Wigner quasi-probability distribution
w(x, p) in phase space, to quadratic order [22], one can
no-longer guarantee that classical and quantum dynamics
are strictly divided into the evolution of the expectation
values X, P , and the second order moments �xx, �pp, �xp,
respectively. Therefore some classical contributions to
the spectral function are also contained in the time evo-
lution of the widths. Extracting the spectral function
näıvely as in (4.57) is therefore not su�cient, if the quan-
tum corrections are highly non-Gaussian by themselves,
when the full time evolution of the widths is included. In
this case, one would actually need some improved pro-
cedure to correctly extract these non-Gaussian contribu-
tions contained in the second-order unequal-time corre-
lators. This undesirable e↵ect is explicitly demonstrated
for su�ciently large anharmonicity � in Section VI.

In summary, a complete simulation eventually com-
prises the following steps:

(i) Generate a random realization of the stochastic
force ⇠(t) distributed according to the colored noise
correlations in (4.54).

(ii) Integrate the Gaussian equations of motion (4.34a),
(4.34b) and (4.38a) – (4.38c) numerically.

(iii) Calculate the spectral function from the particular
time history of the expectation values via (4.57).

(iv) Finally, repeat steps 1 through 3 and average the
spectral function over all realizations of the stochas-
tic force to obtain the thermal equilibrium spectral
function.

More details of steps (i) and (ii) are described in Appen-
dices A 2 and A3, respectively.

V. REAL-TIME FRG

As another possibility for real-time calculations we
have also explored the functional renormalization group
(FRG) [24–26] on the closed time path [35]. In the FRG
one aims to compute the e↵ective action �, which is
obtained from the generating functional Z of the the-
ory [3]. Assuming the so-called e↵ective average action
�⇤ is known at some initial energy-scale ⇤ in the ultra-
violet (UV), the essential idea is to construct the full �
step-by-step by ‘interpolating’ �k from the microscopic
UV-action �⇤ to the macroscopic action � in the infrared
(IR). This is achieved by introducing a parameter k cor-
responding to the energy scale down to which the theory
is valid. Using an auxiliary device called the regulator
Rk, one suppresses both thermal and quantum fluctua-
tions of modes with ! < k. In particular, assuming that
at su�ciently high energies (and momenta, where S � ~)
the theory behaves classically, one may start the interpo-
lation in the UV with �⇤ = S, the classical bare action,
see Eq. (5.27) below. (This can be shown rigorously by
a saddle-point approximation, where the regulator term
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the integral can be solved analytically, yielding

h⇠(t)⇠(t0)i� = �T

✓
�

⇡T

sinh2(⇡T (t � t0))
(4.54)

+
1

⇡T (t � t0)2

◆

in the time domain, where the terms in brackets approach
2�(t � t0) for T ! 1, i.e. the classical-statistical limit
with a noise term ⇠(t) in the equations of motion which is
Gaussian and local in time [20]. For numerical purposes
and completeness, in frequency space the noise in (4.54)
corresponds to

h|⇠(!)|2i� = h⇠(�!)⇠(!)i� (4.55)

= �T
⇣
1 +

!

T
nB(!)

⌘
,

where the white-noise limit is recovered from the classical
Rayleigh-Jeans law with nB(!) ! T/! at high temper-
atures. Therefore, ⇠(t) represents a ‘colored’ noise term
with a Gaussian autocorrelation, but with the quantum
contribution subtracted, in the sense that ⇠(t) vanishes
identically at T = 0. This is due to the fact that in our
framework, zero-point fluctuations are already naturally
taken into account by the Gaussian widths, �0

xx
, �0

xp
, �0

pp

and therefore do not contribute to the fluctuation of the
mean coordinate and momentum.

6. Extracting the Gaussian spectral function

In order to extend the definition of the (anti-
symmetrized) classical-statistical spectral function in
Eq. (3.13) to the correct quantum spectral function
that respects the fluctuation-dissipation relation with the
colored-noise distribution of the heat bath in the GSA,
first note that the FDR (3.9) must be replaced by

iF (!) =
K(!)

2�!
2⇡i ⇢(!), (4.56)

for a general heat-bath kernel K(!) = h|⇠(!)|2i� . Now
we use the definition (3.10) of the classical-statistical
spectral function to arrive at a balance-type equation

⇢(!) =
2�T

K(!)
⇢c(!) =

2

1 + !

T
nB(!)

⇢c(!), (4.57)

which allows us to use the classical-statistical extraction
scheme for the spectral function, i.e. using Eq. (3.13) in
the GSA as well, and just rescale the result to obtain the
corresponding quantum spectral function.

Having defined the extraction scheme of the spectral
function in the GSA, we can further elaborate on the
problems that occur when we keep the full time evo-
lution of the Gaussian widths (4.38a) – (4.38c). Since
the GSA is only an approximation to the infinite hier-
archy of the time evolution of higher moments of the

(in principle exact) Wigner quasi-probability distribution
w(x, p) in phase space, to quadratic order [22], one can
no-longer guarantee that classical and quantum dynamics
are strictly divided into the evolution of the expectation
values X, P , and the second order moments �xx, �pp, �xp,
respectively. Therefore some classical contributions to
the spectral function are also contained in the time evo-
lution of the widths. Extracting the spectral function
näıvely as in (4.57) is therefore not su�cient, if the quan-
tum corrections are highly non-Gaussian by themselves,
when the full time evolution of the widths is included. In
this case, one would actually need some improved pro-
cedure to correctly extract these non-Gaussian contribu-
tions contained in the second-order unequal-time corre-
lators. This undesirable e↵ect is explicitly demonstrated
for su�ciently large anharmonicity � in Section VI.

In summary, a complete simulation eventually com-
prises the following steps:

(i) Generate a random realization of the stochastic
force ⇠(t) distributed according to the colored noise
correlations in (4.54).

(ii) Integrate the Gaussian equations of motion (4.34a),
(4.34b) and (4.38a) – (4.38c) numerically.

(iii) Calculate the spectral function from the particular
time history of the expectation values via (4.57).

(iv) Finally, repeat steps 1 through 3 and average the
spectral function over all realizations of the stochas-
tic force to obtain the thermal equilibrium spectral
function.

More details of steps (i) and (ii) are described in Appen-
dices A 2 and A3, respectively.

V. REAL-TIME FRG

As another possibility for real-time calculations we
have also explored the functional renormalization group
(FRG) [24–26] on the closed time path [35]. In the FRG
one aims to compute the e↵ective action �, which is
obtained from the generating functional Z of the the-
ory [3]. Assuming the so-called e↵ective average action
�⇤ is known at some initial energy-scale ⇤ in the ultra-
violet (UV), the essential idea is to construct the full �
step-by-step by ‘interpolating’ �k from the microscopic
UV-action �⇤ to the macroscopic action � in the infrared
(IR). This is achieved by introducing a parameter k cor-
responding to the energy scale down to which the theory
is valid. Using an auxiliary device called the regulator
Rk, one suppresses both thermal and quantum fluctua-
tions of modes with ! < k. In particular, assuming that
at su�ciently high energies (and momenta, where S � ~)
the theory behaves classically, one may start the interpo-
lation in the UV with �⇤ = S, the classical bare action,
see Eq. (5.27) below. (This can be shown rigorously by
a saddle-point approximation, where the regulator term
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Here we have already assumed the Ohmic heat bath
J⇤(!) in the limit ⇤ ! 1 where the memory integrals
collapse, cf. (4.19). The initial delta-functions can then
safely be neglected.

On the other hand, the irreducible correlators of the os-
cillator particle’s position and momentum with the fluc-
tuating force operator, hhx̂(t)⌘̂(t)ii and hhp̂(t)⌘̂(t)ii, both
contain a logarithmically divergent contribution d(⇤) ⇠

ln(⇤/C0) where C0 is the t = 0 initial value of the time-
dependent curvature of the potential,

C(t) ⌘ C(X, �xx) = !2
0 +

�

2
(X2(t) + �xx(t)). (4.37)

We will show in Appendix A 1 that this divergence can
be absorbed by a formally infinite but time-independent
shift of the particle’s momentum width �pp ! �pp �d(⇤)
in such a way that it cancels from both equations (4.36b)
and (4.36c) which then describe the time dependence of
the ultraviolet-finite part of �pp, together with finite �xp

and �xx at all times. Note that the divergence of �pp

with ⇤ ! 1 is an unavoidable e↵ect of the unrealistic
assumption of an Ohmic bath without ultraviolet (UV)
cuto↵. It can be interpreted as corresponding to the bath
continuously ‘measuring’ the position of the particle with
arbitrarily high ‘resolution’ without UV cuto↵ for ⇤ ! 1

[15, 46].
Finally, for the evaluation of the irreducible correlators

hhx̂(t)⌘̂(t)ii and hhp̂(t)⌘̂(t)ii according to rules (ii) and (iii),
we need to make an additional adiabatic approximation
as explained explicitly also in Appendix A 1. In this adi-
abatic approximation we assume that we can average the
curvature C of the potential in (4.37) over time scales
that are large compared to the relaxation time of the
heat bath. The heat-bath oscillators are then considered
as the fast degrees of freedom that can adjust to slow
changes in the curvature C(t). This adiabatic approxi-
mation then yields for the Gaussian widths,

d

dt
�xx = 2�xp, (4.38a)

d

dt
�xp = �pp � C(t)�xx � ��xp (4.38b)

+ C(t)F
�
C(t)

�
� �K

�
C(t)

�
,

d

dt
�pp = �2C(t)�xp � 2��pp + 2��K

�
C(t)

�
, (4.38c)

where for the Ohmic bath J⇤(!) with ⇤ ! 1 the fluctu-
ating force hhx̂(t)⌘̂(t)ii after ultraviolet subtraction yields
CF � �K . The first contribution is obtained from

F (C) =
1

2!C

✓
1

2
+

1

⇡
arctan

⇣!2
C � �2/4

�!C

⌘◆
(4.39)

upon inserting C(t) together with an equally slowly vary-
ing frequency

!C(t) ⌘

p
C(t) � �2/4 > 0, (4.40)

assuming weak damping. The second contribution to the
fluctuating force is the ultraviolet subtracted one, given
by

�K

�
C(t)

�
=

�
C(t) � �2/2

�
F
�
C(t)

�
(4.41)

�
�
C0 � �2/2

�
F
�
C0

�
�

�

2⇡
ln

C(t)

C0
,

which determines the relevant (ultraviolet-finite) part of
the fluctuating force hhp̂(t)⌘̂(t)ii on the ultraviolet sub-
tracted �pp as well, and which vanishes when C ⌘ C0 is
used at all times in the static limit, see Appendix A 1.

Together with Eqs. (4.34a) and (4.34b), these equa-
tions for the evolution of the Gaussian widths, from
Eqs. (4.38a) – (4.38c), constitute the full set of equa-
tions of motion for our particle in the anharmonic poten-
tial, and in contact with an external heat bath, i.e. the
Heisenberg-Langevin equations within the GSA in our
adiabatic approximation.

The static approximation is obtained from Eqs. (4.38a)
– (4.38c) by simply using the time-independent C = C0,
for which we have �K(C0) = 0. In this case, the equa-
tions for the widths, cf. (A.26a) – (A.26c), can be solved
independently of those for the coordinates X, P , see Ap-
pendix A 1. The asymptotic behavior of the solution,
cf. Eq. (A.28), uniquely fixes

�xx(t) ! F (C0), for t ! 1. (4.42)

Therefore, with the static solution, there are only two ef-
fects remaining of the GSA in comparison with the classi-
cal time-evolution. These are (a) a time-dependent shift
of the oscillator frequency in Eq. (4.34b),

!2
0 ! !2

0 +
�

2
F (C0), (4.43)

with the stationary value (4.42) of �xx(t) for su�ciently
late times, and (b) a modified colored noise ⇠(t), which
we will specify in Subsection IV B 5 below. At very high
temperatures, the frequency shift is negligible, and the
noise becomes white again, such that the correct classical
limit is guaranteed to be recovered in this static approx-
imation.

In the other direction, to go beyond the adiabatic ap-
proximation, one could in principle include the feedback
of the time dependence of the curvature C(t) in (4.37) on
the o↵-diagonal variances between system particle and
heat-bath oscillators via post-adiabatic corrections in the
spirit of time-dependent perturbation theory, in the fu-
ture, as briefly outlined in Appendix A1 as well. For the
results presented below, we have either used the static ap-
proximation with constant C0, cf. Eqs. (A.26a) – (A.26c),
or the adiabatic approximation in Eqs. (4.38a) – (4.38c),
for comparison.

4. Initial Conditions

In the adiabatic approximation the thermal equilib-
rium value C0 is an inital condition that has to be know
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with their interactions I, and reads [18, 19]

Ĥ = ĤS + ĤB + ĤI , (4.11a)

ĤS =
p̂2

2
+

!2
0

2
x̂2 +

�

4!
x̂4, (4.11b)

ĤB =
X

s

⇣ ⇡̂2
s

2
+

!2
s

2
'̂2

s

⌘
, (4.11c)

ĤI = �x̂
X

s

gs'̂s + x̂2
X

s

g2
s

2!2
s

, (4.11d)

where '̂s, ⇡̂s denote the coordinate and the conjugate mo-
mentum of the heat-bath oscillator with index s, !s is its
eigenfrequency, and gs the coupling constant of its linear
coupling to the coordinate x. The quadratic term in ĤI

serves to exactly compensate the bath-induced (negative)
shift of the oscillator frequency squared,

�!2
0 =

X

s

g2
s

!2
s

, (4.12)

that would otherwise arise. This guarantees that !2
0 is

the physically measured natural frequency of the non-
interacting system oscillator with damping. Completing
the square, we can then write the interaction-plus-bath
part as

ĤB + ĤI =
X

s

✓
⇡̂2

s

2
+

!2
s

2

✓
'̂s �

gs

!2
s

x̂

◆2 ◆
. (4.13)

1. Heisenberg-Langevin equations of motion

Introducing a spectral function to describe the ensem-
ble of bath modes by

J(!) = ⇡
X

s

g2
s

!s

�
�(! � !s) � �(! + !s)

�
, (4.14)

which corresponds to a positive-definite spectral density,
one can eliminate the heat bath from the full set of
Heisenberg equations to derive the quantum equations
of motion of the Caldeira-Leggett model for a general
heat bath described by J(!), see e.g. Refs. [18, 19],

d

dt
x̂(t) = p̂(t), (4.15a)

d

dt
p̂(t) = �

Z
t

0
dt0 �(t � t0)p̂(t0) � V 0(x̂(t)) + ⇠̂(t),

(4.15b)

with an operator-valued fluctuating force

⇠̂(t) =
X

s

gs

⇣
'̂s(0) �

gs

!2
s

x̂(0)
⌘

cos(!st)

+
⇡̂s(0)

!s

sin(!st)

�

⌘ ⌘̂(t) � �(t)x̂(0). (4.16)

Here ⌘̂(t) is defined such that it only acts in the bath’s
Hilbert space, and we have furthermore introduced the
damping kernel

�(t) = 2

Z 1

0

d!

2⇡

J(!)

!
cos(!t). (4.17)

For the simplest case of an Ohmic bath with damping
constant � and a sharp cuto↵ at ! = ⇤, we have

J⇤(!) = 2�! ⇥(⇤ � |!|), (4.18)

and thus

�sharp(t) =
2�⇤

⇡

sin(⇤t)

⇤t
⇤!1
����! 2��(t). (4.19)

Note that the ‘transient term’ ��(t)x̂(0) in Eq. (4.16)
corresponds to a sudden initial shift in the thermal dis-
tribution when the particle is connected to the bath [18]
at t = 0. It can therefore safely be omitted in all calcu-
lations as long as we are interested in times ⇤t � 1, or
analogously for !Dt � 1 with �(t) = �!D exp{�!Dt} in
the Drude model for the bath [19].

Equations (4.15a), (4.15b) together are commonly re-
ferred to as the Heisenberg-Langevin equations (HLEs)
in the literature [55, 56]. They generalize the classi-
cal Langevin equations (3.1), (3.2) which describe the
dissipative dynamics of the expectation values of posi-
tion and momentum. The corresponding HLEs, on the
other hand, encode the full dynamics of the quantum-
mechanical operators in the Heisenberg picture [56]. A
common approximation is to replace the operators in the
HLEs by their expectation values and the quantum noise
by a classical colored-noise source, which results in the
so-called quasiclassical Langevin equations [18]. While
these can provide a reasonable description of nearly har-
monic systems [57, 58], other important general features
of the HLEs such as the Heisenberg uncertainty principle
for the operators x̂ and p̂ are lost. Finally, the classical
Langevin equations are obtained in the Markovian limit
in which all memory e↵ects are disregarded and the noise
becomes local in time (white noise limit).

As a first step towards a solution of the Heisenberg-
Langevin equations in the GSA, we assume that at the
initial time t = 0 the bath is in equilibrium, while the
system particle is described by some density matrix ⇢̂S

with Gaussian Wigner function as defined in Eq. (4.5),
i.e. we assume that the initial state is given by

⇢̂0 ⌘ ⇢̂(t0) = ⇢̂S ⌦ ⇢̂B . (4.20)

We defer the precise specification of the equilibrium den-
sity matrix ⇢̂B of the heat bath to Section IV B 2 where
we discuss some further subtleties associated with its
GSA description.

Our goal here is to formulate a Langevin-type equation
in the Gaussian state formalism, which preserves more of
the features of the HLE than the quasiclassical or classi-
cal approach, thus having extended applicability. First of

- Frequency: 
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values �s = h'̂si↵ and ⇧s = h⇡̂si↵ in coherent states. In
particular, the discussion leading to (4.33) implies that
their initial thermal variances are given by the classical
variances (4.32) for each heat-bath oscillator,

h�s(0)�s0(0)i� = �c

's's0
(0) = �ss0 nB(!s)/!s ,

h⇧s(0)⇧s0(0)i� = �c

⇡s⇡s0
(0) = �ss0 !s nB(!s) ,

h�s(0)⇧s0(0)i� = �c

's⇡s0
(0) = 0 . (4.51)

Eq. (4.35) then yields

h⇠(t)⇠(t0)i� =
X

s

g2
s

!s

nB(!s) cos
�
!s(t � t0)

�
. (4.52)

With the definition of the spectral density of the heat
bath in Eq. (4.14) we can thus finally represent the
unequal-time correlations of ⇠(t) in the form,

h⇠(t)⇠(t0)i� =

Z 1

0

d!

⇡
J(!) nB(!) cos(!(t � t0)) (4.53)

for an arbitrary spectral distribution J(!) of oscillators in
the bath. For the Ohmic bath (4.18) in the limit ⇤ ! 1

the integral can be solved analytically, yielding

h⇠(t)⇠(t0)i� = �T

✓
�

⇡T

sinh2(⇡T (t � t0))
(4.54)

+
1

⇡T (t � t0)2

◆

in the time domain, where the terms in brackets approach
2�(t � t0) for T ! 1, i.e. the classical-statistical limit
with a noise term ⇠(t) in the equations of motion which is
Gaussian and local in time [23]. For numerical purposes
and completeness, in frequency domain the noise in (4.54)
corresponds to

h|⇠(!)|2i� = h⇠(�!)⇠(!)i� (4.55)

= �!
⇣

coth
⇣ !

2T

⌘
� sgn !

⌘

= 2�! nB(!) , for ! > 0 ,

where the white-noise limit is recovered from the classical
Rayleigh-Jeans law with nB(!) ! T/! at high temper-
atures. Therefore, ⇠(t) represents a ‘colored’ noise term
with a Gaussian autocorrelation, but with the quantum
contribution subtracted, in the sense that ⇠(t) vanishes
identically at T = 0. This is due to the fact that in our
framework, zero-point fluctuations are already naturally
taken into account by the Gaussian widths, �0

xx
, �0

xp
, �0

pp

and therefore do not contribute to the fluctuation of the
mean coordinate and momentum.

6. Extracting the Gaussian spectral function

In order to extend the definition of the (anti-
symmetrized) classical-statistical spectral function in

Eq. (3.13) to the correct quantum spectral function
that respects the fluctuation-dissipation relation with the
colored-noise distribution of the heat bath in the GSA,
first note that the FDR (3.9) must be replaced by

iF (!) =
K(!)

2�!
2⇡i ⇢(!), (4.56)

for a general heat-bath kernel K(!) = h|⇠(!)|2i� . Now
we use the definition (3.10) of the classical-statistical
spectral function to arrive at a balance-type equation

⇢(!) =
2�T

K(!)
⇢c(!) =

T

!nB(!)
⇢c(!), (4.57)

which allows us to use the classical-statistical extraction
scheme for the spectral function, i.e. using Eq. (3.13) in
the GSA as well, and just rescale the result to obtain the
corresponding quantum spectral function.

Having defined the extraction scheme of the spectral
function in the GSA, we can further elaborate on the
problems that occur when we keep the full time evo-
lution of the Gaussian widths (4.38a) – (4.38c). Since
the GSA is only an approximation to the infinite hier-
archy of the time evolution of higher moments of the
(in principle exact) Wigner quasi-probability distribution
w(x, p) in phase space, to quadratic order [25], one can
no-longer guarantee that classical and quantum dynamics
are strictly divided into the evolution of the expectation
values X, P , and the second order moments �xx, �pp, �xp,
respectively. Therefore some classical contributions to
the spectral function are also contained in the time evo-
lution of the widths. Extracting the spectral function
näıvely as in (4.57) is therefore not su�cient, if the quan-
tum corrections are highly non-Gaussian by themselves,
when the full time evolution of the widths is included. In
this case, one would actually need some improved pro-
cedure to correctly extract these non-Gaussian contribu-
tions contained in the second-order unequal-time corre-
lators. This undesirable e↵ect is explicitly demonstrated
for su�ciently large anharmonicity � in Section VI.

In summary, a complete simulation eventually com-
prises the following steps:

(i) Generate a random realization of the stochastic
force ⇠(t) distributed according to the colored noise
correlations in (4.54).

(ii) Integrate the Gaussian equations of motion (4.34a),
(4.34b) and (4.38a) – (4.38c) numerically.

(iii) Calculate the spectral function from the particular
time history of the expectation values via (4.57).

(iv) Finally, repeat steps 1 through 3 and average the
spectral function over all realizations of the stochas-
tic force to obtain the thermal equilibrium spectral
function.

More details of steps (i) and (ii) are described in Appen-
dices A 2 and A3, respectively.
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values �s = h'̂si↵ and ⇧s = h⇡̂si↵ in coherent states. In
particular, the discussion leading to (4.33) implies that
their initial thermal variances are given by the classical
variances (4.32) for each heat-bath oscillator,
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Eq. (4.35) then yields

h⇠(t)⇠(t0)i� =
X

s

g2
s

!s

nB(!s) cos
�
!s(t � t0)

�
. (4.52)

With the definition of the spectral density of the heat
bath in Eq. (4.14) we can thus finally represent the
unequal-time correlations of ⇠(t) in the form,

h⇠(t)⇠(t0)i� =

Z 1

0

d!

⇡
J(!) nB(!) cos(!(t � t0)) (4.53)

for an arbitrary spectral distribution J(!) of oscillators in
the bath. For the Ohmic bath (4.18) in the limit ⇤ ! 1

the integral can be solved analytically, yielding

h⇠(t)⇠(t0)i� = �T

✓
�

⇡T

sinh2(⇡T (t � t0))
(4.54)

+
1

⇡T (t � t0)2

◆

in the time domain, where the terms in brackets approach
2�(t � t0) for T ! 1, i.e. the classical-statistical limit
with a noise term ⇠(t) in the equations of motion which is
Gaussian and local in time [23]. For numerical purposes
and completeness, in frequency domain the noise in (4.54)
corresponds to

h|⇠(!)|2i� = h⇠(�!)⇠(!)i� (4.55)

= �!
⇣

coth
⇣ !

2T

⌘
� sgn !

⌘

= 2�! nB(!) , for ! > 0 ,

where the white-noise limit is recovered from the classical
Rayleigh-Jeans law with nB(!) ! T/! at high temper-
atures. Therefore, ⇠(t) represents a ‘colored’ noise term
with a Gaussian autocorrelation, but with the quantum
contribution subtracted, in the sense that ⇠(t) vanishes
identically at T = 0. This is due to the fact that in our
framework, zero-point fluctuations are already naturally
taken into account by the Gaussian widths, �0

xx
, �0

xp
, �0

pp

and therefore do not contribute to the fluctuation of the
mean coordinate and momentum.

6. Extracting the Gaussian spectral function

In order to extend the definition of the (anti-
symmetrized) classical-statistical spectral function in

Eq. (3.13) to the correct quantum spectral function
that respects the fluctuation-dissipation relation with the
colored-noise distribution of the heat bath in the GSA,
first note that the FDR (3.9) must be replaced by

iF (!) =
K(!)

2�!
2⇡i ⇢(!), (4.56)

for a general heat-bath kernel K(!) = h|⇠(!)|2i� . Now
we use the definition (3.10) of the classical-statistical
spectral function to arrive at a balance-type equation

⇢(!) =
2�T

K(!)
⇢c(!) =

T

!nB(!)
⇢c(!), (4.57)

which allows us to use the classical-statistical extraction
scheme for the spectral function, i.e. using Eq. (3.13) in
the GSA as well, and just rescale the result to obtain the
corresponding quantum spectral function.

Having defined the extraction scheme of the spectral
function in the GSA, we can further elaborate on the
problems that occur when we keep the full time evo-
lution of the Gaussian widths (4.38a) – (4.38c). Since
the GSA is only an approximation to the infinite hier-
archy of the time evolution of higher moments of the
(in principle exact) Wigner quasi-probability distribution
w(x, p) in phase space, to quadratic order [25], one can
no-longer guarantee that classical and quantum dynamics
are strictly divided into the evolution of the expectation
values X, P , and the second order moments �xx, �pp, �xp,
respectively. Therefore some classical contributions to
the spectral function are also contained in the time evo-
lution of the widths. Extracting the spectral function
näıvely as in (4.57) is therefore not su�cient, if the quan-
tum corrections are highly non-Gaussian by themselves,
when the full time evolution of the widths is included. In
this case, one would actually need some improved pro-
cedure to correctly extract these non-Gaussian contribu-
tions contained in the second-order unequal-time corre-
lators. This undesirable e↵ect is explicitly demonstrated
for su�ciently large anharmonicity � in Section VI.

In summary, a complete simulation eventually com-
prises the following steps:

(i) Generate a random realization of the stochastic
force ⇠(t) distributed according to the colored noise
correlations in (4.54).

(ii) Integrate the Gaussian equations of motion (4.34a),
(4.34b) and (4.38a) – (4.38c) numerically.

(iii) Calculate the spectral function from the particular
time history of the expectation values via (4.57).

(iv) Finally, repeat steps 1 through 3 and average the
spectral function over all realizations of the stochas-
tic force to obtain the thermal equilibrium spectral
function.

More details of steps (i) and (ii) are described in Appen-
dices A 2 and A3, respectively.

11

values �s = h'̂si↵ and ⇧s = h⇡̂si↵ in coherent states. In
particular, the discussion leading to (4.33) implies that
their initial thermal variances are given by the classical
variances (4.32) for each heat-bath oscillator,

h�s(0)�s0(0)i� = �c

's's0
(0) = �ss0 nB(!s)/!s ,

h⇧s(0)⇧s0(0)i� = �c

⇡s⇡s0
(0) = �ss0 !s nB(!s) ,

h�s(0)⇧s0(0)i� = �c

's⇡s0
(0) = 0 . (4.51)

Eq. (4.35) then yields

h⇠(t)⇠(t0)i� =
X

s

g2
s

!s

nB(!s) cos
�
!s(t � t0)

�
. (4.52)

With the definition of the spectral density of the heat
bath in Eq. (4.14) we can thus finally represent the
unequal-time correlations of ⇠(t) in the form,

h⇠(t)⇠(t0)i� =

Z 1

0

d!

⇡
J(!) nB(!) cos(!(t � t0)) (4.53)

for an arbitrary spectral distribution J(!) of oscillators in
the bath. For the Ohmic bath (4.18) in the limit ⇤ ! 1

the integral can be solved analytically, yielding

h⇠(t)⇠(t0)i� = �T

✓
�

⇡T

sinh2(⇡T (t � t0))
(4.54)

+
1

⇡T (t � t0)2

◆

in the time domain, where the terms in brackets approach
2�(t � t0) for T ! 1, i.e. the classical-statistical limit
with a noise term ⇠(t) in the equations of motion which is
Gaussian and local in time [23]. For numerical purposes
and completeness, in frequency domain the noise in (4.54)
corresponds to

h|⇠(!)|2i� = h⇠(�!)⇠(!)i� (4.55)

= �!
⇣

coth
⇣ !

2T

⌘
� sgn !

⌘

= 2�! nB(!) , for ! > 0 ,

where the white-noise limit is recovered from the classical
Rayleigh-Jeans law with nB(!) ! T/! at high temper-
atures. Therefore, ⇠(t) represents a ‘colored’ noise term
with a Gaussian autocorrelation, but with the quantum
contribution subtracted, in the sense that ⇠(t) vanishes
identically at T = 0. This is due to the fact that in our
framework, zero-point fluctuations are already naturally
taken into account by the Gaussian widths, �0

xx
, �0

xp
, �0

pp

and therefore do not contribute to the fluctuation of the
mean coordinate and momentum.

6. Extracting the Gaussian spectral function

In order to extend the definition of the (anti-
symmetrized) classical-statistical spectral function in

Eq. (3.13) to the correct quantum spectral function
that respects the fluctuation-dissipation relation with the
colored-noise distribution of the heat bath in the GSA,
first note that the FDR (3.9) must be replaced by

iF (!) =
K(!)

2�!
2⇡i ⇢(!), (4.56)

for a general heat-bath kernel K(!) = h|⇠(!)|2i� . Now
we use the definition (3.10) of the classical-statistical
spectral function to arrive at a balance-type equation

⇢(!) =
2�T

K(!)
⇢c(!) =

T

!nB(!)
⇢c(!), (4.57)

which allows us to use the classical-statistical extraction
scheme for the spectral function, i.e. using Eq. (3.13) in
the GSA as well, and just rescale the result to obtain the
corresponding quantum spectral function.

Having defined the extraction scheme of the spectral
function in the GSA, we can further elaborate on the
problems that occur when we keep the full time evo-
lution of the Gaussian widths (4.38a) – (4.38c). Since
the GSA is only an approximation to the infinite hier-
archy of the time evolution of higher moments of the
(in principle exact) Wigner quasi-probability distribution
w(x, p) in phase space, to quadratic order [25], one can
no-longer guarantee that classical and quantum dynamics
are strictly divided into the evolution of the expectation
values X, P , and the second order moments �xx, �pp, �xp,
respectively. Therefore some classical contributions to
the spectral function are also contained in the time evo-
lution of the widths. Extracting the spectral function
näıvely as in (4.57) is therefore not su�cient, if the quan-
tum corrections are highly non-Gaussian by themselves,
when the full time evolution of the widths is included. In
this case, one would actually need some improved pro-
cedure to correctly extract these non-Gaussian contribu-
tions contained in the second-order unequal-time corre-
lators. This undesirable e↵ect is explicitly demonstrated
for su�ciently large anharmonicity � in Section VI.

In summary, a complete simulation eventually com-
prises the following steps:

(i) Generate a random realization of the stochastic
force ⇠(t) distributed according to the colored noise
correlations in (4.54).

(ii) Integrate the Gaussian equations of motion (4.34a),
(4.34b) and (4.38a) – (4.38c) numerically.

(iii) Calculate the spectral function from the particular
time history of the expectation values via (4.57).

(iv) Finally, repeat steps 1 through 3 and average the
spectral function over all realizations of the stochas-
tic force to obtain the thermal equilibrium spectral
function.

More details of steps (i) and (ii) are described in Appen-
dices A 2 and A3, respectively.

colored noise
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in the decomposition of Eq. (3.5), in order to derive the
fluctuation-dissipation relation (FDR), e.g. see [43],

F (!) =
�
2nB(!) + 1

�
⇡⇢(!)

= coth

✓
!

2T

◆
⇡⇢(!), (3.9)

where we have used the special convention for the defini-
tion of ⇢(!) in (2.3), and nB(!) = 1/(e�!

�1). In the clas-
sical limit T � ! we approximate coth(!/2T ) ⇡ 2T/!.
The classical FDR from (3.9) then relates the correspond-
ing classical two-point functions,

Fc(!) =
T

!
2⇡⇢c(!). (3.10)

In the time domain, undoing the Fourier transform, this
reads

⇢c(t � t0) = �
1

T
@tFc(t � t0). (3.11)

Furthermore, because the statistical two-point function
is in the classical limit given by the purely thermal cor-
relation function

Fc(t � t0) = hX(t)X(t0)i� � hX(t)i�hX(t0)i� , (3.12)

the spectral function (3.11) can be written as [20]

⇢c(t � t0) = �
1

2T

⌦
P (t)X(t0) � X(t)P (t0)

↵
�
, (3.13)

where P = Ẋ is the conjugate momentum which has zero
mean in the thermal ensemble, hP (t)i

�
= 0. Because of

time-reversal invariance of the thermal expectation val-
ues, the two terms in (3.13) are the same, and the explicit
anti-symmetrization in this definition of ⇢c(�t) = �⇢c(t)
can be introduced without loss. Evaluating Eq. (3.13)
provides a straightforward way of calculating the spec-
tral function in the classical-statistical limit [17–21].

IV. GAUSSIAN-STATE APPROXIMATION

A. Closed system

Before considering the coupling to an environment,
we first briefly discuss the Gaussian state approxima-
tion (GSA) for a closed system. The GSA is obtained
by truncating the full Heisenberg equations of motion

d

dt
Ô = i

h
Ĥ, Ô

i
(4.1)

for the canonically conjugate Heisenberg operators x̂(t)
and p̂(t):

d

dt
x̂ = p̂, (4.2a)

d

dt
p̂ = �!2

0 x̂ �
�

6
x̂3

⌘ �V 0(x̂). (4.2b)

The equations of motion for the expectation values can
be obtained by averaging equations (4.2a) and (4.2b) over
some density operator ⇢̂ describing the mixed initial state
of the ensemble. These equations then contain expecta-
tion values of the form hx̂2(t)i and hx̂3(t)i, whose evolu-
tion equations in turn include expectation values of even
higher-order combinations of x̂ and p̂. This leads to an
infinite hierarchy of equations that cannot be solved ana-
lytically or numerically without further approximations.
Moreover, to deal with expectation values of products of
x̂ and p̂ we follow Ref. [23] and introduce the Wigner
transform of the density matrix in position eigenstates,

w(x, p) =

Z
dy e�ipy

hx + y/2|⇢̂|x � y/2i, (4.3)

which allows expressing the expectation values of sym-
metrized products of x̂ and p̂ in the form of classical
phase space integrals, such as e.g.

1

2
hx̂p̂ + p̂x̂i =

Z
dx dp

2⇡
x pw(x, p). (4.4)

To truncate the infinite set of equations given by (4.2a)
and (4.2b), the density matrix is itself approximated by a
Gaussian, and can therefore be characterized by a Gaus-
sian Wigner function likewise [22],

w(x, p) = (4.5)

N exp

(
�

1

2

✓
x � X
p � P

◆T✓
�xx �xp

�xp �pp

◆�1✓
x � X
p � P

◆)
.

Here, the parameters X ⌘ hx̂i, P ⌘ hp̂i describe the
center of the Gaussian wave packet in coordinate and
momentum space. As such they are not necessarily the
expectation values in coherent states yet, here. The sym-
metrized connected expectation values

�ab ⌘ hhâb̂ii ⌘ hâb̂ + b̂âi/2 � hâihb̂i

characterize the dispersions of the wave packet, and N is
a normalization factor.

Equations (4.2a) and (4.2b) are then averaged over the
Gaussian state with the Wigner function (4.5). Applying
Wick’s theorem as needed, one then obtains

d

dt
X = P, (4.6a)

d

dt
P = �!2

0X �
�

6

⇣
X3 + 3X�xx

⌘
. (4.6b)

To evolve the dispersions �xx, �xp, and �pp, the Heisen-
berg equations for the corresponding symmetrized oper-
ator products are employed

d

dt
x̂2 = x̂p̂ + p̂x̂, (4.7a)

d

dt

x̂p̂ + p̂x̂

2
= p̂2

� !2
0 x̂2

�
�

6
x̂4, (4.7b)

d

dt
p̂2 = �!2

0 (p̂x̂ + x̂p̂) �
�

6

⇣
p̂x̂3 + x̂3p̂

⌘
. (4.7c)
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in the decomposition of Eq. (3.5), in order to derive the
fluctuation-dissipation relation (FDR), e.g. see [43],

F (!) =
�
2nB(!) + 1

�
⇡⇢(!)

= coth

✓
!

2T

◆
⇡⇢(!), (3.9)

where we have used the special convention for the defini-
tion of ⇢(!) in (2.3), and nB(!) = 1/(e�!

�1). In the clas-
sical limit T � ! we approximate coth(!/2T ) ⇡ 2T/!.
The classical FDR from (3.9) then relates the correspond-
ing classical two-point functions,

Fc(!) =
T

!
2⇡⇢c(!). (3.10)

In the time domain, undoing the Fourier transform, this
reads

⇢c(t � t0) = �
1

T
@tFc(t � t0). (3.11)

Furthermore, because the statistical two-point function
is in the classical limit given by the purely thermal cor-
relation function

Fc(t � t0) = hX(t)X(t0)i� � hX(t)i�hX(t0)i� , (3.12)

the spectral function (3.11) can be written as [20]

⇢c(t � t0) = �
1

2T

⌦
P (t)X(t0) � X(t)P (t0)

↵
�
, (3.13)

where P = Ẋ is the conjugate momentum which has zero
mean in the thermal ensemble, hP (t)i

�
= 0. Because of

time-reversal invariance of the thermal expectation val-
ues, the two terms in (3.13) are the same, and the explicit
anti-symmetrization in this definition of ⇢c(�t) = �⇢c(t)
can be introduced without loss. Evaluating Eq. (3.13)
provides a straightforward way of calculating the spec-
tral function in the classical-statistical limit [17–21].

IV. GAUSSIAN-STATE APPROXIMATION

A. Closed system

Before considering the coupling to an environment,
we first briefly discuss the Gaussian state approxima-
tion (GSA) for a closed system. The GSA is obtained
by truncating the full Heisenberg equations of motion

d

dt
Ô = i

h
Ĥ, Ô

i
(4.1)

for the canonically conjugate Heisenberg operators x̂(t)
and p̂(t):

d

dt
x̂ = p̂, (4.2a)

d

dt
p̂ = �!2

0 x̂ �
�

6
x̂3

⌘ �V 0(x̂). (4.2b)

The equations of motion for the expectation values can
be obtained by averaging equations (4.2a) and (4.2b) over
some density operator ⇢̂ describing the mixed initial state
of the ensemble. These equations then contain expecta-
tion values of the form hx̂2(t)i and hx̂3(t)i, whose evolu-
tion equations in turn include expectation values of even
higher-order combinations of x̂ and p̂. This leads to an
infinite hierarchy of equations that cannot be solved ana-
lytically or numerically without further approximations.
Moreover, to deal with expectation values of products of
x̂ and p̂ we follow Ref. [23] and introduce the Wigner
transform of the density matrix in position eigenstates,

w(x, p) =

Z
dy e�ipy

hx + y/2|⇢̂|x � y/2i, (4.3)

which allows expressing the expectation values of sym-
metrized products of x̂ and p̂ in the form of classical
phase space integrals, such as e.g.

1

2
hx̂p̂ + p̂x̂i =

Z
dx dp

2⇡
x p w(x, p). (4.4)

To truncate the infinite set of equations given by (4.2a)
and (4.2b), the density matrix is itself approximated by a
Gaussian, and can therefore be characterized by a Gaus-
sian Wigner function likewise [22],

w(x, p) = (4.5)

N exp

(
�

1

2

✓
x � X
p � P

◆T✓
�xx �xp

�xp �pp

◆�1✓
x � X
p � P

◆)
.

Here, the parameters X ⌘ hx̂i, P ⌘ hp̂i describe the
center of the Gaussian wave packet in coordinate and
momentum space. As such they are not necessarily the
expectation values in coherent states yet, here. The sym-
metrized connected expectation values

�ab ⌘ hhâb̂ii ⌘ hâb̂ + b̂âi/2 � hâihb̂i

characterize the dispersions of the wave packet, and N is
a normalization factor.

Equations (4.2a) and (4.2b) are then averaged over the
Gaussian state with the Wigner function (4.5). Applying
Wick’s theorem as needed, one then obtains

d

dt
X = P, (4.6a)

d

dt
P = �!2

0X �
�

6

⇣
X3 + 3X�xx

⌘
. (4.6b)

To evolve the dispersions �xx, �xp, and �pp, the Heisen-
berg equations for the corresponding symmetrized oper-
ator products are employed

d

dt
x̂2 = x̂p̂ + p̂x̂, (4.7a)

d

dt

x̂p̂ + p̂x̂

2
= p̂2
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0 x̂2

�
�

6
x̂4, (4.7b)
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dt
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p̂x̂3 + x̂3p̂

⌘
. (4.7c)
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in the decomposition of Eq. (3.5), in order to derive the
fluctuation-dissipation relation (FDR), e.g. see [43],
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⇡⇢(!), (3.9)

where we have used the special convention for the defini-
tion of ⇢(!) in (2.3), and nB(!) = 1/(e�!

�1). In the clas-
sical limit T � ! we approximate coth(!/2T ) ⇡ 2T/!.
The classical FDR from (3.9) then relates the correspond-
ing classical two-point functions,

Fc(!) =
T

!
2⇡⇢c(!). (3.10)

In the time domain, undoing the Fourier transform, this
reads

⇢c(t � t0) = �
1

T
@tFc(t � t0). (3.11)

Furthermore, because the statistical two-point function
is in the classical limit given by the purely thermal cor-
relation function

Fc(t � t0) = hX(t)X(t0)i� � hX(t)i�hX(t0)i� , (3.12)

the spectral function (3.11) can be written as [20]

⇢c(t � t0) = �
1
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⌦
P (t)X(t0) � X(t)P (t0)

↵
�
, (3.13)

where P = Ẋ is the conjugate momentum which has zero
mean in the thermal ensemble, hP (t)i

�
= 0. Because of

time-reversal invariance of the thermal expectation val-
ues, the two terms in (3.13) are the same, and the explicit
anti-symmetrization in this definition of ⇢c(�t) = �⇢c(t)
can be introduced without loss. Evaluating Eq. (3.13)
provides a straightforward way of calculating the spec-
tral function in the classical-statistical limit [17–21].

IV. GAUSSIAN-STATE APPROXIMATION

A. Closed system

Before considering the coupling to an environment,
we first briefly discuss the Gaussian state approxima-
tion (GSA) for a closed system. The GSA is obtained
by truncating the full Heisenberg equations of motion

d

dt
Ô = i

h
Ĥ, Ô

i
(4.1)

for the canonically conjugate Heisenberg operators x̂(t)
and p̂(t):

d

dt
x̂ = p̂, (4.2a)

d

dt
p̂ = �!2

0 x̂ �
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6
x̂3

⌘ �V 0(x̂). (4.2b)

The equations of motion for the expectation values can
be obtained by averaging equations (4.2a) and (4.2b) over
some density operator ⇢̂ describing the mixed initial state
of the ensemble. These equations then contain expecta-
tion values of the form hx̂2(t)i and hx̂3(t)i, whose evolu-
tion equations in turn include expectation values of even
higher-order combinations of x̂ and p̂. This leads to an
infinite hierarchy of equations that cannot be solved ana-
lytically or numerically without further approximations.
Moreover, to deal with expectation values of products of
x̂ and p̂ we follow Ref. [23] and introduce the Wigner
transform of the density matrix in position eigenstates,

w(x, p) =

Z
dy e�ipy

hx + y/2|⇢̂|x � y/2i, (4.3)

which allows expressing the expectation values of sym-
metrized products of x̂ and p̂ in the form of classical
phase space integrals, such as e.g.

1

2
hx̂p̂ + p̂x̂i =

Z
dx dp

2⇡
x pw(x, p). (4.4)

To truncate the infinite set of equations given by (4.2a)
and (4.2b), the density matrix is itself approximated by a
Gaussian, and can therefore be characterized by a Gaus-
sian Wigner function likewise [22],

w(x, p) = (4.5)

N exp

(
�

1

2

✓
x � X
p � P

◆T✓
�xx �xp

�xp �pp

◆�1✓
x � X
p � P

◆)
.

Here, the parameters X ⌘ hx̂i, P ⌘ hp̂i describe the
center of the Gaussian wave packet in coordinate and
momentum space. As such they are not necessarily the
expectation values in coherent states yet, here. The sym-
metrized connected expectation values

�ab ⌘ hhâb̂ii ⌘ hâb̂ + b̂âi/2 � hâihb̂i

characterize the dispersions of the wave packet, and N is
a normalization factor.

Equations (4.2a) and (4.2b) are then averaged over the
Gaussian state with the Wigner function (4.5). Applying
Wick’s theorem as needed, one then obtains

d

dt
X = P, (4.6a)

d

dt
P = �!2

0X �
�

6

⇣
X3 + 3X�xx

⌘
. (4.6b)

To evolve the dispersions �xx, �xp, and �pp, the Heisen-
berg equations for the corresponding symmetrized oper-
ator products are employed

d

dt
x̂2 = x̂p̂ + p̂x̂, (4.7a)

d

dt

x̂p̂ + p̂x̂

2
= p̂2

� !2
0 x̂2

�
�

6
x̂4, (4.7b)

d
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0 (p̂x̂ + x̂p̂) �
�

6
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p̂x̂3 + x̂3p̂

⌘
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all, we consider the most general Gaussian Wigner func-
tion W that describes the entire system of oscillator and
heat bath,

W (~⇣, t) = N exp

⇢
�

1

2
(~⇣ � ~Z(t))T ⌃�1(t)(~⇣ � ~Z(t))

�
,

(4.21)

where the vector ~⇣ = (x, p, ..., 's, ⇡s, ...) 2 � denotes a
point in the full phase space � of the system, ~Z(t) =
(X(t), P (t), ..., �s(t), ⇧s(t), ...) are the expectation values
of the corresponding Heisenberg operators, and

⌃ =

0

BBBBBBBB@

�xx �xp ... �x's �x⇡s ...
�xp �pp ... �p's �p⇡s ...
...

...
. . .

�'sx �'sp �'s's �'s⇡s

�⇡sx �⇡sp �'s⇡s �⇡s⇡s

...
...

. . .

1

CCCCCCCCA

(4.22)

represents the corresponding covariance matrix. Note
that ⌃ will in general also contain cross-correlations such
as �x's between the oscillator particle and the heat bath,
which encode quantum entanglement.

In order to translate (4.15a), (4.15b) into correspond-
ing equations of motion within the GSA [25], in a sys-
tematic and thermodynamically consistent way, we adopt
the following procedure:

(i) Average the Heisenberg equations of motion
(4.15a), (4.15b) together with (4.16) using the gen-
eral Gaussian state (4.21) and write down the re-
sulting equations for all dynamic quantities con-
tained in ~Z and ⌃. Evaluate correlation functions
using Wick’s theorem.

(ii) Integrate out the heat-bath degrees of freedom
by solving the equations of motion obtained
from step (i) for the bath oscillator coordi-
nates �s, ⇧s and the system-bath cross-correlations
�x's , �p's , �x⇡s , �p⇡s , under the assumption that
the full solution X(t), P (t), �xx(t), �xp(t), �pp(t) is
already known. Use initial conditions of the form

⌃(0) = (4.23)

0

BBBBBBBB@

�xx(0) �xp(0) ... 0 0 ...
�xp(0) �pp(0) ... 0 0 ...

...
...

. . .
0 0 �'s's(0) 0
0 0 0 �⇡s⇡s(0)
...

...
. . .

1

CCCCCCCCA

,

to obtain the 2-point correlators, but leave the ini-
tial phase-space variables �s(0), ⇧s(0) of the heat
bath arbitrary. Insert these formal solutions into
the five remaining equations of motion for the
Gaussian particle.

(iii) Notice that the remaining five equations of mo-
tion for the particle only depend on the initial con-
ditions of the bath, �s(0), ⇧s(0), ⌃bath(0), where
⌃bath(0) (the lower right corner of ⌃(0) in (4.23))
describes all the 2-point correlators of the bath os-
cillators’ phase-space variables. Therefore, to intro-
duce thermal fluctuations, all we need to do is dis-
tribute the initial expectation values of the bath os-
cillators according to a thermal distribution (to be
specified below), e.g. via a fluctuating force term.

Since the quantum average over the Gaussian Wigner
function (4.21) in step (i) according to the prescription
in (4.4) is entirely di↵erent from the thermal average over
the initial conditions in step (iii), we denote the former
by h· · · i and the latter by h· · · i� with an additional in-
dex � = 1/T .

Before we can investigate the solution of the equations
of motion from steps (i) and (ii), we first have to take a
closer look at how to represent the ‘thermal initial state
of the bath’ which enters in step (iii) in the Gaussian
approximation, i.e. how are �s(0), ⇧s(0) and ⌃bath(0)
distributed in a thermal-equilibrium state at a given tem-
perature T . This is surprisingly subtle, however, as dis-
cussed in the next subsection.

2. Gaussian thermal equilibrium state

Since the bath is described as an ensemble of harmonic
oscillators in Gaussian mixed states, we still have to spec-
ify what precisely we mean by a ‘thermal equilibrium
state’ for a single bath oscillator in the harmonic case
with � = 0, where the Gaussian approximation becomes
exact. Constructing a thermal ensemble of Gaussian
states that models a quantum canonical state at tem-
perature T , along the lines described for mixed Gaussian
states at the end of Section IV, is not entirely trivial. We
have to express the full quantum-mechanical mixed ther-
mal state of a harmonic oscillator, described by the den-
sity operator (with spectral representation in the energy-
eigenstates |ni of the harmonic oscillator),

⇢̂HO = e��Ĥ/Z = Z�1
X

n

e��!0(n+1/2)
|ni hn| , (4.24)

that acts on the full Hilbert space H, in terms of a ⇢̂G

acting on G ⇢ H to describe a Gaussian mixed state, by
a density operator of the form (4.10). In general, a mixed
thermal state describing a canonical ensemble is not of
this form, so this involves an approximation. For the har-
monic oscillator, however, it can be easily verified from
the definition in (4.3) that the density operator ⇢̂HO in
Eq. (4.24) does have a Gaussian Wigner function, which
is given by

wHO(x, p) =
2

F (!0)
e� p2+!2

0x2

!0F (!0) , (4.25)

where F (!) = coth
�!

2

mixed thermal state
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all, we consider the most general Gaussian Wigner func-
tion W that describes the entire system of oscillator and
heat bath,

W (~⇣, t) = N exp

⇢
�

1

2
(~⇣ � ~Z(t))T ⌃�1(t)(~⇣ � ~Z(t))

�
,

(4.21)

where the vector ~⇣ = (x, p, ..., 's, ⇡s, ...) 2 � denotes a
point in the full phase space � of the system, ~Z(t) =
(X(t), P (t), ..., �s(t), ⇧s(t), ...) are the expectation values
of the corresponding Heisenberg operators, and
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represents the corresponding covariance matrix. Note
that ⌃ will in general also contain cross-correlations such
as �x's between the oscillator particle and the heat bath,
which encode quantum entanglement.

In order to translate (4.15a), (4.15b) into correspond-
ing equations of motion within the GSA [25], in a sys-
tematic and thermodynamically consistent way, we adopt
the following procedure:

(i) Average the Heisenberg equations of motion
(4.15a), (4.15b) together with (4.16) using the gen-
eral Gaussian state (4.21) and write down the re-
sulting equations for all dynamic quantities con-
tained in ~Z and ⌃. Evaluate correlation functions
using Wick’s theorem.

(ii) Integrate out the heat-bath degrees of freedom
by solving the equations of motion obtained
from step (i) for the bath oscillator coordi-
nates �s, ⇧s and the system-bath cross-correlations
�x's , �p's , �x⇡s , �p⇡s , under the assumption that
the full solution X(t), P (t), �xx(t), �xp(t), �pp(t) is
already known. Use initial conditions of the form
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to obtain the 2-point correlators, but leave the ini-
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the initial conditions in step (iii), we denote the former
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distributed in a thermal-equilibrium state at a given tem-
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sulting equations for all dynamic quantities con-
tained in ~Z and ⌃. Evaluate correlation functions
using Wick’s theorem.
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by solving the equations of motion obtained
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nates �s, ⇧s and the system-bath cross-correlations
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to obtain the 2-point correlators, but leave the ini-
tial phase-space variables �s(0), ⇧s(0) of the heat
bath arbitrary. Insert these formal solutions into
the five remaining equations of motion for the
Gaussian particle.

(iii) Notice that the remaining five equations of mo-
tion for the particle only depend on the initial con-
ditions of the bath, �s(0), ⇧s(0), ⌃bath(0), where
⌃bath(0) (the lower right corner of ⌃(0) in (4.23))
describes all the 2-point correlators of the bath os-
cillators’ phase-space variables. Therefore, to intro-
duce thermal fluctuations, all we need to do is dis-
tribute the initial expectation values of the bath os-
cillators according to a thermal distribution (to be
specified below), e.g. via a fluctuating force term.

Since the quantum average over the Gaussian Wigner
function (4.21) in step (i) according to the prescription
in (4.4) is entirely di↵erent from the thermal average over
the initial conditions in step (iii), we denote the former
by h· · · i and the latter by h· · · i� with an additional in-
dex � = 1/T .

Before we can investigate the solution of the equations
of motion from steps (i) and (ii), we first have to take a
closer look at how to represent the ‘thermal initial state
of the bath’ which enters in step (iii) in the Gaussian
approximation, i.e. how are �s(0), ⇧s(0) and ⌃bath(0)
distributed in a thermal-equilibrium state at a given tem-
perature T . This is surprisingly subtle, however, as dis-
cussed in the next subsection.

2. Gaussian thermal equilibrium state

Since the bath is described as an ensemble of harmonic
oscillators in Gaussian mixed states, we still have to spec-
ify what precisely we mean by a ‘thermal equilibrium
state’ for a single bath oscillator in the harmonic case
with � = 0, where the Gaussian approximation becomes
exact. Constructing a thermal ensemble of Gaussian
states that models a quantum canonical state at tem-
perature T , along the lines described for mixed Gaussian
states at the end of Section IV, is not entirely trivial. We
have to express the full quantum-mechanical mixed ther-
mal state of a harmonic oscillator, described by the den-
sity operator (with spectral representation in the energy-
eigenstates |ni of the harmonic oscillator),

⇢̂HO = e��Ĥ/Z = Z�1
X

n

e��!0(n+1/2)
|ni hn| , (4.24)

that acts on the full Hilbert space H, in terms of a ⇢̂G

acting on G ⇢ H to describe a Gaussian mixed state, by
a density operator of the form (4.10). In general, a mixed
thermal state describing a canonical ensemble is not of
this form, so this involves an approximation. For the har-
monic oscillator, however, it can be easily verified from
the definition in (4.3) that the density operator ⇢̂HO in
Eq. (4.24) does have a Gaussian Wigner function, which
is given by

wHO(x, p) =
2

F (!0)
e� p2+!2

0x2

!0F (!0) , (4.25)

where F (!) = coth
�!

2

thermal distribution
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• General Gaussian state:

mixed thermal state

8

is its thermal distribution function. To express the
canonical equilibrium ensemble at temperature T , rep-
resented by the mixed-state density operator ⇢̂HO in
Eq. (4.24), as a mixed Gaussian state of the form (4.10),
we now use our classical phase-space variables X = hx̂i↵

and P = hp̂i↵, here restricted again to the expectation
values of x̂ and p̂ in coherent states

|↵i = e�|↵|2/2
1X

n=0

↵n

p
n!

|ni. (4.26)

These states are characterized by the complex variable ↵
whose real and imaginary parts are given by X and P ,

↵ =
1

p
2!0

⇣
!0X + iP

⌘
. (4.27)

We therefore denote these coherent states simply by the
two real phase-space variables in the following, i.e.

|X, P i ⌘ |↵i. (4.28)

The coherent states of the harmonic oscillator have mini-
mal uncertainty with

�0
xx

⌘ hx̂2
i↵ � hx̂i

2
↵

=
1

2!0
, (4.29a)

�0
pp

⌘ hp̂2
i↵ � hp̂i

2
↵

=
!0

2
, (4.29b)

�0
xp

⌘
1

2
hx̂p̂ + p̂x̂i↵ � hx̂i↵hp̂i↵ = 0. (4.29c)

On the other hand, for the mixed equilibrium state in the
canonical ensemble from (4.24) at temperature T = 1/�,
with hÔi� = Tr Ô⇢̂HO, one has hx̂i� = 0 and hp̂i� = 0,
and the full variances �(�) in the thermal state are readily
computed (or read o↵ from (4.25)) as,

�(�)
xx

= hx̂2
i� =

1

!0

⇣
nB(!0) +

1

2

⌘
, (4.30a)

�(�)
pp

= hp̂2
i� = !0

⇣
nB(!0) +

1

2

⌘
, (4.30b)

�(�)
xp

=
1

2
hx̂p̂ + p̂x̂i� = 0, (4.30c)

where nB(!0) = 1/(exp(�!0) � 1) is the Bose-Einstein
distribution. We therefore see here explicitly that the

full thermal widths �(�)
xx and �(�)

pp of the oscillator’s phase-
space variables can be split into purely thermal or ‘clas-
sical’ parts �c

xx
, �c

pp
plus the purely ‘quantum’ parts �0

xx
,

�0
pp

from minimal uncertainty, as noted in Ref. [26], i.e.

�(�)
xx

= �c

xx
+ �0

xx
, �(�)

pp
= �c

pp
+ �0

pp
, (4.31)

with

�c

xx
= nB(!0)/!0, �c

pp
= !0 nB(!0). (4.32)

The minimal-uncertainty variances are already included
in each coherent pure state. To define a mixed Gaussian

state ⇢̂G with the variances of the thermal equilibrium
ensemble, we therefore only include the classical thermal
widths of (4.32) in the incoherent sum [26], defining

⇢̂G = (4.33)

Ñ

Z
dX dP exp

(
�

X2

2�c
xx

�
P 2

2�c
pp

)
|X, P ihX,P |,

with normalization factor Ñ , ensuring that Tr ⇢̂G = 1,
and which is clearly of the form (4.10). The index G
here emphasizes that such a mixed Gaussian state is in
general not equal to the mixed thermal quantum state ⇢̂Q

in the canonical ensemble.2 For the harmonic oscillator
in Eq. (4.24), however, we have ⇢̂HO = ⇢̂G.

One may directly verify that such a thermal state is
indeed a stationary solution of the harmonic Gaussian
equations of motion (4.6a), (4.6b) and (4.8a) – (4.8c). In
general, it maps Gaussian states to Gaussian states in the
Hilbert space, as required. This finishes the discussion of
the Gaussian thermal state of a single harmonic oscil-
lator, and we now continue to model the entire system
consisting of our anharmonic oscillator coupled to an en-
semble of harmonic oscillators, in mixed Gaussian states
with thermal variances as described here, reintroducing
the heat-bath index s.

3. Heisenberg-Langevin equations in the GSA

We now turn to the form of the Heisenberg-Langevin
equations of motion (4.15a), (4.15b) evaluated in the
Gaussian approximation. Steps (i) and (ii) from the
quantum equations of motion (4.15a), (4.15b) with the
Ohmic bath (4.18), on time scales ⇤t � 1 for a su�-
ciently large cuto↵ ⇤, cf. (4.19), lead to

d

dt
X = P, (4.34a)

d

dt
P = �

✓
!2

0 +
�

2
�xx

◆
X �

�

6
X3

� �P + ⇠(t),

(4.34b)

for the center (X, P ). The derivation is the same as the
one for the classical Langevin equations of motion, except
for the application of Wick’s theorem to the 3-point cor-
relator hx̂3(t)i. The fluctuating force term ⇠(t) is given
by the expectation value of the quantum stochastic force
⇠̂(t) from (4.16), where the transient initial shift vanishes

2
While every coherent state is Gaussian, the converse is not true.

There are pure states that are Gaussian, by the definition in

Eq. (4.5), which do not correspond to any coherent state (4.26)

and are therefore not contained in the incoherent sum (4.33).
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↵

=
1

2!0
, (4.29a)

�0
pp

⌘ hp̂2
i↵ � hp̂i

2
↵

=
!0

2
, (4.29b)

�0
xp

⌘
1

2
hx̂p̂ + p̂x̂i↵ � hx̂i↵hp̂i↵ = 0. (4.29c)

On the other hand, for the mixed equilibrium state in the
canonical ensemble from (4.24) at temperature T = 1/�,
with hÔi� = Tr Ô⇢̂HO, one has hx̂i� = 0 and hp̂i� = 0,
and the full variances �(�) in the thermal state are readily
computed (or read o↵ from (4.25)) as,

�(�)
xx

= hx̂2
i� =

1

!0

⇣
nB(!0) +

1

2

⌘
, (4.30a)

�(�)
pp

= hp̂2
i� = !0

⇣
nB(!0) +

1

2

⌘
, (4.30b)

�(�)
xp

=
1

2
hx̂p̂ + p̂x̂i� = 0, (4.30c)

where nB(!0) = 1/(exp(�!0) � 1) is the Bose-Einstein
distribution. We therefore see here explicitly that the

full thermal widths �(�)
xx and �(�)

pp of the oscillator’s phase-
space variables can be split into purely thermal or ‘clas-
sical’ parts �c

xx
, �c

pp
plus the purely ‘quantum’ parts �0

xx
,

�0
pp

from minimal uncertainty, as noted in Ref. [26], i.e.

�(�)
xx

= �c

xx
+ �0

xx
, �(�)

pp
= �c

pp
+ �0

pp
, (4.31)

with

�c

xx
= nB(!0)/!0, �c

pp
= !0 nB(!0). (4.32)

The minimal-uncertainty variances are already included
in each coherent pure state. To define a mixed Gaussian

state ⇢̂G with the variances of the thermal equilibrium
ensemble, we therefore only include the classical thermal
widths of (4.32) in the incoherent sum [26], defining

⇢̂G = (4.33)

Ñ

Z
dX dP exp

(
�

X2

2�c
xx

�
P 2

2�c
pp

)
|X, P ihX,P |,

with normalization factor Ñ , ensuring that Tr ⇢̂G = 1,
and which is clearly of the form (4.10). The index G
here emphasizes that such a mixed Gaussian state is in
general not equal to the mixed thermal quantum state ⇢̂Q

in the canonical ensemble.2 For the harmonic oscillator
in Eq. (4.24), however, we have ⇢̂HO = ⇢̂G.

One may directly verify that such a thermal state is
indeed a stationary solution of the harmonic Gaussian
equations of motion (4.6a), (4.6b) and (4.8a) – (4.8c). In
general, it maps Gaussian states to Gaussian states in the
Hilbert space, as required. This finishes the discussion of
the Gaussian thermal state of a single harmonic oscil-
lator, and we now continue to model the entire system
consisting of our anharmonic oscillator coupled to an en-
semble of harmonic oscillators, in mixed Gaussian states
with thermal variances as described here, reintroducing
the heat-bath index s.

3. Heisenberg-Langevin equations in the GSA

We now turn to the form of the Heisenberg-Langevin
equations of motion (4.15a), (4.15b) evaluated in the
Gaussian approximation. Steps (i) and (ii) from the
quantum equations of motion (4.15a), (4.15b) with the
Ohmic bath (4.18), on time scales ⇤t � 1 for a su�-
ciently large cuto↵ ⇤, cf. (4.19), lead to

d

dt
X = P, (4.34a)

d

dt
P = �

✓
!2

0 +
�

2
�xx

◆
X �

�

6
X3

� �P + ⇠(t),

(4.34b)

for the center (X, P ). The derivation is the same as the
one for the classical Langevin equations of motion, except
for the application of Wick’s theorem to the 3-point cor-
relator hx̂3(t)i. The fluctuating force term ⇠(t) is given
by the expectation value of the quantum stochastic force
⇠̂(t) from (4.16), where the transient initial shift vanishes

2
While every coherent state is Gaussian, the converse is not true.

There are pure states that are Gaussian, by the definition in

Eq. (4.5), which do not correspond to any coherent state (4.26)

and are therefore not contained in the incoherent sum (4.33).
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with the stationary value (4.42) of �xx(t) for su�ciently
late times, and (b) a modified colored noise ⇠(t), which
we will specify in Subsection IV B 5 below. At very high
temperatures, the frequency shift is negligible, and the
noise becomes white again, such that the correct classical
limit is guaranteed to be recovered in this static approx-
imation.

In the other direction, to go beyond the adiabatic ap-
proximation, one could in principle include the feedback
of the time dependence of the curvature C(t) in (4.37) on
the o↵-diagonal variances between system particle and
heat-bath oscillators via post-adiabatic corrections in the
spirit of time-dependent perturbation theory, in the fu-
ture, as briefly outlined in Appendix A1 as well. For the
results presented below, we have either used the static ap-
proximation with constant C0, cf. Eqs. (A.26a) – (A.26c),
or the adiabatic approximation in Eqs. (4.38a) – (4.38c),
for comparison.

4. Initial Conditions

In the adiabatic approximation the thermal equilib-
rium value C0 is an inital condition that has to be know
beforehand. It can be obtained by maximizing the von
Neumann entropy at fixed energy.

For a mixed Gaussian state of our single bosonic degree
of freedom the von Neumann entropy S = �Tr(⇢̂ ln ⇢̂) can
be written in terms of the symplectic eigenvalue

f =
q

�xx�pp � �2
xp

of the correlation matrix

⌃ =

✓
�xx �xp

�xp �pp

◆
, (4.44)

which is related to the pair of eigenvalues �± = ±if of
⌃⌦, where ⌦ is the symplectic matrix for the canonically
conjugate variables x and p. Thermal equilibrium implies
�xp = 0 and we thus have f =

p
�xx�pp.

The von Neumann entropy can then be written as

S =
�
f + 1

2

�
ln
�
f + 1

2

�
�
�
f �

1
2

�
ln
�
f �

1
2

�
. (4.45)

Because we also have X = 0 and P = 0 in thermal equi-
librium, the expectation value of energy in the Gaussian
state reduces to

E =
1

2
�pp +

!2
0

2
�xx +

�

8
�2

xx
. (4.46)

We can thus express �pp in terms of E and �xx and write

f2 = 2E�xx � !2
0�2

xx
�

�

4
�3

xx
. (4.47)

Because the entropy (4.45) increases monotonically with
f , it reaches its maximum when f does, which is the case

when @f2/@�xx = 0. This yields

E = !2
0�xx +

3�

8
�2

xx
, (4.48)

f2 =

✓
!2

0 +
�

2
�xx

◆
�2

xx
. (4.49)

The temperature T is now introduced using

T =
@E

@S
=

@E

@f

✓
@S

@f

◆�1

=
@E

@�xx

✓
@f

@�xx

◆�1✓@S

@f

◆�1

.

Working out the partial derivatives with respect to f and
�xx, we thus obtain

T =

r
!2

0 +
�

2
�xx

0

B@ln
�xx

q
!2

0 + �

2 �xx + 1
2

�xx

q
!2

0 + �

2 �xx �
1
2

1

CA

�1

=
p

C0

 
ln

4
�
C0 � !2

0

�p
C0 + �

4
�
C0 � !2

0

�p
C0 � �

!�1

, (4.50)

with C0 = !2
0 + �

2 �xx in the interacting case for � 6= 0.
Before we start a simulation at a given the temperature,
we can therefore calculate C0 numerically via (4.50). In
the static approximation this is then fixed, and so is �xx

in the HLEs (4.34a) and (4.34b) for X and P .
The underlying initial conditions for the widths �'s's

and �⇡s⇡s of the heat-bath oscillators in Eq. (4.23)
correspond to the thermal harmonic-oscillator variances
Eqs. (4.30a) – (4.30c), with additional o↵-diagonal cou-
plings �x's between system and bath suddenly switched
on at t = 0 as explained in more detail in Appendix A1 b.

One crucial point left to mention here, however, is that
beyond the static approximation, the widths �xx, �pp, �xp

actually do evolve non-trivially in time, even in the adia-
batic approximation, when C(t) is assumed to vary slowly
in time. This is because the relaxation time for the
widths of the system particle to approach their stationary
limits is given by 1/�, and this relaxation time is in gen-
eral not negligible compared to the characteristic time
scale �t of the variations �C(t). Assuming, in the adi-
abatic approximation, that the heat-bath dof’s are fast
compared to this characteristic time �t is totally di↵erent
from assuming that 1/� is. In fact, for small damping �
we expect to have 1/� � �t � 2⇡/!s for the relevant
high frequencies that dominate the Ohmic bath. We will
further comment on this in Section IVB 6 below, after
elaborating on the colored noise needed in either case.

5. Colored Noise

Step (iii) in our approach to modelling the heat bath
in the GSA by the quantum mechanical expectation
value ⇠(t) ⌘ h⇠̂(t)i of the stochastic quantum force from
Eq. (4.35) requires specifying initial conditions for the
thermal correlations of the bath oscillator expectation

covariance matrix
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with the stationary value (4.42) of �xx(t) for su�ciently
late times, and (b) a modified colored noise ⇠(t), which
we will specify in Subsection IV B 5 below. At very high
temperatures, the frequency shift is negligible, and the
noise becomes white again, such that the correct classical
limit is guaranteed to be recovered in this static approx-
imation.

In the other direction, to go beyond the adiabatic ap-
proximation, one could in principle include the feedback
of the time dependence of the curvature C(t) in (4.37) on
the o↵-diagonal variances between system particle and
heat-bath oscillators via post-adiabatic corrections in the
spirit of time-dependent perturbation theory, in the fu-
ture, as briefly outlined in Appendix A1 as well. For the
results presented below, we have either used the static ap-
proximation with constant C0, cf. Eqs. (A.26a) – (A.26c),
or the adiabatic approximation in Eqs. (4.38a) – (4.38c),
for comparison.

4. Initial Conditions

In the adiabatic approximation the thermal equilib-
rium value C0 is an inital condition that has to be know
beforehand. It can be obtained by maximizing the von
Neumann entropy at fixed energy.

For a mixed Gaussian state of our single bosonic degree
of freedom the von Neumann entropy S = �Tr(⇢̂ ln ⇢̂) can
be written in terms of the symplectic eigenvalue

f =
q

�xx�pp � �2
xp

of the correlation matrix

⌃ =

✓
�xx �xp

�xp �pp

◆
, (4.44)

which is related to the pair of eigenvalues �± = ±if of
⌃⌦, where ⌦ is the symplectic matrix for the canonically
conjugate variables x and p. Thermal equilibrium implies
�xp = 0 and we thus have f =

p
�xx�pp.

The von Neumann entropy can then be written as

S =
�
f + 1

2

�
ln
�
f + 1

2

�
�
�
f �

1
2

�
ln
�
f �

1
2

�
. (4.45)

Because we also have X = 0 and P = 0 in thermal equi-
librium, the expectation value of energy in the Gaussian
state reduces to

E =
1

2
�pp +

!2
0

2
�xx +

�

8
�2

xx
. (4.46)

We can thus express �pp in terms of E and �xx and write

f2 = 2E�xx � !2
0�2

xx
�

�

4
�3

xx
. (4.47)

Because the entropy (4.45) increases monotonically with
f , it reaches its maximum when f does, which is the case

when @f2/@�xx = 0. This yields

E = !2
0�xx +

3�

8
�2

xx
, (4.48)

f2 =

✓
!2

0 +
�

2
�xx

◆
�2

xx
. (4.49)

The temperature T is now introduced using

T =
@E

@S
=

@E

@f

✓
@S

@f

◆�1

=
@E

@�xx

✓
@f

@�xx

◆�1✓@S

@f

◆�1

.

Working out the partial derivatives with respect to f and
�xx, we thus obtain

T =

r
!2

0 +
�

2
�xx

0

B@ln
�xx

q
!2

0 + �

2 �xx + 1
2

�xx

q
!2

0 + �

2 �xx �
1
2

1

CA

�1

=
p

C0

 
ln

4
�
C0 � !2

0

�p
C0 + �

4
�
C0 � !2

0

�p
C0 � �

!�1

, (4.50)

with C0 = !2
0 + �

2 �xx in the interacting case for � 6= 0.
Before we start a simulation at a given the temperature,
we can therefore calculate C0 numerically via (4.50). In
the static approximation this is then fixed, and so is �xx

in the HLEs (4.34a) and (4.34b) for X and P .
The underlying initial conditions for the widths �'s's

and �⇡s⇡s of the heat-bath oscillators in Eq. (4.23)
correspond to the thermal harmonic-oscillator variances
Eqs. (4.30a) – (4.30c), with additional o↵-diagonal cou-
plings �x's between system and bath suddenly switched
on at t = 0 as explained in more detail in Appendix A1 b.

One crucial point left to mention here, however, is that
beyond the static approximation, the widths �xx, �pp, �xp

actually do evolve non-trivially in time, even in the adia-
batic approximation, when C(t) is assumed to vary slowly
in time. This is because the relaxation time for the
widths of the system particle to approach their stationary
limits is given by 1/�, and this relaxation time is in gen-
eral not negligible compared to the characteristic time
scale �t of the variations �C(t). Assuming, in the adi-
abatic approximation, that the heat-bath dof’s are fast
compared to this characteristic time �t is totally di↵erent
from assuming that 1/� is. In fact, for small damping �
we expect to have 1/� � �t � 2⇡/!s for the relevant
high frequencies that dominate the Ohmic bath. We will
further comment on this in Section IVB 6 below, after
elaborating on the colored noise needed in either case.

5. Colored Noise

Step (iii) in our approach to modelling the heat bath
in the GSA by the quantum mechanical expectation
value ⇠(t) ⌘ h⇠̂(t)i of the stochastic quantum force from
Eq. (4.35) requires specifying initial conditions for the
thermal correlations of the bath oscillator expectation
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with the stationary value (4.42) of �xx(t) for su�ciently
late times, and (b) a modified colored noise ⇠(t), which
we will specify in Subsection IV B 5 below. At very high
temperatures, the frequency shift is negligible, and the
noise becomes white again, such that the correct classical
limit is guaranteed to be recovered in this static approx-
imation.

In the other direction, to go beyond the adiabatic ap-
proximation, one could in principle include the feedback
of the time dependence of the curvature C(t) in (4.37) on
the o↵-diagonal variances between system particle and
heat-bath oscillators via post-adiabatic corrections in the
spirit of time-dependent perturbation theory, in the fu-
ture, as briefly outlined in Appendix A1 as well. For the
results presented below, we have either used the static ap-
proximation with constant C0, cf. Eqs. (A.26a) – (A.26c),
or the adiabatic approximation in Eqs. (4.38a) – (4.38c),
for comparison.

4. Initial Conditions

In the adiabatic approximation the thermal equilib-
rium value C0 is an inital condition that has to be know
beforehand. It can be obtained by maximizing the von
Neumann entropy at fixed energy.

For a mixed Gaussian state of our single bosonic degree
of freedom the von Neumann entropy S = �Tr(⇢̂ ln ⇢̂) can
be written in terms of the symplectic eigenvalue

f =
q

�xx�pp � �2
xp

of the correlation matrix

⌃ =

✓
�xx �xp

�xp �pp

◆
, (4.44)

which is related to the pair of eigenvalues �± = ±if of
⌃⌦, where ⌦ is the symplectic matrix for the canonically
conjugate variables x and p. Thermal equilibrium implies
�xp = 0 and we thus have f =

p
�xx�pp.

The von Neumann entropy can then be written as

S =
�
f + 1

2

�
ln
�
f + 1

2

�
�
�
f �

1
2

�
ln
�
f �

1
2

�
. (4.45)

Because we also have X = 0 and P = 0 in thermal equi-
librium, the expectation value of energy in the Gaussian
state reduces to

E =
1

2
�pp +

!2
0

2
�xx +

�

8
�2

xx
. (4.46)

We can thus express �pp in terms of E and �xx and write

f2 = 2E�xx � !2
0�2

xx
�

�

4
�3

xx
. (4.47)

Because the entropy (4.45) increases monotonically with
f , it reaches its maximum when f does, which is the case

when @f2/@�xx = 0. This yields

E = !2
0�xx +

3�

8
�2

xx
, (4.48)

f2 =

✓
!2

0 +
�

2
�xx

◆
�2

xx
. (4.49)

The temperature T is now introduced using

T =
@E

@S
=

@E

@f

✓
@S

@f

◆�1

=
@E

@�xx

✓
@f

@�xx

◆�1✓@S

@f

◆�1

.

Working out the partial derivatives with respect to f and
�xx, we thus obtain

T =

r
!2

0 +
�

2
�xx

0

B@ln
�xx

q
!2

0 + �

2 �xx + 1
2

�xx

q
!2

0 + �

2 �xx �
1
2

1

CA

�1

=
p

C0

 
ln

4
�
C0 � !2

0

�p
C0 + �

4
�
C0 � !2

0

�p
C0 � �

!�1

, (4.50)

with C0 = !2
0 + �

2 �xx in the interacting case for � 6= 0.
Before we start a simulation at a given the temperature,
we can therefore calculate C0 numerically via (4.50). In
the static approximation this is then fixed, and so is �xx

in the HLEs (4.34a) and (4.34b) for X and P .
The underlying initial conditions for the widths �'s's

and �⇡s⇡s of the heat-bath oscillators in Eq. (4.23)
correspond to the thermal harmonic-oscillator variances
Eqs. (4.30a) – (4.30c), with additional o↵-diagonal cou-
plings �x's between system and bath suddenly switched
on at t = 0 as explained in more detail in Appendix A1 b.

One crucial point left to mention here, however, is that
beyond the static approximation, the widths �xx, �pp, �xp

actually do evolve non-trivially in time, even in the adia-
batic approximation, when C(t) is assumed to vary slowly
in time. This is because the relaxation time for the
widths of the system particle to approach their stationary
limits is given by 1/�, and this relaxation time is in gen-
eral not negligible compared to the characteristic time
scale �t of the variations �C(t). Assuming, in the adi-
abatic approximation, that the heat-bath dof’s are fast
compared to this characteristic time �t is totally di↵erent
from assuming that 1/� is. In fact, for small damping �
we expect to have 1/� � �t � 2⇡/!s for the relevant
high frequencies that dominate the Ohmic bath. We will
further comment on this in Section IVB 6 below, after
elaborating on the colored noise needed in either case.

5. Colored Noise

Step (iii) in our approach to modelling the heat bath
in the GSA by the quantum mechanical expectation
value ⇠(t) ⌘ h⇠̂(t)i of the stochastic quantum force from
Eq. (4.35) requires specifying initial conditions for the
thermal correlations of the bath oscillator expectation

• von Neumann entropy:
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with the stationary value (4.42) of �xx(t) for su�ciently
late times, and (b) a modified colored noise ⇠(t), which
we will specify in Subsection IV B 5 below. At very high
temperatures, the frequency shift is negligible, and the
noise becomes white again, such that the correct classical
limit is guaranteed to be recovered in this static approx-
imation.

In the other direction, to go beyond the adiabatic ap-
proximation, one could in principle include the feedback
of the time dependence of the curvature C(t) in (4.37) on
the o↵-diagonal variances between system particle and
heat-bath oscillators via post-adiabatic corrections in the
spirit of time-dependent perturbation theory, in the fu-
ture, as briefly outlined in Appendix A1 as well. For the
results presented below, we have either used the static ap-
proximation with constant C0, cf. Eqs. (A.26a) – (A.26c),
or the adiabatic approximation in Eqs. (4.38a) – (4.38c),
for comparison.

4. Initial Conditions

In the adiabatic approximation the thermal equilib-
rium value C0 is an inital condition that has to be know
beforehand. It can be obtained by maximizing the von
Neumann entropy at fixed energy.

For a mixed Gaussian state of our single bosonic degree
of freedom the von Neumann entropy S = �Tr(⇢̂ ln ⇢̂) can
be written in terms of the symplectic eigenvalue

f =
q

�xx�pp � �2
xp

of the correlation matrix

⌃ =

✓
�xx �xp

�xp �pp

◆
, (4.44)

which is related to the pair of eigenvalues �± = ±if of
⌃⌦, where ⌦ is the symplectic matrix for the canonically
conjugate variables x and p. Thermal equilibrium implies
�xp = 0 and we thus have f =

p
�xx�pp.

The von Neumann entropy can then be written as

S =
�
f + 1

2

�
ln
�
f + 1

2

�
�
�
f �

1
2

�
ln
�
f �

1
2

�
. (4.45)

Because we also have X = 0 and P = 0 in thermal equi-
librium, the expectation value of energy in the Gaussian
state reduces to

E =
1

2
�pp +

!2
0

2
�xx +

�

8
�2

xx
. (4.46)

We can thus express �pp in terms of E and �xx and write

f2 = 2E�xx � !2
0�2

xx
�

�

4
�3

xx
. (4.47)

Because the entropy (4.45) increases monotonically with
f , it reaches its maximum when f does, which is the case

when @f2/@�xx = 0. This yields

E = !2
0�xx +

3�

8
�2

xx
, (4.48)

f2 =

✓
!2

0 +
�

2
�xx

◆
�2

xx
. (4.49)

The temperature T is now introduced using

T =
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@S
=
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✓
@S
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◆�1

=
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.

Working out the partial derivatives with respect to f and
�xx, we thus obtain

T =
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, (4.50)

with C0 = !2
0 + �

2 �xx in the interacting case for � 6= 0.
Before we start a simulation at a given the temperature,
we can therefore calculate C0 numerically via (4.50). In
the static approximation this is then fixed, and so is �xx

in the HLEs (4.34a) and (4.34b) for X and P .
The underlying initial conditions for the widths �'s's

and �⇡s⇡s of the heat-bath oscillators in Eq. (4.23)
correspond to the thermal harmonic-oscillator variances
Eqs. (4.30a) – (4.30c), with additional o↵-diagonal cou-
plings �x's between system and bath suddenly switched
on at t = 0 as explained in more detail in Appendix A1 b.

One crucial point left to mention here, however, is that
beyond the static approximation, the widths �xx, �pp, �xp

actually do evolve non-trivially in time, even in the adia-
batic approximation, when C(t) is assumed to vary slowly
in time. This is because the relaxation time for the
widths of the system particle to approach their stationary
limits is given by 1/�, and this relaxation time is in gen-
eral not negligible compared to the characteristic time
scale �t of the variations �C(t). Assuming, in the adi-
abatic approximation, that the heat-bath dof’s are fast
compared to this characteristic time �t is totally di↵erent
from assuming that 1/� is. In fact, for small damping �
we expect to have 1/� � �t � 2⇡/!s for the relevant
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5. Colored Noise

Step (iii) in our approach to modelling the heat bath
in the GSA by the quantum mechanical expectation
value ⇠(t) ⌘ h⇠̂(t)i of the stochastic quantum force from
Eq. (4.35) requires specifying initial conditions for the
thermal correlations of the bath oscillator expectation
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characterize the dispersions of the wave packet, and N is
a normalization factor.

Equations (4.2a) and (4.2b) are then averaged over the
Gaussian state with the Wigner function (4.5). Applying
Wick’s theorem as needed, one then obtains

d

dt
X = P, (4.6a)

d

dt
P = �!2
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�
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⌘
. (4.6b)

To evolve the dispersions �xx, �xp, and �pp, the Heisen-
berg equations for the corresponding symmetrized oper-
ator products are employed
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Averaging equations (4.7a) – (4.7c) over the Gaussian
state with the Wigner function (4.5), applying Wick’s
theorem, and subtracting the disconnected contributions,
the remaining equations of motion are obtained as
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�
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where we have introduced the curvature of the potential

C
�
X,�xx

�
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�

2
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X2 + �xx

⌘
. (4.9)

The equations of motion (4.6a), (4.6b) and (4.8a) – (4.8c)
can be integrated numerically using a symplectic leapfrog
algorithm, as described in Appendix A 3, to obtain a com-
plete description of the Gaussian state at any time.

We conclude this section with some general remarks on
the formal structure of the GSA which will be particu-
larly relevant for the systematic construction of a thermal
equilibrium state in Section IV B 2 below.

• In general, we call a (possibly mixed) state ⇢̂ Gaus-
sian, if its Wigner transform (4.3) has the form of
a Gaussian probability distribution (4.5) for some
X,P,�xx,�xp,�pp, with obvious generalization to
an arbitrary number of degrees of freedom, where
the �’s are replaced by the covariance matrix ⌃.

• Note that a Gaussian state ⇢̂G defined in this way is
not necessarily a pure state. This can be seen most
easily by calculating the von Neumann entropy [26].

One observes that the purity of a Gaussian state is
related to the determinant det ⌃ of the covariance
matrix ⌃. This determinant is a product of pairs of
symplectic eigenvalues fk, one per bosonic degree
of freedom (dof). With Ndof of them, Heisenberg’s
uncertainty relation then implies that

det ⌃ =
NdofY

k

f2
k

�

⇣1

4

⌘Ndof

.

On the other hand, the von Neumann entropy van-
ishes and the Gaussian state is pure, if and only
if fk = 1/2 for all dof’s. For a single degree of
freedom as above, for example, we have

f =
q
�xx�pp � �2

xp

and restricting to pure Gaussian states therefore
defines a non-linear subset G ⇢ H = L2(R) of the
full Hilbert space (of square-integrable functions)
which can be parametrized by a 4-dimensional
manifold with X, P 2 (�1, 1), �xx, �pp 2 (0, 1)
and constrained by �xx�pp � 1/4. To ensure
that the von Neumann entropy vanishes, the o↵-
diagonal variance is then fixed up to a sign by
�xp = ±

p
�xx�pp � 1/4.

• To describe more general Gaussian states ⇢̂G, we
again follow Ref. [26] and define the set of mixed
Gaussian states in terms of those density operators
that can be written as mixtures of the pure Gaus-
sian states in G,

⇢̂G =
XZ

 2G

p( )| ih |, (4.10)

with probabilities p( ) that are Gaussian likewise.

B. Caldeira-Leggett model

In order to study the dynamical properties of ther-
mal equilibrium states, we introduce a coupling between
the system, our anharmonic oscillator we will also refer
to as the particle, and the environment consisting of an
ensemble of harmonic oscillators, which models a fixed-
temperature heat bath. Such a model in the canonical
operator formalism as well as in the functional path in-
tegral formulation (after Feynman and Vernon) has been
discussed frequently in the literature, see for example
Refs. [18, 19, 47–55]. Often Born and Markov approxi-
mations are employed, leading to master equations which
are easy to solve but not generally accurate. Exact solu-
tions also have been obtained analytically [55]. However,
this is unfortunately not the case for the anharmonic os-
cillator.

The total Hamiltonian under consideration then con-
sists of those of the system S, the heat bath B together

if and only if pure
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We therefore denote these coherent states simply by the
two real phase-space variables in the following, i.e.

|X, P i ⌘ |↵i. (4.28)

The coherent states of the harmonic oscillator have mini-
mal uncertainty with

�0
xx

⌘ hx̂2
i↵ � hx̂i

2
↵

=
1

2!0
, (4.29a)

�0
pp

⌘ hp̂2
i↵ � hp̂i

2
↵

=
!0

2
, (4.29b)

�0
xp

⌘
1

2
hx̂p̂ + p̂x̂i↵ � hx̂i↵hp̂i↵ = 0. (4.29c)

On the other hand, for the mixed equilibrium state in the
canonical ensemble from (4.24) at temperature T = 1/�,
with hÔi� = Tr Ô⇢̂HO, one has hx̂i� = 0 and hp̂i� = 0,
and the full variances �(�) in the thermal state are readily
computed (or read o↵ from (4.25)) as,

�(�)
xx

= hx̂2
i� =

1

!0

⇣
nB(!0) +

1

2

⌘
, (4.30a)

�(�)
pp

= hp̂2
i� = !0

⇣
nB(!0) +

1

2

⌘
, (4.30b)

�(�)
xp

=
1

2
hx̂p̂ + p̂x̂i� = 0, (4.30c)

where nB(!0) = 1/(exp(�!0) � 1) is the Bose-Einstein
distribution. We therefore see here explicitly that the

full thermal widths �(�)
xx and �(�)

pp of the oscillator’s phase-
space variables can be split into purely thermal or ‘clas-
sical’ parts �c

xx
, �c

pp
plus the purely ‘quantum’ parts �0

xx
,

�0
pp

from minimal uncertainty, as noted in Ref. [23], i.e.

�(�)
xx

= �c

xx
+ �0

xx
, �(�)

pp
= �c

pp
+ �0

pp
, (4.31)

with

�c

xx
= nB(!0)/!0, �c

pp
= !0 nB(!0). (4.32)

The minimal-uncertainty variances are already included
in each coherent pure state. To define a mixed Gaussian
state ⇢̂G with the variances of the thermal equilibrium
ensemble, we therefore only include the classical thermal
widths of (4.32) in the incoherent sum [23], defining

⇢̂G = (4.33)

Ñ

Z
dX dP exp

(
�

X2

2�c
xx

�
P 2

2�c
pp

)
|X, P ihX, P |,

with normalization factor Ñ , ensuring that Tr ⇢̂G = 1,
and which is clearly of the form (4.10). The index G
here emphasizes that such a mixed Gaussian state is in
general not equal to the mixed thermal quantum state ⇢̂Q

in the canonical ensemble.2 For the harmonic oscillator
in Eq. (4.24), however, we have ⇢̂HO = ⇢̂G.

2
While every coherent state is Gaussian, the converse is not true.

There are pure states that are Gaussian, by the definition in

Eq. (4.5), which do not correspond to any coherent state (4.26)

and are therefore not contained in the incoherent sum (4.33).

One may directly verify that such a thermal state is
indeed a stationary solution of the harmonic Gaussian
equations of motion (4.6a), (4.6b) and (4.8a) – (4.8c). In
general, it maps Gaussian states to Gaussian states in the
Hilbert space, as required. This finishes the discussion of
the Gaussian thermal state of a single harmonic oscil-
lator, and we now continue to model the entire system
consisting of our anharmonic oscillator coupled to an en-
semble of harmonic oscillators, in mixed Gaussian states
with thermal variances as described here, reintroducing
the heat-bath index s.

3. Heisenberg-Langevin equations in the GSA

We now turn to the form of the Heisenberg-Langevin
equations of motion (4.15a), (4.15b) evaluated in the
Gaussian approximation. Steps (i) and (ii) from the
quantum equations of motion (4.15a), (4.15b) with the
Ohmic bath (4.18), on time scales ⇤t � 1 for a su�-
ciently large cuto↵ ⇤, cf. (4.19), lead to

d

dt
X = P, (4.34a)

d

dt
P = �

✓
!2

0 +
�

2
�xx

◆
X �

�

6
X3

� �P + ⇠(t),

(4.34b)

for the center (X, P ). The derivation is the same as the
one for the classical Langevin equations of motion, except
for the application of Wick’s theorem to the 3-point cor-
relator hx̂3(t)i. The fluctuating force term ⇠(t) is given
by the expectation value of the quantum stochastic force
⇠̂(t) from (4.16), where the transient initial shift vanishes
if the expectation value of x̂(0) does,

⇠(t) ⌘ h⇠̂(t)i = h⌘̂(t)i � �(t)hx̂(0)i (4.35)

=
X

s

gs


�s(0) cos(!st) +

⇧s(0)

!s

sin(!st)

�
.

It thus only depends on the initial conditions of the bath
oscillators’ phase-space variables �s(0), ⇧s(0). Although
no-longer operator valued and hence classical, this GSA
noise ⇠(t) is colored in general, however, as we will discuss
in Subsection IVB 5 below.

For the Gaussian widths, the analogous averaging of
step (i) leads to

d

dt
�xx = 2�xp, (4.36a)

d

dt
�xp = �pp � �xxC(X, �xx) � ��xp (4.36b)

+ hhx̂(t)⌘̂(t)ii � 2��(t)�xx(0),

d

dt
�pp = �2�xpC(X, �xx) � 2��pp (4.36c)

+ 2hhp̂(t)⌘̂(t)ii � 4��(t)�xp(0).
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On the other hand, for the mixed equilibrium state in the
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general not equal to the mixed thermal quantum state ⇢̂Q
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for the center (X, P ). The derivation is the same as the
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relator hx̂3(t)i. The fluctuating force term ⇠(t) is given
by the expectation value of the quantum stochastic force
⇠̂(t) from (4.16), where the transient initial shift vanishes
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Here we have already assumed the Ohmic heat bath
J⇤(!) in the limit ⇤ ! 1 where the memory integrals
collapse, cf. (4.19). The initial delta-functions can then
safely be neglected.

On the other hand, the irreducible correlators of the os-
cillator particle’s position and momentum with the fluc-
tuating force operator, hhx̂(t)⌘̂(t)ii and hhp̂(t)⌘̂(t)ii, both
contain a logarithmically divergent contribution d(⇤) ⇠

ln(⇤/C0) where C0 is the t = 0 initial value of the time-
dependent curvature of the potential,

C(t) ⌘ C(X, �xx) = !2
0 +

�

2
(X2(t) + �xx(t)). (4.37)

We will show in Appendix A 1 that this divergence can
be absorbed by a formally infinite but time-independent
shift of the particle’s momentum width �pp ! �pp �d(⇤)
in such a way that it cancels from both equations (4.36b)
and (4.36c) which then describe the time dependence of
the ultraviolet-finite part of �pp, together with finite �xp

and �xx at all times. Note that the divergence of �pp

with ⇤ ! 1 is an unavoidable e↵ect of the unrealistic
assumption of an Ohmic bath without ultraviolet (UV)
cuto↵. It can be interpreted as corresponding to the bath
continuously ‘measuring’ the position of the particle with
arbitrarily high ‘resolution’ without UV cuto↵ for ⇤ ! 1

[15, 46].
Finally, for the evaluation of the irreducible correlators

hhx̂(t)⌘̂(t)ii and hhp̂(t)⌘̂(t)ii according to rules (ii) and (iii),
we need to make an additional adiabatic approximation
as explained explicitly also in Appendix A 1. In this adi-
abatic approximation we assume that we can average the
curvature C of the potential in (4.37) over time scales
that are large compared to the relaxation time of the
heat bath. The heat-bath oscillators are then considered
as the fast degrees of freedom that can adjust to slow
changes in the curvature C(t). This adiabatic approxi-
mation then yields for the Gaussian widths,

d

dt
�xx = 2�xp, (4.38a)

d

dt
�xp = �pp � C(t)�xx � ��xp (4.38b)

+ C(t)F
�
C(t)

�
� �K

�
C(t)

�
,

d

dt
�pp = �2C(t)�xp � 2��pp + 2��K

�
C(t)

�
, (4.38c)

where for the Ohmic bath J⇤(!) with ⇤ ! 1 the fluctu-
ating force hhx̂(t)⌘̂(t)ii after ultraviolet subtraction yields
CF � �K . The first contribution is obtained from

F (C) =
1

2!C

✓
1

2
+

1

⇡
arctan

⇣!2
C � �2/4

�!C

⌘◆
(4.39)

upon inserting C(t) together with an equally slowly vary-
ing frequency

!C(t) ⌘

p
C(t) � �2/4 > 0, (4.40)

assuming weak damping. The second contribution to the
fluctuating force is the ultraviolet subtracted one, given
by

�K

�
C(t)

�
=

�
C(t) � �2/2

�
F
�
C(t)

�
(4.41)

�
�
C0 � �2/2

�
F
�
C0

�
�

�

2⇡
ln

C(t)

C0
,

which determines the relevant (ultraviolet-finite) part of
the fluctuating force hhp̂(t)⌘̂(t)ii on the ultraviolet sub-
tracted �pp as well, and which vanishes when C ⌘ C0 is
used at all times in the static limit, see Appendix A 1.

Together with Eqs. (4.34a) and (4.34b), these equa-
tions for the evolution of the Gaussian widths, from
Eqs. (4.38a) – (4.38c), constitute the full set of equa-
tions of motion for our particle in the anharmonic poten-
tial, and in contact with an external heat bath, i.e. the
Heisenberg-Langevin equations within the GSA in our
adiabatic approximation.

The static approximation is obtained from Eqs. (4.38a)
– (4.38c) by simply using the time-independent C = C0,
for which we have �K(C0) = 0. In this case, the equa-
tions for the widths, cf. (A.26a) – (A.26c), can be solved
independently of those for the coordinates X, P , see Ap-
pendix A 1. The asymptotic behavior of the solution,
cf. Eq. (A.28), uniquely fixes

�xx(t) ! F (C0), for t ! 1. (4.42)

Therefore, with the static solution, there are only two ef-
fects remaining of the GSA in comparison with the classi-
cal time-evolution. These are (a) a time-dependent shift
of the oscillator frequency in Eq. (4.34b),

!2
0 ! !2

0 +
�

2
F (C0), (4.43)

with the stationary value (4.42) of �xx(t) for su�ciently
late times, and (b) a modified colored noise ⇠(t), which
we will specify in Subsection IV B 5 below. At very high
temperatures, the frequency shift is negligible, and the
noise becomes white again, such that the correct classical
limit is guaranteed to be recovered in this static approx-
imation.

In the other direction, to go beyond the adiabatic ap-
proximation, one could in principle include the feedback
of the time dependence of the curvature C(t) in (4.37) on
the o↵-diagonal variances between system particle and
heat-bath oscillators via post-adiabatic corrections in the
spirit of time-dependent perturbation theory, in the fu-
ture, as briefly outlined in Appendix A1 as well. For the
results presented below, we have either used the static ap-
proximation with constant C0, cf. Eqs. (A.26a) – (A.26c),
or the adiabatic approximation in Eqs. (4.38a) – (4.38c),
for comparison.

4. Initial Conditions

In the adiabatic approximation the thermal equilib-
rium value C0 is an inital condition that has to be know
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We therefore denote these coherent states simply by the
two real phase-space variables in the following, i.e.

|X, P i ⌘ |↵i. (4.28)

The coherent states of the harmonic oscillator have mini-
mal uncertainty with

�0
xx

⌘ hx̂2
i↵ � hx̂i

2
↵

=
1

2!0
, (4.29a)

�0
pp

⌘ hp̂2
i↵ � hp̂i

2
↵

=
!0

2
, (4.29b)

�0
xp

⌘
1

2
hx̂p̂ + p̂x̂i↵ � hx̂i↵hp̂i↵ = 0. (4.29c)

On the other hand, for the mixed equilibrium state in the
canonical ensemble from (4.24) at temperature T = 1/�,
with hÔi� = Tr Ô⇢̂HO, one has hx̂i� = 0 and hp̂i� = 0,
and the full variances �(�) in the thermal state are readily
computed (or read o↵ from (4.25)) as,

�(�)
xx

= hx̂2
i� =

1

!0

⇣
nB(!0) +

1

2

⌘
, (4.30a)

�(�)
pp

= hp̂2
i� = !0

⇣
nB(!0) +

1

2

⌘
, (4.30b)

�(�)
xp

=
1

2
hx̂p̂ + p̂x̂i� = 0, (4.30c)

where nB(!0) = 1/(exp(�!0) � 1) is the Bose-Einstein
distribution. We therefore see here explicitly that the

full thermal widths �(�)
xx and �(�)

pp of the oscillator’s phase-
space variables can be split into purely thermal or ‘clas-
sical’ parts �c

xx
, �c

pp
plus the purely ‘quantum’ parts �0

xx
,

�0
pp

from minimal uncertainty, as noted in Ref. [23], i.e.

�(�)
xx

= �c

xx
+ �0

xx
, �(�)

pp
= �c

pp
+ �0

pp
, (4.31)

with

�c

xx
= nB(!0)/!0, �c

pp
= !0 nB(!0). (4.32)

The minimal-uncertainty variances are already included
in each coherent pure state. To define a mixed Gaussian
state ⇢̂G with the variances of the thermal equilibrium
ensemble, we therefore only include the classical thermal
widths of (4.32) in the incoherent sum [23], defining

⇢̂G = (4.33)

Ñ

Z
dX dP exp

(
�

X2

2�c
xx

�
P 2

2�c
pp

)
|X, P ihX, P |,

with normalization factor Ñ , ensuring that Tr ⇢̂G = 1,
and which is clearly of the form (4.10). The index G
here emphasizes that such a mixed Gaussian state is in
general not equal to the mixed thermal quantum state ⇢̂Q

in the canonical ensemble.2 For the harmonic oscillator
in Eq. (4.24), however, we have ⇢̂HO = ⇢̂G.

2
While every coherent state is Gaussian, the converse is not true.

There are pure states that are Gaussian, by the definition in

Eq. (4.5), which do not correspond to any coherent state (4.26)

and are therefore not contained in the incoherent sum (4.33).

One may directly verify that such a thermal state is
indeed a stationary solution of the harmonic Gaussian
equations of motion (4.6a), (4.6b) and (4.8a) – (4.8c). In
general, it maps Gaussian states to Gaussian states in the
Hilbert space, as required. This finishes the discussion of
the Gaussian thermal state of a single harmonic oscil-
lator, and we now continue to model the entire system
consisting of our anharmonic oscillator coupled to an en-
semble of harmonic oscillators, in mixed Gaussian states
with thermal variances as described here, reintroducing
the heat-bath index s.

3. Heisenberg-Langevin equations in the GSA

We now turn to the form of the Heisenberg-Langevin
equations of motion (4.15a), (4.15b) evaluated in the
Gaussian approximation. Steps (i) and (ii) from the
quantum equations of motion (4.15a), (4.15b) with the
Ohmic bath (4.18), on time scales ⇤t � 1 for a su�-
ciently large cuto↵ ⇤, cf. (4.19), lead to

d

dt
X = P, (4.34a)

d

dt
P = �

✓
!2

0 +
�

2
�xx

◆
X �

�

6
X3

� �P + ⇠(t),

(4.34b)

for the center (X, P ). The derivation is the same as the
one for the classical Langevin equations of motion, except
for the application of Wick’s theorem to the 3-point cor-
relator hx̂3(t)i. The fluctuating force term ⇠(t) is given
by the expectation value of the quantum stochastic force
⇠̂(t) from (4.16), where the transient initial shift vanishes
if the expectation value of x̂(0) does,

⇠(t) ⌘ h⇠̂(t)i = h⌘̂(t)i � �(t)hx̂(0)i (4.35)

=
X

s

gs


�s(0) cos(!st) +

⇧s(0)

!s

sin(!st)

�
.

It thus only depends on the initial conditions of the bath
oscillators’ phase-space variables �s(0), ⇧s(0). Although
no-longer operator valued and hence classical, this GSA
noise ⇠(t) is colored in general, however, as we will discuss
in Subsection IVB 5 below.

For the Gaussian widths, the analogous averaging of
step (i) leads to

d

dt
�xx = 2�xp, (4.36a)

d

dt
�xp = �pp � �xxC(X, �xx) � ��xp (4.36b)

+ hhx̂(t)⌘̂(t)ii � 2��(t)�xx(0),

d

dt
�pp = �2�xpC(X, �xx) � 2��pp (4.36c)

+ 2hhp̂(t)⌘̂(t)ii � 4��(t)�xp(0).

<latexit sha1_base64="J3gqg+P4DcpwXeNSxQszc8nmsaE="></latexit>

+ hhx̂(t)⇠̂(t)ii,
<latexit sha1_base64="J27yJ2DmDhkLEvdaj9mc2izPnZw="></latexit>

+2 hhp̂(t)⇠̂(t)ii
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Having in mind the limit ⇤ ! 1 for later, the contribu-
tion from the transient initial shift �(t)x̂(0) ! 2��(t)x̂(0)
is dismissed here again.

More di�cult to compute are the cumulants with the
conservative force terms on the right of Eqs. (A.5c) and
(A.5d). The application of Wick’s theorem is a priori
only justified for equal-time correlators from the Gaus-
sian state (4.21). If we use it also for the unequal-time
correlators here, we obtain

hhV 0(x̂(t))'̂s(0)ii = C(X(t), �xx(t)) Gx's(t), (A.9)

with the curvature of the potential given by

C(X, �xx) = !2
0 +

�

2
(X2 + �xx), (A.10)

and an analogous expression for the corresponding force
term in (A.5d). As in the main text, we abbreviate the
time-dependent curvature in the following simply by

C(t) ⌘ C
�
X(t), �xx(t)

�
,

and its inital value by C0 = C(0).
Putting everything together, and combining (A.5a),

(A.5b) with (A.5c), (A.5d) then yields two decoupled
second-order di↵erential equations for the irreducible cor-
relations of x̂(t) with the initial heat-bath coordinates
and momenta. These di↵erential equations describe
driven harmonic motion with damping (including mem-
ory e↵ects) and, most importantly, with an in general
time-dependent frequency given by the square root of
the curvature C(t),

d2

dt2
Gx's(t) +

Z
t

0
dt0 �(t � t0)

d

dt0
Gx's(t

0) (A.11a)

+ C(t) Gx's(t) =
gs

2!s

cos(!st),

d2

dt2
Gx⇡s(t) +

Z
t

0
dt0 �(t � t0)

d

dt0
Gx⇡s(t

0) (A.11b)

+ C(t) Gx⇡s(t) =
gs

2
sin(!st).

For low frequencies !s ⌧ ⇤, on the time-scales rele-
vant for the driving force, the memory integrals over the
damping kernel reduce to ordinary (local in time) damp-
ing terms � d

dt
Gx's(t), � d

dt
Gx⇡s(t), cf. Eq. (4.19).

An exact analytic solution to the general oscillator
problem with time-dependent restoring force C(t) is un-
fortunately not known, at least to us. Therefore, we
have to resort to an additional adiabatic approximation,
assuming that the curvature of the potential fluctuates
slowly about a temperature-dependent equilibrium value
C0(T ) obtained from a mean-field prescription,

C0(T ) ⌘ hC(X, �xx)i� = !2
0 +

�

2
hx̂2

i� , (A.12)

To go beyond this approximation, we furthermore split
the time-dependent value of the curvature into this con-
stant equilibrium value plus a small perturbation,

C(t) = C0(T ) + �C(t), (A.13)

and treat �C(t) as a correction to the exactly solvable
Eqs. (A.11a), (A.11b) for the constant C0 ⌘ C0(T ) (drop-
ping the temperature dependence in the following) in
time-dependent perturbation theory with inital condition
�C(0) = 0 so that the equilibrium value C0 is our initial
value for C(t) at the same time.

a. Static Solution

The zeroth-order static solution is then the textbook
problem of the driven harmonic oscillator. After the tran-
sient initial time, when all contributions from solutions
to the homogeneous equations have died out due to the
damping, the solutions are given by

G0
x's

(t) =
gs

2!s

A(!s) cos(!st � ✓(!s)), (A.14a)

G0
x⇡s

(t) =
gs

2
A(!s) sin(!st � ✓(!s)), (A.14b)

with amplitude

A(!) =
1p

(C0 � !2)2 + �2!2
(A.15)

and phase shift ✓(!),

tan ✓(!) =
�!

C0 � !2
. (A.16)

Inserting these static solutions (A.14a) and (A.14b) into
the fluctuating force of Eq. (A.2), for example, we obtain

Kxp(t) =
X

s

gs

✓
G0

x's
(t) cos(!st) +

1

!s

G0
x⇡s

(t) sin(!st)

◆

=
X

s

g2
s

2!s

C0 � !2
s

(C0 � !2
s
)2 + �2!2

s

, (A.17)

where trigonometric relations were used to simplify the
result in the last line. The analogous calculation for the
force in (A.3) yields

Kpp(t) =
X

s

g2
s

2

�!s

(C0 � !2
s
)2 + �2!2

s

. (A.18)

Using the definition (4.14) of the spectral function J(!)
of the bath modes, the fluctuating forces on the variances
defined in (A.1) finally become,

Kxp(t) =

Z 1

0

d!

2⇡

J(!)
�
C0 � !2

�

(C0 � !2)2 + �2!2
, (A.19)

and

Kpp(t) = �

Z 1

0

d!

2⇡

J(!) !2

(C0 � !2)2 + �2!2
. (A.20)

Note that in the static approximation with constant C0,
the stationary solutions (A.14a), (A.14a) lead to stochas-
tic forces Kxp and Kpp that are in fact time-independent
as well.
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gs
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d2

dt2
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Z
t

0
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d

dt0
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Kxp(t) =
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✓
G0

x's
(t) cos(!st) +

1

!s

G0
x⇡s

(t) sin(!st)

◆

=
X

s

g2
s

2!s

C0 � !2
s

(C0 � !2
s
)2 + �2!2

s

, (A.17)

where trigonometric relations were used to simplify the
result in the last line. The analogous calculation for the
force in (A.3) yields

Kpp(t) =
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2

�!s
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s
)2 + �2!2

s

. (A.18)

Using the definition (4.14) of the spectral function J(!)
of the bath modes, the fluctuating forces on the variances
defined in (A.1) finally become,

Kxp(t) =

Z 1

0

d!

2⇡

J(!)
�
C0 � !2

�

(C0 � !2)2 + �2!2
, (A.19)

and
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0

d!

2⇡
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. (A.20)

Note that in the static approximation with constant C0,
the stationary solutions (A.14a), (A.14a) lead to stochas-
tic forces Kxp and Kpp that are in fact time-independent
as well.

time independent
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(a) ↵ = 0 (b) ↵ = 1/2 (c) ↵ = 1

FIG. 2. Poles !p(k) of the retarded propagator (5.23) with the Drude regulator (5.22) in the complex plane as a function of
k, with !0 = 1, � = 0.5 and three di↵erent values of ↵. The black dots mark the quasi-particle poles (5.25) of the propagator
at k = 0, where the regulator vanishes. They move around with k in the lower half-plane, but never cross the real axis. The
crosses at the origin mark the points where the regulator-induced third poles disappear with k ! 0 in the IR. For ↵ < 1/2 this
relaxational regulator pole moves into the upper half-plane at a finite value of the FRG scale k and the regulator thus violates
causality at large k towards the UV.

Following the flow backwards towards the UV we see
that for ↵  1/2 the imaginary part of the relaxational
regulator pole first moves to smaller values. Eventually,
however, it turns around to increase again towards the
UV, for ↵ < 1/2 without bound. In this case it thus
always crosses the real axis and moves into the upper
half-plane (where a retarded self-energy should be an-
alytic) so that causality is violated by the regulator at
finite FRG scale k. For ↵ = 1/2 it turns around as well,
but approaches 0� for k ! 1 in the UV and never moves
into the upper half-plane. This is the liming case where
↵ is chosen precisely such that the regulator has a root at
! = 0. For larger values ↵ > 1/2 the imaginary part of
the relaxational regulator pole decreases monotonically
and the regulator never violates causality. Its real part
has no zero-crossings anymore, and always leads to a pos-

FIG. 3. Flow of the imaginary parts Im !p(k) of the regulator-
induced relaxational poles in the retarded propagators of
Fig. 2 over the FRG scale k. Here, ↵ = 1/2 is the limiting
case, i.e. causality is always violated at large k for ↵ < 1/2.

itive mass/frequency shift, because the Callan-Symanzik
counter-term is large enough to compensate the negative
shift in the squared mass/frequency by �!2

HB from the
heat bath regulator.

C. Truncation for the E↵ective Average Action

In analogy to Ref. [28], we use the vertex expansion
around the scale-dependent minimum �0,k(x) up to order
Q, since it was proven that such a truncation gives rise to
qualitative structures such as the collisional broadening
and further resonance frequencies in the spectral func-
tion, corresponding to 1 $ 3 processes.

We will now briefly summarize the truncation and
the di↵erences to the one presented in Ref. [28]. For
the quartic oscillator, the minimum �0,k(x) ⌘ 0 is k-
independent because of the inversion symmetry of the
e↵ective action and the assumption that no spontaneous
symmetry breaking occurs. We consider a vertex expan-
sion up to sixth order in the field �, which may be ex-
plicitly written as

FIG. 3. Trajectories of the poles !p(k) of the retarded propagator (5.24) with the Drude regulator (5.23) in the complex plane,
moving with the FRG scale k from the UV towards the IR, with !0 = 1, � = 0.5 and three di↵erent values of ↵. The black
dots mark the quasi-particle poles (5.26) of the propagator at k = 0, where the regulator vanishes. They move with k in the
lower half-plane as indicated by the arrows, but never cross the real axis. The crosses at the origin mark the points where
the regulator-induced third poles disappear with k ! 0 in the IR. Their flows are indicated by arrows as well. For ↵ < 1/2
this relaxational regulator pole violates causality: It starts in the upper half-plane and only crosses at a finite value of the
FRG scale k during the flow into the lower where it has a turning point (at the end of the line) before it moves up again and
disappears in the origin.

FIG. 4. FRG scale k dependence of the imaginary parts
Im !p(k) of the regulator-induced relaxational poles in the
retarded propagators of Fig. 3. Here, ↵ = 1/2 is the limiting
case, i.e. causality is always violated at large k for ↵ < 1/2.

and always leads to a positive mass/frequency shift, be-
cause the Callan-Symanzik counter-term is large enough
to over-compensate the negative shift in the squared
mass/frequency caused by �!2

HB from the heat-bath reg-
ulator.

C. Truncation of the E↵ective Average Action

Before we discuss the details of our truncation, we first
give the explicit expression for the e↵ective average ac-
tion at the starting point k = ⇤, where it equals the bare
Keldysh action, �⇤ = S. For the anharmonic oscilla-
tor (2.1) coupled to an external Ohmic heat bath with
damping constant � the Keldysh action is given by [14]

S[�] =
1

2

Z 1

�1

d!

2⇡
�T (�!)

✓
0 !2

� i�! � !2
0

!2 + i�! � !2
0 2i�! coth

�
!

2T

�
◆

�(!) (5.27)

�
2�

4!

Z 1

�1
dt

�
�c(t)�c(t)�c(t)�q(t) + �c(t)�q(t)�q(t)�q(t)

�
,

where we already used the Fourier transform of the
quadratic part in the action for convenience. With this
general structure of the bare action in mind, one pos-
sibility to truncate the Wetterich equation for the full

e↵ective average action is a functional Taylor expansion
in terms of the 1-PI n-point vertex functions [25]. Us-
ing the origin in field space, �0 =

�
�c

0, �
q

0

�
= 0, as the
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acts as a �-functional in the limit k ! 1 [33].) One then
computes the flow of the e↵ective average action through
‘theory space’ [26] until it reaches the full macroscopic ef-
fective action �k!0 = � of the theory. Ideally, one would
solve the flow from k ! 1 to k = 0, but in almost all
practical applications it is su�cient to start with some
large but finite UV cuto↵ k = ⇤, and to stop at some
su�ciently small finite value k = kIR in the IR.

A. Flow Equation

The FRG flow is determined by the equation that was
derived by Wetterich [24, 25] in the imaginary-time for-
malism, but here formulated on the closed time path
(CTP) [35],

@k�k[�] =
i

2
Tr

⇢
(@kRk) �

⇣
�(2)

k
[�] + Rk

⌘�1
�

, (5.1)

for a real scalar field �T (x) = (�c(x), �q(x)) in D =
d+1 spacetime dimensions and Keldysh space, where we
adopt the convention of Ref. [34] and define the Keldysh
rotation to be measure-preserving, i.e.

�c =
1

p
2

�
�+ + ��� , �q =

1
p

2

�
�+

� ��� , (5.2)

for the classical (or average) field �c and the quantum
(or response) field �q, and vice-versa

�+ =
1

p
2

(�c + �q) , �� =
1

p
2

(�c
� �q) (5.3)

for the inverse transformation. By �± we denote the field
components that live on the forward (+) and backward
(�) parts of the closed time path. This convention has
the convenient property that for a symmetric potential
V (�) the potential term �V (�+) + V (��) on the closed
time path is invariant under the interchange �c

$ �q, i.e.
does not distinguish between classical and quantum field
components. For a detailed introduction to the formalism
and a derivation of the flow equation see for example
Refs. [35] and [33].

The flow in Eq. (5.1) on the right hand side includes

the regulator Rk and �(2)
k

[�], the Hessian of �k[�],

�(2)
k

[�] =

✓
�cc

k
[�] �cq

k
[�]

�qc

k
[�] �qq

k
[�]

◆
, (5.4)

where we have already use a notation defined below, in

Eq. (5.5), for brevity. Rk and �(2)
k

both have the form of
self-energies on the closed time path, i.e. 2 ⇥ 2 matrices
in Keldysh (c, q) space. Therefore, � denotes 2⇥2 matrix
multiplication, and the trace also implies integration over
adjacent coordinates. We denote functional derivatives of
the e↵ective average action as

�↵1...↵n
k

[�c, �q](x1, ..., xn) =
�n�k[�c, �q]

��↵1(x1)...��↵n(xn)
, (5.5)

where Greek indices from the beginning of the alphabet
denote CTP indices, ↵1, ..., ↵n 2 {c, q}. Correspondingly,

�(n)
k

[�] denotes the tensor of rank n containing all func-
tional derivatives w.r.t. the classical and quantum fields.
The full scale-dependent propagator Gk in front of the
background field expectation value � is given by

� G�1
k

[�] = Rk + �(2)
k

[�] (5.6)

in compact matrix notation, or explicitly

GK̃

k
[�0,k] = 0, (5.7a)

GR

k
[�0,k] = �

⇣
�qc

k
[�0,k] + RR

k

⌘�1
, (5.7b)

GA

k
[�0,k] = �

⇣
�cq

k
[�0,k] + RA

k

⌘�1
, (5.7c)

GK

k
[�0,k] = GR

k
�

⇣
�qq

k
[�0,k] + RK

k

⌘
� GA

k
(5.7d)

at the scale-dependent minimum �0,k, which satisfies the
quantum equations of motion ��[�0,k] = 0. The super-
scripts A, R, K and K̃ denote the advanced, retarded,
Keldysh and anomalous components, respectively. For
the expressions in an arbitrary background field configu-
ration �(x) see for example Ref. [35].

Being the imaginary part of the retarded propagator,
the spectral function ⇢k(!) can be computed from the
retarded 2-point function in the usual way,

⇢k(!) =
1

⇡

Im �qc

k
(!)

�
Re �qc

k
(!)
�2

+
�
Im �qc

k
(!)
�2 . (5.8)

B. Causal regulators

The need of respecting causality in the process of con-
structing regulators for the real-time FRG was already
mentioned in Ref. [37], where the advantages of using
such a causal regulator were manifest in the results for
dynamical critical exponents. In this section, we con-
struct such a causal regulator step-by-step in the 0 + 1
dimensional case. The construction is based on consider-
ing the regulator term as an additional self-energy with
the causal matrix structure of the Keldysh action and can
be generalized to field theories in higher dimensions. For
our single real degree of freedom �T (t) = (�c(t), �q(t)),
we first add a term to the Keldysh action of the form,

�Sk[�] =
1

2

Z 1

�1
dt

Z 1

�1
dt0 �T (t)Rk(t, t0)�(t0) , (5.9)

with

Rk(t, t0) =

 
RK̃

k
(t, t0) RA

k
(t, t0)

RR

k
(t, t0) RK

k
(t, t0)

!
(5.10)

being a 2 ⇥ 2-matrix on the CTP. We call a regulator
causal if it maintains the causal structure of the corre-
sponding Keldysh action, as e.g. defined in Chapter 2.7

FIG. 3: Real and imaginary parts of RR
k (!) for the bath with exponential cuto↵ in Eq. (11).

This leads to the compact result with the imaginary error function erfi(z) ⌘ erf(iz)/i which

is real on the real axis,

RR/A
k (!) =

k2

p
⇡
� k! e�!2/k2 erfi(!/k)± i k! exp

�
� !2/k2

 

=
1p
⇡

�
k2 � 2k! F (!/k)

�
± i k! exp

�
� !2/k2

 
, (14)

where F (x) = e�x2 R x

0 ey
2
dy is Dawsons integral function. This result is plotted in Figure 4.

Whatever we use to describe the spectral distribution Jk(!) of the heat bath, the Keldysh

component of the regulator is fixed by the FDT to be

RK
k (!) =

⇣
RR

k (!)�RA
k (!)

⌘
coth

!

2T
= iJk(!) coth

!

2T
, (15)

where T is the temperature of the fictitious heat bath used as the regulator. In principle

we can chose it as convenient. If we use the same temperature T here as in the Keldysh

component of �(2)
k (!), then the FDT holds at every scale k during the flow. In principle

it can probably also be scale dependent T = Tk, perhaps even as simple as Tk = k, which

might seem a natural choice here. It would imply that the bath temperature also drops to

zero with k ! 0. However, we will in general loose time-translation invariance during the

flow, because the scalar degree of freedom �(t) will not be at equilibrium with the regulator

bath for all scales k during the flow.

[1] A. Kamenev, “Field Theory of Non-Equilibrium Systems,” Cambridge University Press, 2011.
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I. INTRODUCTION AND SETUP

We start from the regulator term that has to be added to the Keldysh action of a real

degree of freedom �T (t) = (�c(t),�q(t)),

�Sk[�] =
1

2

Z 1

�1

Z 1

�1
dtdt0 �T (t)Rk(t� t0)�(t0) . (1)

In order to maintain the causality structure, we imagine that this Gaussian term is the result

of a coupling of our real field �(t) to a Gaussian heat bath which has been integrated out,

see Chapter 3.2 of Ref. [1] for details. In fact, any Gaussian term of the form as in Eq. (1)

can be linearized via Hubbard-Stratonovich transformation such that it can be replaced by

a linar coupling to a Gaussian heat bath. So that should be one-to-one. One might be

tempted to conjecture that any bilinear Keldysh action can be represented by a suitable

coupling to a Gaussian heat bath?

As such, after Fourier transform, the corresponding retarded/advanced components can

readily be written as spectral integrals

RR/A
k (!) = �

Z 1

0

d!0

2⇡

2!0Jk(!0)

(! ± i")2 � !02 , (2)

such that the spectral density Jk(!) � 0 of the heat bath ensemble is given by the imaginary

part of the retarded heat bath propagator DR
bath(!) which is here represented, after the

Gaussian integration of the bath, by DR
bath(!) = �RR

k (!), i.e.

Jk(!) ⌘ �2 ImDR
bath(!) = 2 ImRR

k (!) , (3)

as can explicitly be checked from (2). Note that for a single oscillator with frequency !k

and coupling gk in the bath, it is here normalized to !Jk(!) = ⇡g2k
�
�(!� !k) + �(!+ !k)

�
,

and we generally have J(�!) = �J(!).

We want to use the hypothetical bath as a regulator to suppress fluctuations with ! < k.

The arguably simplest choice is to use an Ohmic bath with damping � = k for an ensemble

with frequencies |!| < k, i.e. corresponding to a spectral density of the bath

Jk(!) = 2k! ✓(k � |!|) . (4)

2

via scale-dependent “heat-bath”
Re[Rk(ω)/k2]
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FIG. 2: Real and imaginary parts of RR
k (!) for the Ohmic bath ensemble in Eq. (6).

�DR/A
bath(!) and we thus have

Z 1

�1

d!

2⇡

�
RR

k (!) +RA
k (!)

�
=

Z 1

0

d!

2⇡
4ReRR

k (!) = 0 . (8)

And as a consequence it is straightforward to verify that we then also have

Z 1

�1

d!

2⇡

⇣
DR

k (!) +DA
k (!)

⌘
= 0 , (9)

where

DR/A
k (!) =

�
�(2)
k

R/A
(!) +RR/A

k (!)
��1

. (10)

This should be su�cient to ensure that the unphysical cc-component of the Keldysh action

stays zero at all scales k during the flow.

As a third alternative we use an exponential frequency cuto↵ for the bath ensemble,

Jk(!) = 2k! exp
�
� |!|/k

 
. (11)

The result is relatively simple, expressed in terms of an exponential integral function Ei(z),

RR/A
k (!) =

1

⇡

⇣
2k2 � k!e�|!|/k�Ei(!/k)� Ei(�!/k)

�⌘

± i k! exp
�
� |!|/k

 
. (12)

It is still non-analytic at ! = 0 which can also be fixed using

Jk(!) = 2k! exp
�
� !2/k2

 
. (13)
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We start from the regulator term that has to be added to the Keldysh action of a real

degree of freedom �T (t) = (�c(t),�q(t)),

�Sk[�] =
1

2

Z 1

�1

Z 1

�1
dtdt0 �T (t)Rk(t� t0)�(t0) . (1)

In order to maintain the causality structure, we imagine that this Gaussian term is the result

of a coupling of our real field �(t) to a Gaussian heat bath which has been integrated out,

see Chapter 3.2 of Ref. [1] for details. In fact, any Gaussian term of the form as in Eq. (1)

can be linearized via Hubbard-Stratonovich transformation such that it can be replaced by

a linar coupling to a Gaussian heat bath. So that should be one-to-one. One might be

tempted to conjecture that any bilinear Keldysh action can be represented by a suitable

coupling to a Gaussian heat bath?

As such, after Fourier transform, the corresponding retarded/advanced components can

readily be written as spectral integrals

RR/A
k (!) = �

Z 1

0

d!0

2⇡

2!0Jk(!0)

(! ± i")2 � !02 , (2)

such that the spectral density Jk(!) � 0 of the heat bath ensemble is given by the imaginary

part of the retarded heat bath propagator DR
bath(!) which is here represented, after the

Gaussian integration of the bath, by DR
bath(!) = �RR

k (!), i.e.

Jk(!) ⌘ �2 ImDR
bath(!) = 2 ImRR

k (!) , (3)

as can explicitly be checked from (2). Note that for a single oscillator with frequency !k

and coupling gk in the bath, it is here normalized to !Jk(!) = ⇡g2k
�
�(!� !k) + �(!+ !k)

�
,

and we generally have J(�!) = �J(!).

We want to use the hypothetical bath as a regulator to suppress fluctuations with ! < k.

The arguably simplest choice is to use an Ohmic bath with damping � = k for an ensemble

with frequencies |!| < k, i.e. corresponding to a spectral density of the bath

Jk(!) = 2k! ✓(k � |!|) . (4)
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of Ref. [14]. Most importantly, a causal regulator has to
ensure that the retarded (advanced) propagator has to
stay retarded (advanced) during the flow.

Here, we propose a new quite general construction of
causal regulators which proceeds as follows: We assume
that the bilinear term �Sk[�] really is the result of a cou-
pling of the field � to an ensemble of Gaussian degrees of
freedom which have been integrated out, e.g. see Chapter
3.2 of Ref. [14]. In fact, the other way round, any term
quadratic in the fields can be linearized via Hubbard-
Stratonovich transformation to replace it by a linear cou-
pling to the Gaussian Hubbard fields representing the
ensemble. Therefore, the assumption that �Sk[�] is the
result of integrating an ensemble of Gaussian degrees of
freedom should still be fairly general. As such, after
Fourier transform, the corresponding retarded/advanced
components can readily be written as spectral integrals

RR/A

k
(!) = �

Z 1

0

d!0

2⇡

2!0Jk(!0)

(! ± i")2 � !02 , (5.11)

so that the spectral density Jk(!) � 0 for ! > 0 of the
fictitious Gaussian ensemble is given by the imaginary
part of the retarded bath propagator DR

bath(!) which is
here represented, after the Gaussian integration of the
bath, by DR

bath(!) = �RR

k
(!), i.e.

Jk(!) ⌘ �2 Im DR

bath(!) = 2 Im RR

k
(!) , (5.12)

as can explicitly be checked from (5.11). Note that for a
single oscillator with frequency !k and coupling gk in the
bath, it is here normalized to !Jk(!) = ⇡g2

k

�
�(! �!k)+

�(!+!k)
�
, and we generally have J(�!) = �J(!). This

fixes the retarded/advanced components of the regulator.
Since it is furthermore desirable to keep a system in

thermal equilibrium during the flow, if it was in equilib-
rium initially, one may also require the symmetry

�Sk[T��c, T��q] = �Sk[�c, �q] , (5.13)

which is a su�cient condition for thermal equilibrium on
the closed time path [56], where the transformation T� is
defined as

T�

✓
�c(!)
�q(!)

◆
=

0

B@
cosh

⇣
�!

2

⌘
� sinh

⇣
�!

2

⌘

� sinh
⇣

�!

2

⌘
cosh

⇣
�!

2

⌘

1

CA
✓

�c(�!)
�q(�!)

◆

for our real degree of freedom �(t). We can now insert
the general ansatz for the regulator term and check that
this condition is satisfied, if

RK̃

k
(!) ⌘ 0 , and (5.14)

RK

k
(!) = coth(�!/2)

�
RR

k
(!) � RA

k
(!)
�

= coth(�!/2) iJk(!) .

This implies that our fictitious Gaussian ensemble should
then represent a heat bath at the same temperature T as
that of the equilibrium system that is being regulated.

Our construction of causal regulators for thermal equi-
librium systems therefore starts at specifying suitable
FRG scale k dependent spectral densities Jk(!) to repre-
sent some fictitious heat bath. Here, we specifically use
an analytic spectral density of the form

Jk(!) = k! exp
�

� !2/k2
 

. (5.15)

which has the desired regulating property by giving rise
to an Ohmic bath with damping constant �k = k/2 in
the IR, while it rapidly goes to zero towards the UV,

Jk(!) !

(
k! for ! ⌧ k

0 for ! � k
. (5.16)

The suppression of low-frequency modes is thus realized
by the coupling to the fictitious heat bath with an FRG-
scale dependent damping constant which starts out large,
of the order of ⇤ in the UV, and vanishes with k ! 0
towards the IR. Inserting (5.15) into the spectral rep-
resentation (5.11) explicitly yields for the corresponding
causal heat-bath regulator in our example,

RR/A
HB,k

(!) = (5.17)

1
p

⇡

 
1

2
k2

� k!F

✓
!

k

◆!
±

ik!

2
exp

(
�

!2

k2

)
,

with the Dawson function

F (x) ⌘
2

p
⇡

e�x
2

erfi(x) = e�x
2
Z

x

0
dt et

2

. (5.18)

Real and imaginary part of the retarded regulator are
shown in Figure 2. Note, however, that its feature of
representing a causal Green function unavoidably entails,
Z 1

�1

d!

2⇡

�
RR

k
(!) + RA

k
(!)
�

=

Z 1

0

d!

2⇡
4 Re RR

k
(!) = 0 .

(5.19)
In particular, whenever we construct a causal regulator
in this way, the real part must have a zero crossing. It
must start out negative for ! � k in the UV, and with
a single zero crossing as here, it thus turns positive for
! ⌧ k in the IR.

Note that a positive real part at ! = 0 corresponds to
a negative mass-squared shift which can a↵ect the prop-
agator poles for su�ciently large k in an uncontrollable
and unphysical way, a feature that is at least unpleasant
for an FRG regulator. The easiest way out here seems
to add a frequency independent counter-term that has
the form of a Callan-Symanzik regulator. Such a fre-
quency independent term is certainly causal, and it can

o↵set RR/A

HB,k
(!) by a k-dependent constant such that the

real part of the resulting regulator stays strictly negative
during the flow. We therefore introduce an additional
positive parameter ↵ to define

RR/A

k
(!) ⌘ RR/A

HB,k
(!) � ↵k2. (5.20)
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FIG. 2: Real and imaginary parts of RR
k (!) for the Ohmic bath ensemble in Eq. (6).
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And as a consequence it is straightforward to verify that we then also have

Z 1

�1

d!

2⇡

⇣
DR

k (!) +DA
k (!)

⌘
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where
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��1
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This should be su�cient to ensure that the unphysical cc-component of the Keldysh action

stays zero at all scales k during the flow.

As a third alternative we use an exponential frequency cuto↵ for the bath ensemble,

Jk(!) = 2k! exp
�
� |!|/k

 
. (11)

The result is relatively simple, expressed in terms of an exponential integral function Ei(z),

RR/A
k (!) =

1

⇡

⇣
2k2 � k!e�|!|/k�Ei(!/k)� Ei(�!/k)
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± i k! exp
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It is still non-analytic at ! = 0 which can also be fixed using

Jk(!) = 2k! exp
�
� !2/k2

 
. (13)
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FIG. 2. Poles !p(k) of the retarded propagator (5.23) with the Drude regulator (5.22) in the complex plane as a function of
k, with !0 = 1, � = 0.5 and three di↵erent values of ↵. The black dots mark the quasi-particle poles (5.25) of the propagator
at k = 0, where the regulator vanishes. They move around with k in the lower half-plane, but never cross the real axis. The
crosses at the origin mark the points where the regulator-induced third poles disappear with k ! 0 in the IR. For ↵ < 1/2 this
relaxational regulator pole moves into the upper half-plane at a finite value of the FRG scale k and the regulator thus violates
causality at large k towards the UV.

Following the flow backwards towards the UV we see
that for ↵  1/2 the imaginary part of the relaxational
regulator pole first moves to smaller values. Eventually,
however, it turns around to increase again towards the
UV, for ↵ < 1/2 without bound. In this case it thus
always crosses the real axis and moves into the upper
half-plane (where a retarded self-energy should be an-
alytic) so that causality is violated by the regulator at
finite FRG scale k. For ↵ = 1/2 it turns around as well,
but approaches 0� for k ! 1 in the UV and never moves
into the upper half-plane. This is the liming case where
↵ is chosen precisely such that the regulator has a root at
! = 0. For larger values ↵ > 1/2 the imaginary part of
the relaxational regulator pole decreases monotonically
and the regulator never violates causality. Its real part
has no zero-crossings anymore, and always leads to a pos-

FIG. 3. Flow of the imaginary parts Im!p(k) of the regulator-
induced relaxational poles in the retarded propagators of
Fig. 2 over the FRG scale k. Here, ↵ = 1/2 is the limiting
case, i.e. causality is always violated at large k for ↵ < 1/2.

itive mass/frequency shift, because the Callan-Symanzik
counter-term is large enough to compensate the negative
shift in the squared mass/frequency by �!2

HB
from the

heat bath regulator.

C. Truncation for the E↵ective Average Action

In analogy to Ref. [28], we use the vertex expansion
around the scale-dependent minimum �0,k(x) up to order
Q, since it was proven that such a truncation gives rise to
qualitative structures such as the collisional broadening
and further resonance frequencies in the spectral func-
tion, corresponding to 1 $ 3 processes.

We will now briefly summarize the truncation and
the di↵erences to the one presented in Ref. [28]. For
the quartic oscillator, the minimum �0,k(x) ⌘ 0 is k-
independent because of the inversion symmetry of the
e↵ective action and the assumption that no spontaneous
symmetry breaking occurs. We consider a vertex expan-
sion up to sixth order in the field �, which may be ex-
plicitly written as
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FIG. 2. Real and imaginary parts of R
R
k (!) in units of k

2 for
the bath with the analytic cuto↵ in Eq. (5.15).

In particular, whenever we construct a causal regulator
in this way, the real part must have a zero crossing. It
must start out negative for ! � k in the UV, and with
a single zero crossing as here, it thus turns positive for
! ⌧ k in the IR.

Note that a positive real part at ! = 0 corresponds to
a negative mass-squared shift which can a↵ect the prop-
agator poles for su�ciently large k in an uncontrollable
and unphysical way, a feature that is at least unpleasant
for an FRG regulator. The easiest way out here seems
to add a frequency independent counter-term that has
the form of a Callan-Symanzik regulator. Such a fre-
quency independent term is certainly causal, and it can

o↵set RR/A

HB,k
(!) by a k-dependent constant such that the

real part of the resulting regulator stays strictly negative
during the flow. We therefore introduce an additional
positive parameter ↵ to define

RR/A

k
(!) ⌘ RR/A

HB,k
(!) � ↵k2. (5.20)

Since the absolute value of the real part of RR/A

HB,k
(!) is

monotonically decreasing for ! > 0, we restrict ↵ from

below by requiring ↵ > RR/A

HB,k
(0)/k2.

The e↵ect of this can be understood in two equiva-
lent ways: First, as every bath ensemble, cf. Eq. (4.12),
the regulator heat-bath necessarily induces a negative
shift of the system particle’s mass or oscillator frequency
squared, by ��!2

HB(k), which here is k-dependent as our
regulator bath is and can explicitly be written in the form

�!2
HB(k) =

Z 1

0

d!

⇡

Jk(!)

!
= RR/A

HB,k
(0) . (5.21)

With our analytic spectral density (5.15), for example, we
have �!2

HB(k) = k2/
p

4⇡, and ↵ must be chosen large
enough to compensate this mass shift, ↵k2

� �!2
HB(k).

This is necessary for the theory to remain causal during
the flow in the first place; see the discussion that follows
below. Secondly, in order to regularize all infrared modes
we must have a negative real part of the regulator at

! = 0, requiring the strict inequality ↵k2 > RR/A

HB,k
(0).

To further illustrate how the analytic structure of the
propagators is changed by the heat-bath regulator, and
how a suitable Callan-Symanzik counter-term can solves
the issue, it is constructive to consider a spectral den-
sity for the regulator bath based on the Drude model,
cf. Sec. IV B and Ref. [19], as a simpler alternative which
yields with 2� = !D = k,

Jk(!) =
!k

1 + (!/k)2
. (5.22)

Using Eq. (5.11) again, we then obtain explicitly,

RR/A

k
(!) =

1

2

k2

1 ⌥ i!/k
� ↵k2, (5.23)

where we already included the Callan-Symanzik counter-
term for which we expect to require ↵ > 1/2 = �!2

HB/k2.
To see how the regulator a↵ects the poles during the flow,
we consider an exemplary retarded (advanced) propaga-
tor of the form

GR/A

k
(!) = �

1

!2 ± i�! � !2
0 + RR/A

k
(!)

. (5.24)

The two are related by the symmetry GR

k
(!) = GA

k

⇤
(�!).

The simplicity of the regulator (5.23) allows to derive
analytic expressions for the poles !p = !p(k) by solving
the cubic equation

!2
p

± i�!p � !2
0 +

k2

2(1 ⌥ i!p/k)
� ↵k2 = 0. (5.25)

To keep the analytic structure intact, when the regulator
is switched on, the retarded (advanced) propagator must
only have poles in the lower (upper) half plane. For sim-
plicity, we assume in our illustration here that !2

0 and �
stay constant during the flow. The resulting poles !p(k)
of the retarded propagator are shown in Figure 3 for dif-
ferent choices of ↵. For k = 0 the physical poles of the
retarded propagator are located at

!p,±(k = 0) = �i
�

2
±

r
!2

0 �
�2

4
(5.26)

in the complex plane, as represented by the black dots
in Figure 3, corresponding to the expected quasi-particle
excitations. We see that these two poles !p(k) are located
symmetrically around the real-part-zero axis. They move
upwards with k towards the IR, coming from lower values
of their imaginary parts, and thus always stay in the
lower half plane and never cause problems with causality,
even for vanishing Callan-Symanzik term with ↵ = 0.

For non-vanishing k > 0 there is a third pole with van-
ishing real part moving along the imaginary axis, how-
ever, which is entirely due to the regulator. In the time
domain, it represents the purely relaxational contribu-
tion [18] here arising from our regulator heat bath. The
crosses in the origins in Fig. 3 mark the point where it dis-
appears for k ! 0+ in the IR. The corresponding FRG
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the bath with the analytic cuto↵ in Eq. (5.15).

In particular, whenever we construct a causal regulator
in this way, the real part must have a zero crossing. It
must start out negative for ! � k in the UV, and with
a single zero crossing as here, it thus turns positive for
! ⌧ k in the IR.

Note that a positive real part at ! = 0 corresponds to
a negative mass-squared shift which can a↵ect the prop-
agator poles for su�ciently large k in an uncontrollable
and unphysical way, a feature that is at least unpleasant
for an FRG regulator. The easiest way out here seems
to add a frequency independent counter-term that has
the form of a Callan-Symanzik regulator. Such a fre-
quency independent term is certainly causal, and it can

o↵set RR/A

HB,k
(!) by a k-dependent constant such that the

real part of the resulting regulator stays strictly negative
during the flow. We therefore introduce an additional
positive parameter ↵ to define

RR/A

k
(!) ⌘ RR/A

HB,k
(!) � ↵k2. (5.20)

Since the absolute value of the real part of RR/A

HB,k
(!) is

monotonically decreasing for ! > 0, we restrict ↵ from

below by requiring ↵ > RR/A

HB,k
(0)/k2.

The e↵ect of this can be understood in two equiva-
lent ways: First, as every bath ensemble, cf. Eq. (4.12),
the regulator heat-bath necessarily induces a negative
shift of the system particle’s mass or oscillator frequency
squared, by ��!2

HB(k), which here is k-dependent as our
regulator bath is and can explicitly be written in the form
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With our analytic spectral density (5.15), for example, we
have �!2

HB(k) = k2/
p

4⇡, and ↵ must be chosen large
enough to compensate this mass shift, ↵k2
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HB(k).

This is necessary for the theory to remain causal during
the flow in the first place; see the discussion that follows
below. Secondly, in order to regularize all infrared modes
we must have a negative real part of the regulator at

! = 0, requiring the strict inequality ↵k2 > RR/A

HB,k
(0).

To further illustrate how the analytic structure of the
propagators is changed by the heat-bath regulator, and
how a suitable Callan-Symanzik counter-term can solves
the issue, it is constructive to consider a spectral den-
sity for the regulator bath based on the Drude model,
cf. Sec. IV B and Ref. [19], as a simpler alternative which
yields with 2� = !D = k,
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where we already included the Callan-Symanzik counter-
term for which we expect to require ↵ > 1/2 = �!2

HB/k2.
To see how the regulator a↵ects the poles during the flow,
we consider an exemplary retarded (advanced) propaga-
tor of the form
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The two are related by the symmetry GR
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The simplicity of the regulator (5.23) allows to derive
analytic expressions for the poles !p = !p(k) by solving
the cubic equation
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To keep the analytic structure intact, when the regulator
is switched on, the retarded (advanced) propagator must
only have poles in the lower (upper) half plane. For sim-
plicity, we assume in our illustration here that !2

0 and �
stay constant during the flow. The resulting poles !p(k)
of the retarded propagator are shown in Figure 3 for dif-
ferent choices of ↵. For k = 0 the physical poles of the
retarded propagator are located at
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in the complex plane, as represented by the black dots
in Figure 3, corresponding to the expected quasi-particle
excitations. We see that these two poles !p(k) are located
symmetrically around the real-part-zero axis. They move
upwards with k towards the IR, coming from lower values
of their imaginary parts, and thus always stay in the
lower half plane and never cause problems with causality,
even for vanishing Callan-Symanzik term with ↵ = 0.

For non-vanishing k > 0 there is a third pole with van-
ishing real part moving along the imaginary axis, how-
ever, which is entirely due to the regulator. In the time
domain, it represents the purely relaxational contribu-
tion [18] here arising from our regulator heat bath. The
crosses in the origins in Fig. 3 mark the point where it dis-
appears for k ! 0+ in the IR. The corresponding FRG
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In particular, whenever we construct a causal regulator
in this way, the real part must have a zero crossing. It
must start out negative for ! � k in the UV, and with
a single zero crossing as here, it thus turns positive for
! ⌧ k in the IR.

Note that a positive real part at ! = 0 corresponds to
a negative mass-squared shift which can a↵ect the prop-
agator poles for su�ciently large k in an uncontrollable
and unphysical way, a feature that is at least unpleasant
for an FRG regulator. The easiest way out here seems
to add a frequency independent counter-term that has
the form of a Callan-Symanzik regulator. Such a fre-
quency independent term is certainly causal, and it can

o↵set RR/A

HB,k
(!) by a k-dependent constant such that the

real part of the resulting regulator stays strictly negative
during the flow. We therefore introduce an additional
positive parameter ↵ to define

RR/A
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(!) ⌘ RR/A
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(!) � ↵k2. (5.20)

Since the absolute value of the real part of RR/A

HB,k
(!) is

monotonically decreasing for ! > 0, we restrict ↵ from

below by requiring ↵ > RR/A

HB,k
(0)/k2.

The e↵ect of this can be understood in two equiva-
lent ways: First, as every bath ensemble, cf. Eq. (4.12),
the regulator heat-bath necessarily induces a negative
shift of the system particle’s mass or oscillator frequency
squared, by ��!2

HB(k), which here is k-dependent as our
regulator bath is and can explicitly be written in the form
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With our analytic spectral density (5.15), for example, we
have �!2

HB(k) = k2/
p

4⇡, and ↵ must be chosen large
enough to compensate this mass shift, ↵k2

� �!2
HB(k).

This is necessary for the theory to remain causal during
the flow in the first place; see the discussion that follows
below. Secondly, in order to regularize all infrared modes
we must have a negative real part of the regulator at

! = 0, requiring the strict inequality ↵k2 > RR/A

HB,k
(0).

To further illustrate how the analytic structure of the
propagators is changed by the heat-bath regulator, and
how a suitable Callan-Symanzik counter-term can solves
the issue, it is constructive to consider a spectral den-
sity for the regulator bath based on the Drude model,
cf. Sec. IV B and Ref. [19], as a simpler alternative which
yields with 2� = !D = k,
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Using Eq. (5.11) again, we then obtain explicitly,
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where we already included the Callan-Symanzik counter-
term for which we expect to require ↵ > 1/2 = �!2

HB/k2.
To see how the regulator a↵ects the poles during the flow,
we consider an exemplary retarded (advanced) propaga-
tor of the form
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The two are related by the symmetry GR
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The simplicity of the regulator (5.23) allows to derive
analytic expressions for the poles !p = !p(k) by solving
the cubic equation
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To keep the analytic structure intact, when the regulator
is switched on, the retarded (advanced) propagator must
only have poles in the lower (upper) half plane. For sim-
plicity, we assume in our illustration here that !2

0 and �
stay constant during the flow. The resulting poles !p(k)
of the retarded propagator are shown in Figure 3 for dif-
ferent choices of ↵. For k = 0 the physical poles of the
retarded propagator are located at
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in the complex plane, as represented by the black dots
in Figure 3, corresponding to the expected quasi-particle
excitations. We see that these two poles !p(k) are located
symmetrically around the real-part-zero axis. They move
upwards with k towards the IR, coming from lower values
of their imaginary parts, and thus always stay in the
lower half plane and never cause problems with causality,
even for vanishing Callan-Symanzik term with ↵ = 0.

For non-vanishing k > 0 there is a third pole with van-
ishing real part moving along the imaginary axis, how-
ever, which is entirely due to the regulator. In the time
domain, it represents the purely relaxational contribu-
tion [18] here arising from our regulator heat bath. The
crosses in the origins in Fig. 3 mark the point where it dis-
appears for k ! 0+ in the IR. The corresponding FRG
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expansion point, and the abbreviation

�(n)
k

(x1, . . . , xn) ⌘ �(n)
k

[�c = 0, �q = 0](x1, . . . , xn)

to denote the n-point vertex �(n)
k

, it reads

�k[�] =
QX

n=1

1

n!

Z
dDx1 . . . dDxn ⇥ (5.28)

�↵1...↵n
k

(x1, . . . , xn) �↵1(x1) . . . �↵n(xn),

such that the Q-point vertex is the highest one that is
taken into account.

In this work, we use this vertex expansion (5.28) up to
the order Q = 6 in combination with a loop expansion
of the corresponding right hand sides of the flow equa-
tions.3 For the latter we adopt an ordering scheme tied
to the vertex expansion in such a way that the highest
n-point function (with n = Q) is assumed to be given
by a frequency (and momentum) independent (but scale
k dependent) vertex, while successively higher loops are
included for the lower n-point functions. Specifically, we
include (Q � n)/2-loop structures for the n-point func-
tions with n = 2, . . . Q. With Q = 6 here, this amounts

to taking into account the 2-loop structure of the 2-point
functions, the 1-loop structure of the 4-point functions,
and the scale-dependent constant 6-point vertex without
substructure (corresponding to the order zero in the loop
expansion).

Note that our combined vertex and loop-structure ex-
pansion at the order Q = 4 would essentially only yield a
mass resp. frequency shift of the main peak in the spectral
function, corresponding to the 0 $ 1, 1 $ 2 and higher
one-step transitions. In order to describe e↵ects such
as collisional broadening or higher resonance excitation
frequencies in the spectral function, as e.g. correspond-
ing to 0 $ 3 or 1 $ 4 transitions, one needs non-local
(here meaning frequency dependent) corrections of one-
loop form in the 4-point function [33]. In the combined
scheme we adopt here, with Q = 6 this implies self ener-
gies of two-loop structure, and it then automatically also
includes the local but k-dependent 6-point vertex which
leads to a further quantitative improvement.

To explain the truncation in more detail, we start with
the formal expression for the e↵ective average action,

�k[�] =
1

2

Z

xx0
�T (x)

 
0 �(2),A

k
(x, x0)

�(2),R
k

(x, x0) �(2),K
k

(x, x0)

!
�(x0) +

3

4!

Z

xx0
�↵(x)��(x)�↵�;�0

↵
0

k
(x, x0)��

0
(x0)�↵

0
(x0)

�
1

6!

Z

x

✓
3

2
µk(�c(x))5�q(x) + 5µk(�c(x))3(�q(x))3 +

3

2
µk�c(x)(�q(x))5

◆
+ O(�8), (5.29)

where we denote spacetime integrations over x in short
by

Z

x

. . . ⌘

Z
dDx . . . . (5.30)

The first line in (5.29) corresponds to the 2-loop exact
2-point function, the second line to the 1-loop exact 4-
point function, and the third line to the ‘0-loop’ exact
6-point function. Their detailed structures are explained
in reversed order, starting from the 6-point function, in
Subsections V C 1, V C 2, and V C 3, respectively.

At this point it is convenient to follow Ref. [33] and
to introduce the shorthand notations BR

k
, BA

k
, BK

k
as fol-

3
In the symmetric phase of �4

-theories, without spontaneous sym-

metry breaking or tunneling in quantum mechanics for !2
0 > 0,

all odd n-point functions vanish identically, and the minimum

of the e↵ective average action is fixed at �0 = (�c
0,�

q
0) = 0,

independent of k.

lows,

BR

k
= GR

k
� @kRR

k
� GR

k
, (5.31a)

BA

k
= GA

k
� @kRA

k
� GA

k
, (5.31b)

BK

k
= GR

k
� @kRK

k
� GA

k
+ GR

k
� @kRR

k
� GK

k

+ GK

k
� @kRA

k
� GA

k
,

(5.31c)

for convolutions of propagators and regulator insertions
with fixed outgoing legs (c, q), (q, c) and (c, c), respec-
tively. These are counterparts of the retarded, advanced
and Keldysh propagators GR

k
, GA

k
and GK

k
with all possi-

ble ways of inserting one regulator term @kRk in between.

1. 6-Point Function and E↵ective Potential

Working out general flow equations for n-point cou-
plings by the diagrammatic method can rather cumber-
some, especially in the case of the 6-point coupling that
we are interested in. In fact, it is much more convenient
to first consider the flow equation for the scale dependent
force from the e↵ective potential Vk('), here defined as

truncation
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- two-loop exact: 
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in which the scale-dependent constant vertices are calcu-
lated self-consistently.

Having the general flow equations for the 4-point func-
tions of type (a), (b) and (c) at hand, we need to briefly
discuss one minor additional subtlety. Recall that the
anomalous vertex (c) is first generated at one-loop or-
der. It hence has a structure that is highly non-local
in spacetime. The local approximation (5.48) is there-
fore not suited in this case, the anomalous vertex has
no constant contribution at tree level. It is therefore in
fact more accurate to set the e↵ective coupling constant
for this anomalous vertex (c) to zero, i.e. ⌫cqcq

k
= 0, on

the r.h.s. of Eq. (5.47) at our truncation order, and only
employ (5.48) for the classical and quantum vertices (a)
and (b). We emphasize that we nevertheless still solve
(5.47) for all of the three vertex functions (a), (b) and
(c). Setting ⌫cqcq

k
= 0 to zero only e↵ectively removes

all diagrams from the r.h.s. of the flow equations (5.47)
that would represent a constant contribution from the
anomalous vertex. As a result, the anomalous vertex is
not fed back at all into the flow equations for the 4-point
functions. One would have to go beyond the one-loop ex-
pansion on the r.h.s. of the flow equations (5.47) in order
to do this in a consistent way, see [33]. In our combined
vertex and loop-expansion scheme that would imply to
increase the truncation order to at least Q = 8. However,
the calculated anomalous 4-point vertex function will en-
ter the flow of the two-point function, and can thus not
be neglected entirely, although it does not re-enter the
flow equations for the 4-point functions themselves.

We conclude this Subsection by introducing a few fur-
ther notations that will be convenient in the following
Subsections. For the two-point vertex functions we de-
fine the shorthand notations

V cl

k
(x, x0) ⌘ �cc;cq

k
(x, x0) ,

V qu

k
(x, x0) ⌘ �cq;qq

k
(x, x0) , and

V an

k
(x, x0) ⌘ �cq;cq

k
(x, x0) ,

to emphasize the distinction between the classical (a),
quantum (b) and anomalous (c) vertex functions. We
furthermore introduce the diagrammatic notation

�↵�;�0
↵

0

k
(x, x0) =

(x, ↵) (x0
, ↵

0)

(x, �) (x0
, �

0)

, (5.51)

to denote the two-point correlation �↵�;�0
↵

0

k
(x, x0) in each

channel of the full 4-point vertex function, to emphasize
its one-loop structure. We will use this notation in the
next Subsection to represent the two-loop order in the
flow equation of the two-point function �↵↵

0

k
(x, x0).

3. 2-Point-Function

The exact flow equation of the 2-point function at the
minimum �0 = 0 has the formal structure of a tadpole
diagram, except that it contains the full 4-point vertex
function [33, 35],

@k�↵↵
0

k
(x, x0) = �

i

2

(x, ↵) (x0
, ↵

0)

. (5.52)

According to our truncation scheme at order Q = 6, we
need to solve the flow equation for the two-point func-
tion in a two-loop exact way, which we achieve by insert-
ing our one-loop exact 4-point functions (5.44) from the
previous section without further approximation into the
r.h.s. of the flow equation (5.52). With the notation just
introduced in (5.51) above, this yields

@k�↵↵
0

k
(x, x0) = �

i

2

8
>>>>><

>>>>>: (x, ↵) (x0
, ↵

0)

+

(x, ↵) (x0
, ↵

0)

+

(x, ↵) (x0
, ↵

0)

9
>>>>>=

>>>>>;

. (5.53)

The s and u-channel contributions (the second and the
third diagram in (5.53)) are responsible for generating
a dynamic frequency dependence in the two-point func-
tion, and therefore in the spectral function, likewise.
This is why we had to go to at least the order Q = 6
in the first place, to see e↵ects in the spectral func-
tion that are beyond a constant mass/frequency shift.

These contributions generate a dynamic frequency de-
pendence since they explicitly depend on the external
frequency (and momentum in higher dimensions) that
flows through the diagram. In contrast, the t-channel
contribution (first diagram in (5.53)) is proportional to
⇠ �(x � x0) and thus only contributes a constant shift to
the bare mass/frequency !0. Translating the diagrams

use for 2-point function
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The dots in the arguments of the intermediate 3-point
function indicate that the middle argument is fixed by
the external di↵erentiation point x, whereas the first and
the third argument are convoluted with those of the prop-
agators at the outgoing and incoming legs. After this
functional derivative we can now insert our local-vertex
approximation from Eq. (5.37) which then from (5.39)

yields,

@

@'
GR

',k
= �V 000

k
(') GR

',k
� GR

',k
. (5.41)

This is the final derivative relation for the retarded prop-
agator that we intended to illustrate here. Together
with the FDR, we can now construct arbitrarily high '-
derivatives of the retarded, advanced and Keldysh prop-
agators in the local-vertex approximation,

@'GR/A

',k
(!) = �V 000

k
(')

⇣
GR/A

',k
(!)

⌘2
, (5.42a)

@'GK

',k
(!) = �V 000

k
(')GK

',k
(!)

⇣
GR

',k
(!) + GA

',k
(!)

⌘
, (5.42b)

@'BR/A

',k
(!) = �2V 000

k
(')BR/A

',k
(!)GR/A

',k
(!), and (5.42c)

@'BK

',k
(!) = �V 000

k
(')

⇢⇣
BR

',k
(!) + BA

',k
(!)

⌘
GK

',k
(!) + BK

',k
(!)

⇣
GR

',k
(!) + GA

',k
(!)

⌘�
. (5.42d)

These relations form the basis for a set of recurrence re-
lations, because we can now obtain flow equations for
the higher derivatives of the scale dependent e↵ective po-
tential from (5.38) by iterating these relations (5.42a) –
(5.42d). Setting the classical field variable ' to the ex-
pansion point (here at ' = 0) afterwards, then finally
results in corresponding flow equations for the Taylor co-

e�cients V (n)
k

(0) which are related to the n-point cou-
pling constants via (5.34). The resulting flow equation

for the sixth order Taylor coe�cient µk = V (6)
k

(0) is de-
rived explicitly in Appendix B 3.

2. 4-Point Function

In a real-time �4 theory there are three di↵erent types
of 4-point vertices at 1-loop level, namely (a) the classi-
cal �c�c�c�q vertex, (b) the quantum �c�q�q�q vertex
and (c) the ‘anomalous’ �c�q�c�q vertex [33]. The for-
mer vertices (a), (b) already exist at tree level in the

bare Keldysh action (5.27), and acquire (non-local) cor-
rections during the FRG flow. In contrast, the anomalous
vertex (c) does not exist at tree level and is first gener-
ated at 1-loop order. Since in our truncation scheme we
want the flow of the 4-point function to be 1-loop exact,
we have to consider all three vertices (a), (b) and (c).

We start with a few general remarks on how to truncate

the flow equation for a 4-point function �↵��
0
↵

0

k
consis-

tently within the framework of our truncation scheme,
with the upper indices ↵��0↵0 corresponding to

(a) the classical ↵��0↵0 = cccq vertex,

(b) the quantum ↵��0↵0 = cqqq vertex, and
(c) the anomalous ↵��0↵0 = cqcq vertex.

The flow equation for each of these 4-point functions
is obtained from a corresponding forth-order functional
derivative of the Wetterich equation (5.1). This is
straightforward but tedious, so it is not explicitly re-
peated here. The result, evaluated at the origin in field
space (see e.g. [58]), can be compactly summarized [35]
as follows,

@k�↵��
0
↵

0

k
(x, y, y0, x0) = �i

8
>>>>><

>>>>>:

(y, �)

(x, ↵)

(y0
, �

0)

(x0
, ↵

0)

+

(y, �) (y0
, �

0)

(x, ↵) (x0
, ↵

0)

+

(y, �)

(x, ↵) (x0
, ↵

0)

(y0
, �

0)

9
>>>>>=

>>>>>;

�
i

2
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At this level, when using scale-dependent local vertices on the right-hand side of the flow, there is a natural sepa-
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a function of the rescaled classical field ' ⌘ �c/
p

2 by

�V 0
k
(') ⌘

1
p

2

��k[�]

��q(x)

����
�
c=

p
2 '=const.

�
q= 0

, (5.32)

and generally valid with any ansatz for the e↵ective aver-
age action �k[�], where the prime denotes ordinary di↵er-
entiation w.r.t. the constant classical field variable '. In
a general non-equilibrium situation, the potential might
be spacetime x = (x0,x) dependent. This is not the case,
however, for a spatially homogeneous system in thermal
equilibrium.

The definition in (5.32) is motivated by the form of the
potential term SV [�c, �q] in the bare Keldysh action on
the closed time path, given by

SV [�c, �q] = (5.33)
Z

x

"
�V

✓
�c + �q

p
2

◆
+ V

✓
�c

� �q

p
2

◆#
,

for a general potential V (') in the Lagrangian of the
theory, where �V 0(') is the force in the classical field
equations obtained from the �q

! 0 limit.
For the spacetime independent vertices we are inter-

ested in the flow equations for the Taylor coe�cients

V (n)
k

(0) of the scale dependent e↵ective potential Vk(')
used in (5.32), when expanded around a possibly likewise
scale dependent minimum '0,k. In our case, '0,k ⌘ 0 for
all k, and we are interested, in particular, in the sixth or-
der Taylor coe�cient which is precisely our 6-point cou-

pling constant, µk ⌘ V (6)
k

(0).
Using Eq. (5.32) to define the scale dependent e↵ective

potential (up to a constant), we can then furthermore
relate the desired Taylor coe�cients to the spacetime in-
tegrals of the corresponding n-point functions, via

V (n)
k

(0) = �2n/2�1

Z

x2...xn

�qc...c

k
(x, x2, . . . , xn), (5.34)

where we have also used the exchange symmetries of the
n-point functions,

�...↵�...

k
(. . . , x, y, . . . ) = �...�↵...

k
(. . . , y, x, . . . ), (5.35)

which are valid specifically for a real scalar field the-
ory [57], in order to combine equivalent terms in (5.34).

To obtain the flow equation for derivative of the ef-
fective potential, we thus have to project the Wetterich
equation (5.1) on constant classical field configurations
accordingly. To achieve this, we first take the functional
derivative with respect to the quantum field �q(x) on
both sides of the Wetterich equation, and then set �q = 0,
�c = const. which diagrammatically corresponds to the
equation, see e.g. [34],

@k

��k[�]

��q(x)
= �

i

2

x

. (5.36)

Due to the functional derivative, the flow of the zero-
point energy Vk(0) is lost, of course. This in generally
true on the closed-time path, however, where the Keldysh
action contains no information on the zero point energy
either, because the contributions to a constant o↵set in
V (') from the forward and backward branches exactly
cancel, cf. Eq. (5.33).

For the flow of the higher Taylor coe�cients of the ef-
fective potential, we can set �q = 0 in (5.36), but we
need to maintain the dependence on the constant classi-
cal field '. This implies that one would need a partially
field-dependent full 3-point vertex function

�qcc

',k
(x, x2, x3) ⌘ �qcc

k
[�c =

p

2', �q = 0](x, x2, x3)

in the loop diagram on the r.h.s. of (5.36) which obeys its
own flow equation involving successively higher n-point
functions as usual. At this point we employ a local-
vertex approximation in the sense that we neglect possi-
ble spacetime dependent substructures but maintain the
required field dependence in the local part. Consistency
with Eq. (5.34) then requires us to use,

�qcc

',k
(x, x2, x3) = �

1
p

2
V 000

k
(') �(x � x2)�(x � x3),

(5.37)

where the dependence on the constant classical field '
will be needed for the higher-order derivatives later on.
Using this local-vertex approximation and the definition
in (5.31c), the flow equation for the e↵ective potential
from (5.32) and (5.36) becomes,

@kV 0
k
(') = �

i

4
V 000

k
(')

Z
dDp

(2⇡)D
BK

',k
(p). (5.38)

The notation BK

',k
on the right indicates that analogously

field dependent propagators G',k ⌘ Gk[
p

2', 0] are be-
ing used inside the loop. To further illustrate the tech-
nique needed for further derivatives w.r.t. the classical
field expectation value ', first consider for example the
fully field-dependent retarded propagator GR

k
[�c, �q]. For

the successive Taylor coe�cients of the e↵ective poten-
tial we can again set the classical field �c(x) =

p
2'

to its constant expectation value and the quantum field
to zero, �q(x) = 0. For the partially field dependent
GR

',k
⌘ GR

k
[
p

2', 0] this implies that we can relate the
ordinary partial derivative w.r.t. the constant field ex-
pectation value ' to its functional derivative w.r.t. the
classical field �c(x),

@

@'
GR
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p

2

Z
dDx

�GR

k
[�c, �q]

��c(x)

����
�
c(x)=

p
2 '

�
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. (5.39)

To evaluate the functional derivative inside the integral,
we make use of (5.7b) which, after applying the func-
tional chain and product rules, directly tells us that

�GR

k
[�c, �q]

��c(x)
= GR

k
� �qcc

k
(·, x, ·) � GR

k
. (5.40)

- flow of local vertices: 

use for 6-point function

• combined vertex and loop expansion
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FIG. 5. Comparison of high-temperature spectral functions, at T = 32 with weak damping � = 0.06, over frequency (all
in units of !0) from the various methods. The panel in (a) on the left shows results at a weak coupling of � = 1/32, and
that in (b) on the right the corresponding ones at a rather strong coupling of � = 4. The sharp individual peaks from the
quantized transition energies, cf. Fig. 1, gradually build up the broad continuum distributions observed at high temperatures
in (a). These represent the classical limit in which the classical-statistical spectral functions agree with the GSA results
(static/adiabatic), and all of them coincide with the solution from the exact diagonalization. Increasing the coupling at fixed
temperature increases the splitting between the transition energies so that the individual peaks reemerge in (b). The main peak
represents the ensemble of one-step transitions |ni $ |n + 1i, the second one that of the three-step transitions |ni $ |n + 3i
at higher excitation energies. The time-dependent second moments �xx(t), �xp(t), and �pp(t) beyond the static approximation
in the GSA produce contributions which are dismissed when extracting the spectral function from the quasi-classical method
described in Sec. IV B 6. These contributions, which can be neglected in the nearly harmonic system (a), are mainly responsible
for the di↵erences between static and adiabatic GSA results in (b). The classical limit also serves to assess the truncation
used in the real-time FRG calculations (performed on a frequency grid with 512 points in the interval ! 2 [0, 15]). Whether
or not explicitly employing the classical limit in the real-time FRG flow equations makes no noticeable di↵erences here. The
corresponding NLO 2-loop perturbative results are shown as dashed lines for comparison, and agree with those of Ref. [36].

Fig. 1, where the |ni are distributed according to the
Boltzmann weight e��En , cf. Eq. (2.9). Because the cou-
pling is small, the transition energies for the di↵erent
n that contribute are all close to that of the ground-
state transition which itself is only a little larger than
!0 = 1 in the harmonic case. The central frequency !c

of this rather narrow main peak at !c & 1 is therefore
also close to !0. All non-perturbative methods describe
this main peak in perfect agreement with the exact solu-
tion. In contrast, the results from NLO 2-loop perturba-
tion theory (taken from Ref. [36]) show spurious double
peak structures. Most importantly, such a splitting of the
main peak does not occur in the classical-statistical limit.
Although the quartic coupling � = 1/32 is rather small
in Fig. 5 (a), this is not surprising, however, because
the relevant thermal coupling �T = 1 is comparatively
large: In fact, one can rescale variables in the classical-
statistical theory to trade the explicit dependence on the
quartic coupling � for a dependence only on the com-
bination �T (which is not possible in the full quantum
theory). Hence, the e↵ective expansion parameter of the
classical-statistical theory in the perturbative series is not
�, but the thermal coupling �T . Since �T = 1 in Fig-
ure 5 (a) and even �T = 128 in Figure 5 (b), we must
not expect the perturbative expansion to be valid here.
This once again emphasizes the need of non-perturbative
real-time methods here, and it might help to appreci-
ate the huge qualitative improvements brought about by

the FRG. This is particularly reassuring for field-theory
applications beyond the classical-statistical limit where
we neither have exact solutions nor ab-initio results from
real-time simulations.

The second peak represents the corresponding ther-
mal ensemble of three-step transitions, |ni ! |n + 3i.
It would be absent in the harmonic case and is there-
fore small because � is. In the NLO 2-loop perturbative
calculation it occurs at ! = 3!0 corresponding to the un-
perturbed energy di↵erence in all these transitions. Di-
agrammatically it originates from non-local ‘sunset’ di-
agrams at 2-loop level which contain three bare prop-
agators. Cutkosky’s cutting rule then implies that the
spectral function, i.e. the imaginary part of the retarded
propagator, peaks at ! ⇡ 3!0. It is therefore neither
at the correct frequency nor of the correct shape. The
perturbative calculation overestimates its height and un-
derestimates its width. This is a manifestation of the
fact that the perturbative expansion is not valid here, be-
cause the e↵ective expansion parameter of the classical-
statistical theory, �T = 1, is not small.

Beyond perturbation theory, the spread of the individ-
ual transition energies generally grows with ! and the
second peak therefore tends to be wider than the main
peak as well. The resonance frequency of the second peak
is somewhat larger but close to 3!c (which is still well be-
low T = 32 here). In fact, in our present truncation to
the real-time FRG flows, the second peak has to be at

weak coupling
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FIG. 5. Comparison of high-temperature spectral functions, at T = 32 with weak damping � = 0.06, over frequency (all
in units of !0) from the various methods. The panel in (a) on the left shows results at a weak coupling of � = 1/32, and
that in (b) on the right the corresponding ones at a rather strong coupling of � = 4. The sharp individual peaks from the
quantized transition energies, cf. Fig. 1, gradually build up the broad continuum distributions observed at high temperatures
in (a). These represent the classical limit in which the classical-statistical spectral functions agree with the GSA results
(static/adiabatic), and all of them coincide with the solution from the exact diagonalization. Increasing the coupling at fixed
temperature increases the splitting between the transition energies so that the individual peaks reemerge in (b). The main peak
represents the ensemble of one-step transitions |ni $ |n + 1i, the second one that of the three-step transitions |ni $ |n + 3i
at higher excitation energies. The time-dependent second moments �xx(t), �xp(t), and �pp(t) beyond the static approximation
in the GSA produce contributions which are dismissed when extracting the spectral function from the quasi-classical method
described in Sec. IV B 6. These contributions, which can be neglected in the nearly harmonic system (a), are mainly responsible
for the di↵erences between static and adiabatic GSA results in (b). The classical limit also serves to assess the truncation
used in the real-time FRG calculations (performed on a frequency grid with 512 points in the interval ! 2 [0, 15]). Whether
or not explicitly employing the classical limit in the real-time FRG flow equations makes no noticeable di↵erences here. The
corresponding NLO 2-loop perturbative results are shown as dashed lines for comparison, and agree with those of Ref. [36].

Fig. 1, where the |ni are distributed according to the
Boltzmann weight e��En , cf. Eq. (2.9). Because the cou-
pling is small, the transition energies for the di↵erent
n that contribute are all close to that of the ground-
state transition which itself is only a little larger than
!0 = 1 in the harmonic case. The central frequency !c

of this rather narrow main peak at !c & 1 is therefore
also close to !0. All non-perturbative methods describe
this main peak in perfect agreement with the exact solu-
tion. In contrast, the results from NLO 2-loop perturba-
tion theory (taken from Ref. [36]) show spurious double
peak structures. Most importantly, such a splitting of the
main peak does not occur in the classical-statistical limit.
Although the quartic coupling � = 1/32 is rather small
in Fig. 5 (a), this is not surprising, however, because
the relevant thermal coupling �T = 1 is comparatively
large: In fact, one can rescale variables in the classical-
statistical theory to trade the explicit dependence on the
quartic coupling � for a dependence only on the com-
bination �T (which is not possible in the full quantum
theory). Hence, the e↵ective expansion parameter of the
classical-statistical theory in the perturbative series is not
�, but the thermal coupling �T . Since �T = 1 in Fig-
ure 5 (a) and even �T = 128 in Figure 5 (b), we must
not expect the perturbative expansion to be valid here.
This once again emphasizes the need of non-perturbative
real-time methods here, and it might help to appreci-
ate the huge qualitative improvements brought about by

the FRG. This is particularly reassuring for field-theory
applications beyond the classical-statistical limit where
we neither have exact solutions nor ab-initio results from
real-time simulations.

The second peak represents the corresponding ther-
mal ensemble of three-step transitions, |ni ! |n + 3i.
It would be absent in the harmonic case and is there-
fore small because � is. In the NLO 2-loop perturbative
calculation it occurs at ! = 3!0 corresponding to the un-
perturbed energy di↵erence in all these transitions. Di-
agrammatically it originates from non-local ‘sunset’ di-
agrams at 2-loop level which contain three bare prop-
agators. Cutkosky’s cutting rule then implies that the
spectral function, i.e. the imaginary part of the retarded
propagator, peaks at ! ⇡ 3!0. It is therefore neither
at the correct frequency nor of the correct shape. The
perturbative calculation overestimates its height and un-
derestimates its width. This is a manifestation of the
fact that the perturbative expansion is not valid here, be-
cause the e↵ective expansion parameter of the classical-
statistical theory, �T = 1, is not small.

Beyond perturbation theory, the spread of the individ-
ual transition energies generally grows with ! and the
second peak therefore tends to be wider than the main
peak as well. The resonance frequency of the second peak
is somewhat larger but close to 3!c (which is still well be-
low T = 32 here). In fact, in our present truncation to
the real-time FRG flows, the second peak has to be at

not-so-weak coupling
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(b) � = 4, T = 2
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(d) � = 4, T = 0.5
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FIG. 6. Strong-coupling spectral functions with � = 4 (and � = 0.06) at successively lower temperatures starting with T = 4
in (a) down to T = 0.5 in (d). With decreasing temperature the contributions from higher states in the one-step and three-step
transitions get exponentially suppressed more and more so that the corresponding ensembles of main and second peak in the
spectral functions get compressed towards their lowest transition frequencies until only a few individual transition lines remain.
The (static) GSA spectral function follows the ensemble averages of main and second peak more closely than the classical one
as temperature is lowered beyond the range of validity of the classical approximation (T � !). In our present truncation of
the real-time FRG, the second peak for ! ⇡ 3!c stays put at about three times the central frequency !c of the main peak (a
frequency grid with 320 points on ! 2 [0, 8] was used for T = 1, 2, 4, and one with 200 points on ! 2 [0, 5] for T = 0.5). As in
Fig. 5, the corresponding NLO 2-loop perturbative results are included with dashed lines for comparison.

While all methods reproduce the general trend of the
overall infrared shift and reduction of width of the main
peak in the spectral function, there are quantitative dif-
ferences worth discussing: At the starting temperature of
T = 4 in Figure 6 (a), classical and GSA spectral func-
tions are still very similar and both agree well (on aver-
age) with the exact result, while the FRG solution shows
problems analogous to those discussed in relation with
Figure 5 (b) before. Reducing the temperature to T = 2,
we see in Figure 6 (b) that the classical and GSA spectral
functions start to separate from each other. The classical
result tends to underestimate the central frequency of the
main peak, and the GSA more closely follows its shape
on average. In particular, the GSA tends to reproduce
better its rather abrupt start due to the relatively sharp
and well isolated quantum mechanical ground-state tran-
sition line on the low-frequency side.

When it comes to the second peak representing the
three-step transition lines, the GSA result is clearly able

to describe their ensemble average significantly better
than the classical spectral function. This trend contin-
ues towards lower temperatures where the GSA results
are able to follow these ensemble averages more closely
than the classical spectral functions, and show an en-
hanced strength in the second peak as compared to the
classical-statistical result. Consequently, all these e↵ects
become more pronounced at T = 1 in Figure 6 (c). At
the lowest temperature T = 0.5 of this comparison in
Figure 6 (d) it becomes obvious that the GSA in our
static approximation eventually also tends to underes-
timate the central frequency of the second peak in the
Caldeira-Leggett model.

The classical spectral function is bound to approach its
mean-field value in the limit T ! 0, which is here sim-
ply given by the Breit-Wigner form with width � around
the unperturbed !0. It should therefore only be consid-
ered valid for high temperatures. In contrast, the exact
vacuum spectral function (for T ! 0) in the interacting
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theory still contains all possible ground state transitions
|0i $ |1i, |3i, |5i, . . . which are inherently quantum me-
chanical. Because even the lowest energy di↵erence, be-
tween ground and first excited state, increases in presence
of the quantum-self-interactions which are not included
in the classical limit, the latter thus necessarily fails to
describe the low-temperature mass shift correctly. We
also notice that it produces a main peak which is system-
atically too broad in comparison with the exact solution.
In the language of the closed time path and the Martin-
Siggia-Rose (MSR) path integral formulation of classical-
statistical mechanics, it is missing a quantum �c�q�q�q

vertex. The real-time FRG, which includes such a ver-
tex, therefore becomes better for smaller temperatures,
and the location of its main peak, with central frequency
!c, fits the quantum-mechanical solution quantitatively
quite well. The strength from the higher excitations in
the second peak is best reproduced by the real-time FRG
as well, although its central frequency stays closer to the
one in the classical spectral function, as most promi-
nently seen in the T = 0.5 plot in Figure 6 (d). The
reason for this can be understood from the truncation
described in Section V. The e↵ective mass-shift of the
main peak is indeed generated by the tadpole diagram
in (5.53). Responsible for the second peak, however, are
non-local ‘sunset’ diagrams, e.g. see Ref. [36]. They con-
tain three Green functions which all include the correct
e↵ective mass-shift as explained above. The imaginary
part of this diagram from Cutkosky’s cutting rule then
fixes the location of the second peak in the spectral func-
tion to ! ⇡ 3!c. This could best be improved upon with
self-consistency and by including higher-order vertex cor-
rections.

To further assess the influence of the static approxi-
mation in the GSA, we also ran the adiabatic GSA sim-
ulations at our lowest temperature T = 0.5. The results
are shown in Figure 7. We observe that the adiabatic ap-
proximation of the GSA quantitatively yields a slightly
better estimate of the central frequency in the main peak.
An additional structure on its right side, as shown in the
inserts, might even be interpreted as a remnant of the
individual transition-line substructure. Such a process is
not contained in the classical-statistical approach.

The three-step transitions at higher frequencies are
captured by both of the GSA results. In the adi-
abatic version of the GSA a double-peak structure
thereby emerges resembling the corresponding substruc-
ture in the exact diagonalization result which is a purely
quantum-mechanical e↵ect (and which is never observed
in the classical spectral function, cf. Figure 6 (d)). Quan-
titatively, however, both GSA results underestimate the
exact frequencies, and appear to too broad as compared
to the exact diagonalization solution. The continuous
high-frequency fall-o↵ of the spectral function from there
on is in fact described best by the static GSA result which
includes the quasi-classical correction factor from the col-
ored quantum noise, cf. Section IV B 5. In contrast, the
large-! behavior of the adiabatic GSA result does not
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FIG. 7. Comparison of static and adiabatic approximation in
the GSA at strong coupling (� = 4 with � = 0.06 as before)
and low temperature (T = 0.5). With the adiabatic correc-
tions included in the time evolution, the central frequency of
the main peak matches the exact one slightly better than in
the static approximation. An additional ‘flank’ on its right
(shown in the insert) resembles the multi-peak substructure
of the individual transitions from the exact diagonalization.
Moreover, we observe a splitting of the second peak in the
adiabatic approximation, which at least qualitatively resem-
bles the first two distinct three-step transitions in the exact
diagonalization.

match that of the exact solution so precisely anymore.
This is another indication that the quasi-classical method
to measure the spectral functions as described in Sec-
tion IV B 6 eventually becomes inconsistent with the full
time evolution of the Gaussian widths in the adiabatic
GSA at very low temperatures (or very high frequencies),
in agreement with the discussion of the classical limit of
the GSA in Figure 5 above.

VII. CONCLUSION & OUTLOOK

In Sections II to V we have established four dif-
ferent real-time methods for calculating spectral func-
tions. These are based on exact diagonalization, classical-
statistical field theory, the Gaussian-state approximation
(GSA), and the functional renormalization group (FRG)
formulated on the Keldysh closed-time path. We have
compared the results from these various methods in Sec-
tion VI for the spectral function of the quartic anhar-
monic oscillator coupled to an Ohmic heat bath at finite
temperature as in the Caldeira-Leggett model.

Having established the underlying quantum mechani-
cal structure of the spectral function for the anharmonic
Caldeira-Leggett oscillator from exact diagonalization in
Section II, we were able to demonstrate explicitly how
the quantum mechanical system with its discrete transi-
tion lines gradually turns into a classical one when tem-
perature is increased, as illustrated here by the chang-
ing behavior of the spectral function. The quartic an-
harmonicity with coupling strength � of the system is
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(a) � = 4, T = 4

(c) � = 4, T = 1

(b) � = 4, T = 2

(d) � = 4, T = 0.5

FIG. 6. Strong-coupling spectral functions with � = 4 (and � = 0.06) at successively lower temperatures starting with T = 4
in (a) down to T = 0.5 in (d). With decreasing temperature the contributions from higher states in the one-step and three-step
transitions get exponentially suppressed more and more so that the corresponding ensembles of main and second peak in the
spectral functions get compressed towards their lowest transition frequencies until only a few individual transition lines remain.
The (static) GSA spectral function follows the ensemble averages of main and second peak more closely than the classical one
as temperature is lowered beyond the range of validity of the classical approximation (T � !). In our present truncation of
the real-time FRG, the second peak for ! ⇡ 3!c stays put at about three times the central frequency !c of the main peak (a
frequency grid with 320 points on ! 2 [0, 8] was used for T = 1, 2, 4, and one with 200 points on ! 2 [0, 5] for T = 0.5). As in
Fig. 5, the corresponding NLO 2-loop perturbative results are included with dashed lines for comparison.

While all methods reproduce the general trend of the
overall infrared shift and reduction of width of the main
peak in the spectral function, there are quantitative dif-
ferences worth discussing: At the starting temperature of
T = 4 in Figure 6 (a), classical and GSA spectral func-
tions are still very similar and both agree well (on aver-
age) with the exact result, while the FRG solution shows
problems analogous to those discussed in relation with
Figure 5 (b) before. Reducing the temperature to T = 2,
we see in Figure 6 (b) that the classical and GSA spectral
functions start to separate from each other. The classical
result tends to underestimate the central frequency of the
main peak, and the GSA more closely follows its shape
on average. In particular, the GSA tends to reproduce
better its rather abrupt start due to the relatively sharp
and well isolated quantum mechanical ground-state tran-
sition line on the low-frequency side.

When it comes to the second peak representing the
three-step transition lines, the GSA result is clearly able

to describe their ensemble average significantly better
than the classical spectral function. This trend contin-
ues towards lower temperatures where the GSA results
are able to follow these ensemble averages more closely
than the classical spectral functions, and show an en-
hanced strength in the second peak as compared to the
classical-statistical result. Consequently, all these e↵ects
become more pronounced at T = 1 in Figure 6 (c). At
the lowest temperature T = 0.5 of this comparison in
Figure 6 (d) it becomes obvious that the GSA in our
static approximation eventually also tends to underes-
timate the central frequency of the second peak in the
Caldeira-Leggett model.

The classical spectral function is bound to approach its
mean-field value in the limit T ! 0, which is here sim-
ply given by the Breit-Wigner form with width � around
the unperturbed !0. It should therefore only be consid-
ered valid for high temperatures. In contrast, the exact
vacuum spectral function (for T ! 0) in the interacting

• compare static vs adiabatic GSA:
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Fig. 9. Dependence of (single-peak and double-peak) Breit-Wigner fit parameters for π and σ spectral functions on the 
temperature T around the crossover transition at finite explicit symmetry breaking J = 0.05.

it is this emerging second peak which appears to develop further into the resonance peak that 
eventually becomes degenerate with the σ mode as temperature is increased further beyond Tpc. 
The original low-temperature quasi-particle peak on the other hand slowly melts and disappears 
around the pseudo-critical temperature. The two distinct peaks at mπ,1 and mπ,2 around T ! 15
in fact show signs of an interesting avoided-crossing behavior which has not been observed in 
the corresponding solutions of analytically continued FRG flow equations, for example, so far.

5.2. Spectral functions in the crossover regime – J dependence

So far we have investigated the temperature dependence of the σ and π spectral functions 
in the vicinity of the crossover transition, at a fixed relatively large explicit symmetry breaking 
J = 0.05. Since we always have to keep a non-vanishinig explicit symmetry breaking in order 
to distinguish between π and σ components, we will now fix the temperature close to Tc at 
T = 17.4 and decrease the explicit symmetry breaking J by successive factors of two to approach 
the critical point, as indicated by the horizontal line in the phase diagram in Fig. 5.

Our results for the J dependence of spectral functions close to Tc are summarized in Fig. 10, 
where top and bottom rows show the π and σ spectral functions at different explicit symmetry 
breaking. Starting from J = 0.05 employed in our temperature scan of the crossover transition, 
we find that lowering the explicit symmetry breaking J results in a rapid decrease of the effective 
mass of σ and π along with a simultaneous increase of the decay width. Effectively the combi-
nation of these two phenomena leads to a melting of the quasi-particle peaks, in both σ and π
spectral functions, as can be seen from Fig. 11, where we present the J dependence of the Breit-
Wigner resonance parameters. However, one should caution, that already at J = 0.05 × 2−1 the 
π spectral function develops an additional enhancement at low frequencies, which is no longer 
fully captured by the Breit-Wigner fits. Even though initially the σ spectral function can still be 
reasonably well described in terms of a single resonance, we find that below J = 0.05 × 2−5

the description in terms of Breit-Wigner distribution becomes increasingly inaccurate also for 
the σ spectral function, as both spectral functions start to feature a strong enhancement at low 
frequency, which is no longer captured by a simple quasi-particle peak.

Eventually, the amount of explicit symmetry breaking is no longer large enough to guarantee 
the alignment of the order parameter in our finite volume system, such that for very small values 
of J the spectral functions of π and σ effectively become degenerate. Even though this is a finite 
volume artifact, it is also clear that extending the study to larger and larger lattices will only shift 
the problem towards smaller and smaller values of J , as in any finite system the alignment of 
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Fig. 7. T dependence of π spectral functions for J = 0.05 below (top row), around (middle row) and above (bottom row) 
the pseudocritical temperature Tpc ≈ 19.5. Left column: Raw data only. Middle column: Data with Breit-Wigner fits 
(31) to the larger peak, where applicable. Error bars are of the order of the pointsize. Several intermediate points are not 
displayed for better visibility but are considered for the fits. Right column: Same as middle column but with log scale.

perature. Besides these quasi-particle peaks, the π spectral function also shows an additional 
cusp at higher frequencies which at very low temperatures occurs approximately for frequencies 
ω ∼ 3mπ and should be attributed to a multi-pion excitation. By further increasing the temper-
ature, the quasi-particle peaks remain, however the mass of σ becomes lighter as the vacuum 
expectation value of the σ field decreases. Even though the width of σ spectral function also 
increases, it turns out that except for a small enhancement at low frequency, the spectral function 
of the σ mode can still be well described in terms of a single Breit-Wigner resonance

ρ(ω) = ω%

(ω2 − m2)2 + ω2%2 (31)

as indicated by the solid lines, representing Breit-Wigner fits of the spectral function.
Conversely, the spectral function for the π mode exhibits a much more non-trivial behav-

ior as the frequency threshold for the scattering states lowers and the resonance becomes more 
pronounced as temperature increases. Beyond T = 13.05 the spectral function ρπ features an 
interesting double peak structure, where the effective mass and spectral weight of the lower fre-
quency peak decrease as a function of temperature, while the upper frequency peak becomes 
increasingly dominant when further increasing the temperature. We further illustrate this double 
peak structure in Fig. 8, which shows a close up of the π spectral function in the same temper-
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ω ∼ 3mπ and should be attributed to a multi-pion excitation. By further increasing the temper-
ature, the quasi-particle peaks remain, however the mass of σ becomes lighter as the vacuum 
expectation value of the σ field decreases. Even though the width of σ spectral function also 
increases, it turns out that except for a small enhancement at low frequency, the spectral function 
of the σ mode can still be well described in terms of a single Breit-Wigner resonance

ρ(ω) = ω%

(ω2 − m2)2 + ω2%2 (31)

as indicated by the solid lines, representing Breit-Wigner fits of the spectral function.
Conversely, the spectral function for the π mode exhibits a much more non-trivial behav-

ior as the frequency threshold for the scattering states lowers and the resonance becomes more 
pronounced as temperature increases. Beyond T = 13.05 the spectral function ρπ features an 
interesting double peak structure, where the effective mass and spectral weight of the lower fre-
quency peak decrease as a function of temperature, while the upper frequency peak becomes 
increasingly dominant when further increasing the temperature. We further illustrate this double 
peak structure in Fig. 8, which shows a close up of the π spectral function in the same temper-
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• dynamic scaling functions:

- use scaling relation of critical SF: 
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Figure 8: Scaling function f!px! , 0q of the critical spectral function at non-zero spatial momentum for the four di↵erent
critical scenarios. Solid black lines represent the amplitude f! obtained from the fit of the universal scaling function in
Fig. 10 at large xp. Due to availability of data, we use ⌧ “ 0.0009p2q (d “ 2) resp. ⌧ “ ´0.00008p5q (d=3) as a proxy for
the critical temperature. Note that, despite ⌧ « 0, finite size e↵ects are not relevant here due to finite spatial momentum.
However, to achieve the comparatively very low p in d “ 3, a single set of data at N “ 512 very close to Tc was generated.

z “ 2.05p5q for 3D Model A, with logarithmic corrections; Wang et al. [46] reach a compatible result of
z “ 2.09p4q.

We are not aware of any previous Monte-Carlo studies on the dynamic critical exponent for Model C
in d “ 3; however, based on the classification scheme by Halperin and Hohenberg the dynamic critical
exponent there is known by virtue of the same scaling relation (z “ 2 ` ↵

⌫
) as in d “ 2, which amounts

to z « 2.17 for a model in the 3D Ising universality class.

6.1. Dynamic scaling functions

Since the spectral function is derived directly from the two-point correlation function, one expects the
critical behavior to be governed by the following scaling form [30]

⇢ p!, p, ⌧q “ s2´⌘⇢
´
sz!, sp, s

1
⌫ ⌧

¯
, (42)

in the limit !, p, ⌧ Ñ 0, and we omit any residual dependencies on the finite volume. If not stated
otherwise, we will restrict ourselves to positive frequencies p! ° 0q to compactify notation, noting that
the behaviour for negative frequencies p! † 0q is trivially obtained from the symmetry of the spectral
function ⇢p´!, p, ⌧q “ ´⇢p!, p, ⌧q.

The scaling law in Eq. (42) allows us to define three alternative scaling functions f!, fp and f˘
⌧

according to

⇢ p!, p, ⌧q “ !̄´p2´⌘q{z f!
´
p̄z{!̄, ⌧{!̄1{⌫z

¯
, (43)

⇢ p!, p, ⌧q “ p̄´p2´⌘q fp
´
!̄{p̄z, ⌧{p̄1{⌫

¯
, (44)

⇢ p!, p, ⌧q “ |⌧ |´� f˘
⌧

´
!̄{|⌧ |⌫z, p̄1{⌫{|⌧ |

¯
, (45)

where � is the static susceptibility exponent with � “ ⌫p2 ´ ⌘q from static scaling relations. Indeed,
the scaling behaviour in Eqs. (43) to (45) is clearly visible in our classical-statistical simulations, as can

15

to determine new universal 
scaling funct.’s                 , e.g.
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f!, fp, f
±
⌧

dynamic (two-variable) scaling function

as the stochastic evolution equation of the order parameter field �px, tq a second-order equation of motion
with uncorrelated white noise of the form

:�px, tq “ ´ �Hr�s
��px, tq ´ � 9�px, tq `

a
2�T ⌘px, tq, (15)

x⌘px, tqy “ 0,
@
⌘px1

, t
1q⌘px, tq

D
“ �px1 ´ xq�pt1 ´ tq. (16)

The real parameter � represents the Langevin coupling to a heat bath via the Gaussian random noise
⌘px, tq. The conjugate momentum field in this case is identical to the time derivative of �, and we define
⇡px, tq ” 9�px, tq to be used as the kinetic momentum field throughout in the following. As we have
demonstrated explicitly in [12], this system shows the expected dynamic critical behaviour of Model A
(C) for finite (vanishing) Langevin coupling �.

In the case of the di↵usive dynamics of Model B, when the order parameter Q “ ≥
dd

x �px, tq is

conserved, i.e. 9Q “ 0, we consider equations of motion of the form

:�px, tq “ µr
2 �Hr�s
��px, tq ´ � 9�px, tq `

a
2�T ⌘px, tq, (17)

x⌘px, tqy “ 0,
@
⌘px1

, t
1q⌘px, tq

D
“ ´µr

2
�px1 ´ xq�pt1 ´ tq, (18)

where µ is the mobility coe�cient (for low frequency excitations with ! ! � it reduces to µ “ ��� in the
linearized equations of the previous subsection).

We note that for both Models A and B, decoupling the system from the heat bath by setting the
Langevin coupling � “ 0, leads to another conserved scalar quantity in the system, which can be identified
with the total energy. Due to the presence of this additional conserved quantity, this conservative limit
of Model A in Eq. (15) corresponds to the dynamic universality class of Model C as discussed explicitly
in [11]. While in the limit � Ñ 0 the equation of motion (17) for Model B also features an additional
conserved quantity in Eq. (27), this situation is clearly more subtle. Even though in this limit the model
in Eq. (17) features the same set of conserved quantities as Model D, the structure of excitations is
completely di↵erent as for � Ñ 0, Eq. (17) becomes a non-linear wave-equation, which conserves the
order parameter but no longer features ordinary di↵usive behavior at tree level. Since the classification
of the non-dissipative limit of our Model B dynamics is not obvious, we will refer to it as “Model BC”
in the following to highlight that this dynamics emerges as the conservative (C) limit of an Israel-Stuart
type di↵usive dynamics (Model B).

As a brief recap, the equilibrium distribution of the order-parameter field for the standard Langevin
evolution in Eq. (15) of course corresponds to the Boltzmann distribution,

PA r�, ⇡s “ Z
´1 exp

"
´ �Hr�s ´ �

ª
dd

x
⇡

2pxq
2

*
” Z

´1 exp
 

´ �HAr�, ⇡s
(

. (19)

It is the stationary solution to the Fokker-Planck equation for the Itô-Langevin process described by
Eqs. (15) and (16) with Model A dynamics whose drift term vanishes. One hence has Liouville’s theorem

dPA

dt
“ BPA

Bt
´
ª

dd
x

ˆ
�Hr�s
��x

�

�⇡x
´ ⇡x

�

��x

˙
PAr�, ⇡s “ 0 , (20)

where the implicit time dependence is given by the equal-time Poisson bracket between HA and PA as
usual, with subscripts x as shorthand notations for the spatial functional derivatives w.r.t. the fields at
fixed times. In general, the right hand side of the Fokker-Planck equation is given by the collision term.
For our Model A dynamics it reads,

dPA

dt
“ �

ª
dd

x CApx,x, tq , with CApx,y, tq “ �

�⇡x

„
⇡yPA ` T

�

�⇡y
PA

⇢
, (21)

and separately also vanishes in equilibrium, simply because T
�PA

�⇡x
“ ´⇡x PA.

By the same line of arguments, the equilibrium distribution for our di↵usive Model B dynamics is in
turn given by

PB r�, ⇡s “ Z
´1 exp

"
´ �Hr�s ` �

ª
dd

x
1

2µ
⇡pxqr´2

⇡pxq
*

. (22)
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as the stochastic evolution equation of the order parameter field �px, tq a second-order equation of motion
with uncorrelated white noise of the form

:�px, tq “ ´ �Hr�s
��px, tq ´ � 9�px, tq `

a
2�T ⌘px, tq, (15)

x⌘px, tqy “ 0,
@
⌘px1

, t
1q⌘px, tq

D
“ �px1 ´ xq�pt1 ´ tq. (16)

The real parameter � represents the Langevin coupling to a heat bath via the Gaussian random noise
⌘px, tq. The conjugate momentum field in this case is identical to the time derivative of �, and we define
⇡px, tq ” 9�px, tq to be used as the kinetic momentum field throughout in the following. As we have
demonstrated explicitly in [12], this system shows the expected dynamic critical behaviour of Model A
(C) for finite (vanishing) Langevin coupling �.

In the case of the di↵usive dynamics of Model B, when the order parameter Q “ ≥
dd

x �px, tq is

conserved, i.e. 9Q “ 0, we consider equations of motion of the form

:�px, tq “ µr
2 �Hr�s
��px, tq ´ � 9�px, tq `

a
2�T ⌘px, tq, (17)

x⌘px, tqy “ 0,
@
⌘px1

, t
1q⌘px, tq

D
“ ´µr

2
�px1 ´ xq�pt1 ´ tq, (18)

where µ is the mobility coe�cient (for low frequency excitations with ! ! � it reduces to µ “ ��� in the
linearized equations of the previous subsection).

We note that for both Models A and B, decoupling the system from the heat bath by setting the
Langevin coupling � “ 0, leads to another conserved scalar quantity in the system, which can be identified
with the total energy. Due to the presence of this additional conserved quantity, this conservative limit
of Model A in Eq. (15) corresponds to the dynamic universality class of Model C as discussed explicitly
in [11]. While in the limit � Ñ 0 the equation of motion (17) for Model B also features an additional
conserved quantity in Eq. (27), this situation is clearly more subtle. Even though in this limit the model
in Eq. (17) features the same set of conserved quantities as Model D, the structure of excitations is
completely di↵erent as for � Ñ 0, Eq. (17) becomes a non-linear wave-equation, which conserves the
order parameter but no longer features ordinary di↵usive behavior at tree level. Since the classification
of the non-dissipative limit of our Model B dynamics is not obvious, we will refer to it as “Model BC”
in the following to highlight that this dynamics emerges as the conservative (C) limit of an Israel-Stuart
type di↵usive dynamics (Model B).

As a brief recap, the equilibrium distribution of the order-parameter field for the standard Langevin
evolution in Eq. (15) of course corresponds to the Boltzmann distribution,

PA r�, ⇡s “ Z
´1 exp

"
´ �Hr�s ´ �

ª
dd

x
⇡

2pxq
2

*
” Z

´1 exp
 

´ �HAr�, ⇡s
(

. (19)

It is the stationary solution to the Fokker-Planck equation for the Itô-Langevin process described by
Eqs. (15) and (16) with Model A dynamics whose drift term vanishes. One hence has Liouville’s theorem

dPA

dt
“ BPA

Bt
´
ª

dd
x

ˆ
�Hr�s
��x

�

�⇡x
´ ⇡x

�

��x

˙
PAr�, ⇡s “ 0 , (20)

where the implicit time dependence is given by the equal-time Poisson bracket between HA and PA as
usual, with subscripts x as shorthand notations for the spatial functional derivatives w.r.t. the fields at
fixed times. In general, the right hand side of the Fokker-Planck equation is given by the collision term.
For our Model A dynamics it reads,

dPA

dt
“ �

ª
dd

x CApx,x, tq , with CApx,y, tq “ �

�⇡x

„
⇡yPA ` T

�

�⇡y
PA

⇢
, (21)

and separately also vanishes in equilibrium, simply because T
�PA

�⇡x
“ ´⇡x PA.

By the same line of arguments, the equilibrium distribution for our di↵usive Model B dynamics is in
turn given by

PB r�, ⇡s “ Z
´1 exp

"
´ �Hr�s ` �

ª
dd

x
1

2µ
⇡pxqr´2

⇡pxq
*

. (22)
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as the stochastic evolution equation of the order parameter field �px, tq a second-order equation of motion
with uncorrelated white noise of the form

:�px, tq “ ´ �Hr�s
��px, tq ´ � 9�px, tq `

a
2�T ⌘px, tq, (15)

x⌘px, tqy “ 0,
@
⌘px1

, t
1q⌘px, tq

D
“ �px1 ´ xq�pt1 ´ tq. (16)

The real parameter � represents the Langevin coupling to a heat bath via the Gaussian random noise
⌘px, tq. The conjugate momentum field in this case is identical to the time derivative of �, and we define
⇡px, tq ” 9�px, tq to be used as the kinetic momentum field throughout in the following. As we have
demonstrated explicitly in [12], this system shows the expected dynamic critical behaviour of Model A
(C) for finite (vanishing) Langevin coupling �.

In the case of the di↵usive dynamics of Model B, when the order parameter Q “ ≥
dd

x �px, tq is

conserved, i.e. 9Q “ 0, we consider equations of motion of the form

:�px, tq “ µr
2 �Hr�s
��px, tq ´ � 9�px, tq `

a
2�T ⌘px, tq, (17)

x⌘px, tqy “ 0,
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⌘px1

, t
1q⌘px, tq

D
“ ´µr

2
�px1 ´ xq�pt1 ´ tq, (18)

where µ is the mobility coe�cient (for low frequency excitations with ! ! � it reduces to µ “ ��� in the
linearized equations of the previous subsection).

We note that for both Models A and B, decoupling the system from the heat bath by setting the
Langevin coupling � “ 0, leads to another conserved scalar quantity in the system, which can be identified
with the total energy. Due to the presence of this additional conserved quantity, this conservative limit
of Model A in Eq. (15) corresponds to the dynamic universality class of Model C as discussed explicitly
in [11]. While in the limit � Ñ 0 the equation of motion (17) for Model B also features an additional
conserved quantity in Eq. (27), this situation is clearly more subtle. Even though in this limit the model
in Eq. (17) features the same set of conserved quantities as Model D, the structure of excitations is
completely di↵erent as for � Ñ 0, Eq. (17) becomes a non-linear wave-equation, which conserves the
order parameter but no longer features ordinary di↵usive behavior at tree level. Since the classification
of the non-dissipative limit of our Model B dynamics is not obvious, we will refer to it as “Model BC”
in the following to highlight that this dynamics emerges as the conservative (C) limit of an Israel-Stuart
type di↵usive dynamics (Model B).

As a brief recap, the equilibrium distribution of the order-parameter field for the standard Langevin
evolution in Eq. (15) of course corresponds to the Boltzmann distribution,

PA r�, ⇡s “ Z
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´ �Hr�s ´ �
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dd

x
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2pxq
2

*
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´1 exp
 

´ �HAr�, ⇡s
(

. (19)

It is the stationary solution to the Fokker-Planck equation for the Itô-Langevin process described by
Eqs. (15) and (16) with Model A dynamics whose drift term vanishes. One hence has Liouville’s theorem

dPA

dt
“ BPA

Bt
´
ª

dd
x

ˆ
�Hr�s
��x

�

�⇡x
´ ⇡x

�

��x

˙
PAr�, ⇡s “ 0 , (20)

where the implicit time dependence is given by the equal-time Poisson bracket between HA and PA as
usual, with subscripts x as shorthand notations for the spatial functional derivatives w.r.t. the fields at
fixed times. In general, the right hand side of the Fokker-Planck equation is given by the collision term.
For our Model A dynamics it reads,

dPA

dt
“ �

ª
dd

x CApx,x, tq , with CApx,y, tq “ �

�⇡x

„
⇡yPA ` T

�

�⇡y
PA

⇢
, (21)

and separately also vanishes in equilibrium, simply because T
�PA

�⇡x
“ ´⇡x PA.

By the same line of arguments, the equilibrium distribution for our di↵usive Model B dynamics is in
turn given by

PB r�, ⇡s “ Z
´1 exp

"
´ �Hr�s ` �

ª
dd

x
1

2µ
⇡pxqr´2

⇡pxq
*
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Eqs. (15) and (16) with Model A dynamics whose drift term vanishes. One hence has Liouville’s theorem

dPA

dt
“ BPA

Bt
´
ª

dd
x

ˆ
�Hr�s
��x

�

�⇡x
´ ⇡x

�

��x

˙
PAr�, ⇡s “ 0 , (20)

where the implicit time dependence is given by the equal-time Poisson bracket between HA and PA as
usual, with subscripts x as shorthand notations for the spatial functional derivatives w.r.t. the fields at
fixed times. In general, the right hand side of the Fokker-Planck equation is given by the collision term.
For our Model A dynamics it reads,

dPA

dt
“ �

ª
dd

x CApx,x, tq , with CApx,y, tq “ �

�⇡x

„
⇡yPA ` T

�

�⇡y
PA

⇢
, (21)

and separately also vanishes in equilibrium, simply because T
�PA

�⇡x
“ ´⇡x PA.

By the same line of arguments, the equilibrium distribution for our di↵usive Model B dynamics is in
turn given by

PB r�, ⇡s “ Z
´1 exp

"
´ �Hr�s ` �

ª
dd

x
1

2µ
⇡pxqr´2

⇡pxq
*

. (22)

5

as the stochastic evolution equation of the order parameter field �px, tq a second-order equation of motion
with uncorrelated white noise of the form

:�px, tq “ ´ �Hr�s
��px, tq ´ � 9�px, tq `

a
2�T ⌘px, tq, (15)

x⌘px, tqy “ 0,
@
⌘px1

, t
1q⌘px, tq

D
“ �px1 ´ xq�pt1 ´ tq. (16)

The real parameter � represents the Langevin coupling to a heat bath via the Gaussian random noise
⌘px, tq. The conjugate momentum field in this case is identical to the time derivative of �, and we define
⇡px, tq ” 9�px, tq to be used as the kinetic momentum field throughout in the following. As we have
demonstrated explicitly in [12], this system shows the expected dynamic critical behaviour of Model A
(C) for finite (vanishing) Langevin coupling �.

In the case of the di↵usive dynamics of Model B, when the order parameter Q “ ≥
dd

x �px, tq is

conserved, i.e. 9Q “ 0, we consider equations of motion of the form

:�px, tq “ µr
2 �Hr�s
��px, tq ´ � 9�px, tq `

a
2�T ⌘px, tq, (17)

x⌘px, tqy “ 0,
@
⌘px1

, t
1q⌘px, tq

D
“ ´µr

2
�px1 ´ xq�pt1 ´ tq, (18)

where µ is the mobility coe�cient (for low frequency excitations with ! ! � it reduces to µ “ ��� in the
linearized equations of the previous subsection).

We note that for both Models A and B, decoupling the system from the heat bath by setting the
Langevin coupling � “ 0, leads to another conserved scalar quantity in the system, which can be identified
with the total energy. Due to the presence of this additional conserved quantity, this conservative limit
of Model A in Eq. (15) corresponds to the dynamic universality class of Model C as discussed explicitly
in [11]. While in the limit � Ñ 0 the equation of motion (17) for Model B also features an additional
conserved quantity in Eq. (27), this situation is clearly more subtle. Even though in this limit the model
in Eq. (17) features the same set of conserved quantities as Model D, the structure of excitations is
completely di↵erent as for � Ñ 0, Eq. (17) becomes a non-linear wave-equation, which conserves the
order parameter but no longer features ordinary di↵usive behavior at tree level. Since the classification
of the non-dissipative limit of our Model B dynamics is not obvious, we will refer to it as “Model BC”
in the following to highlight that this dynamics emerges as the conservative (C) limit of an Israel-Stuart
type di↵usive dynamics (Model B).

As a brief recap, the equilibrium distribution of the order-parameter field for the standard Langevin
evolution in Eq. (15) of course corresponds to the Boltzmann distribution,

PA r�, ⇡s “ Z
´1 exp

"
´ �Hr�s ´ �

ª
dd

x
⇡

2pxq
2

*
” Z

´1 exp
 

´ �HAr�, ⇡s
(

. (19)

It is the stationary solution to the Fokker-Planck equation for the Itô-Langevin process described by
Eqs. (15) and (16) with Model A dynamics whose drift term vanishes. One hence has Liouville’s theorem

dPA

dt
“ BPA

Bt
´
ª

dd
x

ˆ
�Hr�s
��x

�

�⇡x
´ ⇡x

�

��x

˙
PAr�, ⇡s “ 0 , (20)

where the implicit time dependence is given by the equal-time Poisson bracket between HA and PA as
usual, with subscripts x as shorthand notations for the spatial functional derivatives w.r.t. the fields at
fixed times. In general, the right hand side of the Fokker-Planck equation is given by the collision term.
For our Model A dynamics it reads,

dPA

dt
“ �

ª
dd

x CApx,x, tq , with CApx,y, tq “ �

�⇡x

„
⇡yPA ` T

�

�⇡y
PA

⇢
, (21)

and separately also vanishes in equilibrium, simply because T
�PA

�⇡x
“ ´⇡x PA.

By the same line of arguments, the equilibrium distribution for our di↵usive Model B dynamics is in
turn given by

PB r�, ⇡s “ Z
´1 exp

"
´ �Hr�s ` �

ª
dd

x
1

2µ
⇡pxqr´2

⇡pxq
*

. (22)

5

conserved order parameter

as the stochastic evolution equation of the order parameter field �px, tq a second-order equation of motion
with uncorrelated white noise of the form

:�px, tq “ ´ �Hr�s
��px, tq ´ � 9�px, tq `

a
2�T ⌘px, tq, (15)

x⌘px, tqy “ 0,
@
⌘px1

, t
1q⌘px, tq

D
“ �px1 ´ xq�pt1 ´ tq. (16)

The real parameter � represents the Langevin coupling to a heat bath via the Gaussian random noise
⌘px, tq. The conjugate momentum field in this case is identical to the time derivative of �, and we define
⇡px, tq ” 9�px, tq to be used as the kinetic momentum field throughout in the following. As we have
demonstrated explicitly in [12], this system shows the expected dynamic critical behaviour of Model A
(C) for finite (vanishing) Langevin coupling �.

In the case of the di↵usive dynamics of Model B, when the order parameter Q “ ≥
dd

x �px, tq is

conserved, i.e. 9Q “ 0, we consider equations of motion of the form

:�px, tq “ µr
2 �Hr�s
��px, tq ´ � 9�px, tq `

a
2�T ⌘px, tq, (17)

x⌘px, tqy “ 0,
@
⌘px1

, t
1q⌘px, tq

D
“ ´µr

2
�px1 ´ xq�pt1 ´ tq, (18)

where µ is the mobility coe�cient (for low frequency excitations with ! ! � it reduces to µ “ ��� in the
linearized equations of the previous subsection).

We note that for both Models A and B, decoupling the system from the heat bath by setting the
Langevin coupling � “ 0, leads to another conserved scalar quantity in the system, which can be identified
with the total energy. Due to the presence of this additional conserved quantity, this conservative limit
of Model A in Eq. (15) corresponds to the dynamic universality class of Model C as discussed explicitly
in [11]. While in the limit � Ñ 0 the equation of motion (17) for Model B also features an additional
conserved quantity in Eq. (27), this situation is clearly more subtle. Even though in this limit the model
in Eq. (17) features the same set of conserved quantities as Model D, the structure of excitations is
completely di↵erent as for � Ñ 0, Eq. (17) becomes a non-linear wave-equation, which conserves the
order parameter but no longer features ordinary di↵usive behavior at tree level. Since the classification
of the non-dissipative limit of our Model B dynamics is not obvious, we will refer to it as “Model BC”
in the following to highlight that this dynamics emerges as the conservative (C) limit of an Israel-Stuart
type di↵usive dynamics (Model B).

As a brief recap, the equilibrium distribution of the order-parameter field for the standard Langevin
evolution in Eq. (15) of course corresponds to the Boltzmann distribution,

PA r�, ⇡s “ Z
´1 exp

"
´ �Hr�s ´ �

ª
dd

x
⇡

2pxq
2

*
” Z

´1 exp
 

´ �HAr�, ⇡s
(

. (19)

It is the stationary solution to the Fokker-Planck equation for the Itô-Langevin process described by
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with

• spectral functions:

corresponding to damped propagating waves. We therefore conclude that at any finite � ° 0, the infrared
limit always contains the classical Navier-Stokes di↵usion dynamics. However, the non-dissipative limit
� Ñ 0 fundamentally changes the structure of the infrared dynamics. We are then in the limit of infinite
relaxation time ⌧R “ 1{� Ñ 8, with propagating modes and no di↵usion. The analogous short-lived
non-hydrodynamic mode will be determined by the small relaxation time ⌧r needed for causality in this
case, as discussed in Subsection 2.2, while the low-momentum dispersion relation of the remaining modes
will always be linear in momentum, with real poles at z « ˘m̄

a
µp2. We conclude that – in contrast

to the usual Model D, which is realized by coupling the di↵usive dynamics of Model B to an additional
conserved quantity and exhibits the same dynamic critical behavior as Model B [11, 18, 27] – it is not
the presence of an additional conserved quantity but rather the absence of a di↵usive pole in the limit
� Ñ 0 that can be expected to change the dynamic critical behavior of the theory. Since we are not
aware of an analogous model in the classification scheme of Halperin and Hohenberg, we will refer to this
conservative limit of the relativistic Israel-Stuart type di↵usion as Model BC.

3.1. Overview of numerical results

In this subsection we give an overview of our numerical data for the spectral function of the order
parameter field and discuss their general shape and structure. If not stated otherwise, the numerical data
shown in this section was obtained on lattices of size 2562 and 1283 for d “ 2 and 3 spatial dimensions,
respectively. With these lattice sizes any remaining finite volume e↵ects are so small that they become
hard to be observable at our present accuracy. Generally, we find that the spectral functions are well
described by a single Breit-Wigner structure over a wide range of parameters. Specifically, for the case
of vanishing Langevin coupling � “ 0 shown in Fig. 2, we find that, except for the immediate vicinity
of the critical point, the peaks in the spectral functions are generally very narrow, which is indicative of
the presence of propagating modes related to the real poles of the retarded Greens function in Eq. (77).
Conversely, if the heat-bath coupling is set to a finite value of � “ 0.1, the situation changes dramatically
as can be seen from Fig. 3, where in all cases the spectral function at low spatial momentum becomes
much broader, while high-momentum modes stay narrow. Based on our discussion above, the broad
low-momentum structure for � “ 0.1 can be associated with the presence of the hydrodynamic mode in
Eq. (76), indicating the di↵usive character of the dynamics of the order parameter.

Close to the critical point, the peak of the spectral function at low spatial momentum visibly shifts
towards the infrared, indicating a change in the dispersion relation akin to a drop in the e↵ective mass.
We find that for finite Langevin coupling � “ 0.1, the absolute decay widths stay approximately the
same. However, since the central frequencies decrease, the low-frequency part of the spectral functions
is then dominated by structures with large relative widths, which closely fit the overdamped limit of the
mean-field spectral function with ⇢mfp!,pq Ñ µp2{�! for � Ñ 8 in (73).

We note that, in contrast to our precursor study of the systems with non-conserved order parameter
(Models A/C) [12], where an additional collective excitation was observed below Tc, there are hardly
any additional excitations visible anywhere in the phase diagram, neither 2+1D nor 3+1D. Hence, in
order to further characterize the temperature dependence of the spectral function, we can fit the spectral
functions with a Breit-Wigner ansatz

⇢BWp!,pq “ µp2�p !
`
!2 ´ !2

p

˘2 ` �2
p!

2
(78)

where the central frequency !p and decay width �p are used as the free parameters. Results deep in the
symmetric and ordered phase are shown in Fig. 4. We find that our results for the central frequencies !

2
p

at very low resp. very high temperatures nearly perfectly satisfy the mean-field–like dispersion

!
2
p “ µp2pm2pT q ` p2q, (79)

with no significant dependence on the Langevin coupling. Conversely, for the decay width �p of the
spectral function we find that the Langevin coupling � appears as an additional momentum-independent
shift

�pp�q “ �pp0q ` �, (80)

and we obtain for the momentum dependence of the decay width without the heat bath

�pp0q “ �̄pT q ¨
#

|p|, T ! Tc,

p2
, T " Tc.

(81)

13

corresponding to damped propagating waves. We therefore conclude that at any finite � ° 0, the infrared
limit always contains the classical Navier-Stokes di↵usion dynamics. However, the non-dissipative limit
� Ñ 0 fundamentally changes the structure of the infrared dynamics. We are then in the limit of infinite
relaxation time ⌧R “ 1{� Ñ 8, with propagating modes and no di↵usion. The analogous short-lived
non-hydrodynamic mode will be determined by the small relaxation time ⌧r needed for causality in this
case, as discussed in Subsection 2.2, while the low-momentum dispersion relation of the remaining modes
will always be linear in momentum, with real poles at z « ˘m̄

a
µp2. We conclude that – in contrast

to the usual Model D, which is realized by coupling the di↵usive dynamics of Model B to an additional
conserved quantity and exhibits the same dynamic critical behavior as Model B [11, 18, 27] – it is not
the presence of an additional conserved quantity but rather the absence of a di↵usive pole in the limit
� Ñ 0 that can be expected to change the dynamic critical behavior of the theory. Since we are not
aware of an analogous model in the classification scheme of Halperin and Hohenberg, we will refer to this
conservative limit of the relativistic Israel-Stuart type di↵usion as Model BC.

3.1. Overview of numerical results

In this subsection we give an overview of our numerical data for the spectral function of the order
parameter field and discuss their general shape and structure. If not stated otherwise, the numerical data
shown in this section was obtained on lattices of size 2562 and 1283 for d “ 2 and 3 spatial dimensions,
respectively. With these lattice sizes any remaining finite volume e↵ects are so small that they become
hard to be observable at our present accuracy. Generally, we find that the spectral functions are well
described by a single Breit-Wigner structure over a wide range of parameters. Specifically, for the case
of vanishing Langevin coupling � “ 0 shown in Fig. 2, we find that, except for the immediate vicinity
of the critical point, the peaks in the spectral functions are generally very narrow, which is indicative of
the presence of propagating modes related to the real poles of the retarded Greens function in Eq. (77).
Conversely, if the heat-bath coupling is set to a finite value of � “ 0.1, the situation changes dramatically
as can be seen from Fig. 3, where in all cases the spectral function at low spatial momentum becomes
much broader, while high-momentum modes stay narrow. Based on our discussion above, the broad
low-momentum structure for � “ 0.1 can be associated with the presence of the hydrodynamic mode in
Eq. (76), indicating the di↵usive character of the dynamics of the order parameter.

Close to the critical point, the peak of the spectral function at low spatial momentum visibly shifts
towards the infrared, indicating a change in the dispersion relation akin to a drop in the e↵ective mass.
We find that for finite Langevin coupling � “ 0.1, the absolute decay widths stay approximately the
same. However, since the central frequencies decrease, the low-frequency part of the spectral functions
is then dominated by structures with large relative widths, which closely fit the overdamped limit of the
mean-field spectral function with ⇢mfp!,pq Ñ µp2{�! for � Ñ 8 in (73).

We note that, in contrast to our precursor study of the systems with non-conserved order parameter
(Models A/C) [12], where an additional collective excitation was observed below Tc, there are hardly
any additional excitations visible anywhere in the phase diagram, neither 2+1D nor 3+1D. Hence, in
order to further characterize the temperature dependence of the spectral function, we can fit the spectral
functions with a Breit-Wigner ansatz

⇢BWp!,pq “ µp2�p !
`
!2 ´ !2

p

˘2 ` �2
p!

2
(78)

where the central frequency !p and decay width �p are used as the free parameters. Results deep in the
symmetric and ordered phase are shown in Fig. 4. We find that our results for the central frequencies !

2
p

at very low resp. very high temperatures nearly perfectly satisfy the mean-field–like dispersion

!
2
p “ µp2pm2pT q ` p2q, (79)

with no significant dependence on the Langevin coupling. Conversely, for the decay width �p of the
spectral function we find that the Langevin coupling � appears as an additional momentum-independent
shift

�pp�q “ �pp0q ` �, (80)

and we obtain for the momentum dependence of the decay width without the heat bath

�pp0q “ �̄pT q ¨
#

|p|, T ! Tc,

p2
, T " Tc.

(81)

13

corresponding to damped propagating waves. We therefore conclude that at any finite � ° 0, the infrared
limit always contains the classical Navier-Stokes di↵usion dynamics. However, the non-dissipative limit
� Ñ 0 fundamentally changes the structure of the infrared dynamics. We are then in the limit of infinite
relaxation time ⌧R “ 1{� Ñ 8, with propagating modes and no di↵usion. The analogous short-lived
non-hydrodynamic mode will be determined by the small relaxation time ⌧r needed for causality in this
case, as discussed in Subsection 2.2, while the low-momentum dispersion relation of the remaining modes
will always be linear in momentum, with real poles at z « ˘m̄

a
µp2. We conclude that – in contrast

to the usual Model D, which is realized by coupling the di↵usive dynamics of Model B to an additional
conserved quantity and exhibits the same dynamic critical behavior as Model B [11, 18, 27] – it is not
the presence of an additional conserved quantity but rather the absence of a di↵usive pole in the limit
� Ñ 0 that can be expected to change the dynamic critical behavior of the theory. Since we are not
aware of an analogous model in the classification scheme of Halperin and Hohenberg, we will refer to this
conservative limit of the relativistic Israel-Stuart type di↵usion as Model BC.

3.1. Overview of numerical results

In this subsection we give an overview of our numerical data for the spectral function of the order
parameter field and discuss their general shape and structure. If not stated otherwise, the numerical data
shown in this section was obtained on lattices of size 2562 and 1283 for d “ 2 and 3 spatial dimensions,
respectively. With these lattice sizes any remaining finite volume e↵ects are so small that they become
hard to be observable at our present accuracy. Generally, we find that the spectral functions are well
described by a single Breit-Wigner structure over a wide range of parameters. Specifically, for the case
of vanishing Langevin coupling � “ 0 shown in Fig. 2, we find that, except for the immediate vicinity
of the critical point, the peaks in the spectral functions are generally very narrow, which is indicative of
the presence of propagating modes related to the real poles of the retarded Greens function in Eq. (77).
Conversely, if the heat-bath coupling is set to a finite value of � “ 0.1, the situation changes dramatically
as can be seen from Fig. 3, where in all cases the spectral function at low spatial momentum becomes
much broader, while high-momentum modes stay narrow. Based on our discussion above, the broad
low-momentum structure for � “ 0.1 can be associated with the presence of the hydrodynamic mode in
Eq. (76), indicating the di↵usive character of the dynamics of the order parameter.

Close to the critical point, the peak of the spectral function at low spatial momentum visibly shifts
towards the infrared, indicating a change in the dispersion relation akin to a drop in the e↵ective mass.
We find that for finite Langevin coupling � “ 0.1, the absolute decay widths stay approximately the
same. However, since the central frequencies decrease, the low-frequency part of the spectral functions
is then dominated by structures with large relative widths, which closely fit the overdamped limit of the
mean-field spectral function with ⇢mfp!,pq Ñ µp2{�! for � Ñ 8 in (73).

We note that, in contrast to our precursor study of the systems with non-conserved order parameter
(Models A/C) [12], where an additional collective excitation was observed below Tc, there are hardly
any additional excitations visible anywhere in the phase diagram, neither 2+1D nor 3+1D. Hence, in
order to further characterize the temperature dependence of the spectral function, we can fit the spectral
functions with a Breit-Wigner ansatz
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!2 ´ !2

p

˘2 ` �2
p!

2
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where the central frequency !p and decay width �p are used as the free parameters. Results deep in the
symmetric and ordered phase are shown in Fig. 4. We find that our results for the central frequencies !

2
p

at very low resp. very high temperatures nearly perfectly satisfy the mean-field–like dispersion

!
2
p “ µp2pm2pT q ` p2q, (79)

with no significant dependence on the Langevin coupling. Conversely, for the decay width �p of the
spectral function we find that the Langevin coupling � appears as an additional momentum-independent
shift

�pp�q “ �pp0q ` �, (80)

and we obtain for the momentum dependence of the decay width without the heat bath

�pp0q “ �̄pT q ¨
#

|p|, T ! Tc,

p2
, T " Tc.

(81)

13

corresponding to damped propagating waves. We therefore conclude that at any finite � ° 0, the infrared
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non-critical:

critical:

d z! !
2
0 z� �0

2 3.769(13) 1.81(6) 1.612(21) 1.29(7)
3 3.9660(20) 1.3430(25) 1.43(6) 0.059(9)

Table 3: Extracted parameters from the power laws Eqs. (84) and (85) controlling the momentum dependence
of !2

p and �p at vanishing Langevin coupling � “ 0. We find that the scaling exponent of !2
p matches z! “ 4 ´ ⌘

exceptionally well. Using the Breit-Wigner prediction for low momenta, ⇠tppq “ �p{!2
p (as shown in Appendix A),

and comparing with Eq. (83), one can read o↵ the resulting dynamic critical exponent zp� “ 0q “ z! ´ z�.

4.2. Critical spectral function

We continue to analyze the frequency and momentum dependence of the spectral function at criticality.
Exemplary data for the spectral functions at di↵erent momenta p and di↵erent values of the Langevin
coupling � in 2+1D and 3+1D are shown in Fig. 8. We find that the critical spectral functions still
largely follow a Breit-Wigner shape, as illustrated by the black lines in Fig. 8 which represent fits to
the Breit-Wigner form of Eq. (78) but now with the fit parameters �p and !p (instead of the thermal
mass from the mean-field dispersion Eq. (79)). Visible deviations from the Breit-Wigner shape then only
emerge at low momenta and finite heat bath coupling � ° 0 in 2+1D. We will see shortly that this part
of the spectral function is controlled by an underlying universal scaling function.

Next, in order to characterize the momentum dependence of the critical spectral function, we again
fit the Breit-Wigner ansatz (78) to the data, and show the extracted fit parameters !

2
p, �p as function of

the spatial momentum p in Fig. 9. Similar to the results deep in the ordered or symmetric phases, the
dispersion of !p is approximately independent of the Langevin coupling � within the considered range of
parameters. However, at criticality the dispersion relation changes, we no-longer find the mean-field-like
relation (79). Instead, the momentum dependencies of the central frequencies are themselves controlled
by a power law now,

!
2
p “ !

2
0 p̄

z! (84)

with a scaling exponent z! matching the dynamic critical exponent zB “ 4 ´ ⌘ of Model B with high
precision, independent of the heat-bath coupling.

However, a cruicial di↵erence between dissipative (� ° 0) and non-dissipative dynamics (� “ 0)
emerges when considering the momentum dependencies of the decay widths �p, which are also shown in
Fig. 9. While in the dissipative systems, the decay widths �p approach the finite dissipation rate � in
the long-wavelength limit, without dissipation the decay widths �p follow a power-law behaviour as well,

�p “ �0 p̄
z� . (85)

We find that the corresponding scaling exponent is given by z� « 1.6 in 2+1D and z� « 1.4 in 3+1D.
Our results for exponents z!, z� and amplitudes !0, �0 in the power laws Eq. (84) and Eq. (85) of central
frequencies and decay widths from corresponding fits to the data of Fig. 9 are summarised in Table 3.

Notably, the di↵erences in the low-momentum scaling behaviour of the decay widths �p can also
explain the observed di↵erences in the behaviour of the auto-correlation times ⇠tppq shown in Fig. 7.
By inserting the Breit-Wigner Ansatz (78) into the formula for the integrated correlation time (83), one
obtains the correlation time to be equal to the ratio

⇠tppq “ �p{!2
p (86)

for low momenta p in the infrared (see Appendix A for a sketch of the derivation). We can therefore
compare our findings for the auto-correlation times with those for the Breit-Wigner parameters here:
Because for the dissipative systems the decay widths �p approach the finite Langevin damping � in the
long-wavelength limit, one concludes ⇠tpp̄q “ �{!´2

p „ p̄
´4`⌘ with an amplitude linearly dependent on

the Langevin damping �. Conversely, for the non-dissipative dynamics of our Model BC, the momentum
dependence of the decay width �p becomes relevant, and one has ⇠tpp̄q “ �p{!2

p „ p̄
´4`⌘`z� . This explains

the di↵erent scaling exponents in the momentum dependent correlation times to be observed for � ° 0
and � “ 0 at least qualitatively, cf. Fig. 7 and Table 2. Quantitatively, the Breit-Wigner prediction
from Eq. (86) with zp� “ 0q « z! ´ z� « 2.16 agrees reasonably well and within the errors with the
data from the autocorrelation time analysis in 2+1D. On the other hand, there is some tension between
the same estimate zp� “ 0q « z! ´ z� « 2.54 and the data in 3+1D, cf. Table 2. We suspect that this
might be caused by uncertainties in the auto-correlation times ⇠tppq, where too few data points e↵ectively
contribute to the fit, see the � “ 0 data in right panel of Fig. 7.
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Figure 7: Momentum-dependent correlation time ⇠t at criticality (⌧ “ 0) over the dimensionless momentum
scale p̄ at di↵erent values of the Langevin coupling � in d “ 2 (left) and 3 (right) spatial dimensions. Dashed
lines indicate power-law fits to the low-momentum limits of the data, the resulting amplitudes and exponents
are summarized in Table 2. The exponents for finite heat-bath coupling � are consistent with 4 ´ ⌘ for Model B
dynamics and considerably larger than those for � “ 0. The amplitudes ft,B scale approximately linearly with
the Langevin coupling. At higher momenta, here visible especially in d “ 3, a second power law emerges with a
smaller exponent (close to that for � “ 0) and a prefactor which is practically independent of �.

d zp� “ 1.0q ftp� “ 1.0q zp� “ 0.1q ftp� “ 0.1q zp� “ 0.0q ftp� “ 0.0q
2 3.83(10) 1.04(14) 3.716(17) 0.190(8) 2.354(23) 0.358(19)
3 3.95(8) 0.73(6) 3.91(6) 0.090(10) 2.20(13) 0.14(5)

Table 2: Amplitudes and exponents in d “ 2 and 3 spatial dimensions obtained from fits to the data in Fig. 7.
While the exponents obtained from the data at large � agree well with the expected dynamic critical exponents
z “ 4 ´ ⌘ of Model B, those from the data at vanishing � “ 0 are much smaller, closer to Models A or C.

i.e. as a function of the spatial momentum p at the critical temperature T “ Tc. Since the spatial
correlation length of the system ⇠ diverges at the critical point, the relevant infrared cut-o↵ at ⌧ “ 0 is
again imposed by the finite spatial momentum p here. We can therefore expect the momentum dependence
of the (auto-)correlation time ⇠t to be given by

⇠tpp̄q “ ftp̄
´z

, with p̄ ” f
`
⇠ p . (83)

Here, the dimensionless momentum scale p̄ is defined relative to the amplitude in the power-law divergence
(for ⌧ Ñ 0`) of the correlation length listed in Table 1 for the static critical behaviour of our scalar field
theory in d “ 2 and 3 spatial dimensions. Eq. (83) furthermore defines the universal dynamic critical
exponent z and a non-universal amplitude ft characterizing the typical time scale for critical dynamics.

Our results for the integrated auto-correlation times obtained from the measured spectral functions
are illustrated in Fig. 7. In both 2+1 and 3+1 dimensions, the correlation times ⇠tpp̄q show the expected
power-law behavior of Eq. (83). In particular, for finite heat-bath coupling � ° 0, the results at low
spatial momenta clearly exhibit a power law ⇠tpp̄q „ p̄

´zB consistent with the dynamic critical exponent
zB “ 4 ´ ⌘ of Model B, which smoothly merges into a second power law with a much smaller scaling
exponent at higher momentum scales. Evidently, the amplitudes ft of the critical power law at low
momentum strongly depend on the value of �, such that for smaller values of � the transition between
the two power laws occurs at lower momenta. When considering the case � “ 0, the critical behavior of
Model B ceases to exist, and therefore only the second power of the Model BC remains.

Based on our analysis of auto-correlation times in Fig. 7, we extract the dynamic critical exponent
z and non-unverisal amplitude ft from a �

2-fit to a power law of the form of Eq. (83). Our results for
the exponents and amplitudes are given in Table 2. While the exponents for finite heat-bath coupling
� ° 0 confirm the prediction by Model B, namely zB “ 4 ´ ⌘, the exponents for our conservative Model
BC with � “ 0, denoted by zBC in Fig. 7, are much smaller. Our analysis for the momentum-dependent
correlation times is overall consistent with the existence of two competing power laws in the infrared, with
leading exponent zB and subleading exponent zBC † zB , where the momentum scale of the transition
between the two at p „ �

1{pzB´zBCq vanishes in the non-dissipative limit for Langevin coupling � Ñ 0.
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• critical dynamics of relativistic diffusion:

Schweitzer, Schlichting, von Smekal, arXiv:2110.01696

4. Critical dynamics of the order parameter

We now continue to investigate the critical behavior of the spectral functions of the order parameter.
Starting with a brief summary of previous studies, we will first demonstrate the existence of a critical
scaling regime, and subsequently focus on the determination of the dynamic critical exponent z and,
where possible, the determination of a universal scaling function for the spectral function of the order
parameter.

Empirical investigations of dynamic critical phenomena in general and in Ising-like models in particular
exist since the late 60s, with the first high-precision numerical studies emerging in the 90s [34–37]. Most
of those studies were concerned with Glauber-like dynamics, where the order parameter is not conserved
over time (Models A/C). Experiments on thin films allow accessing the critical dynamics of 2D systems;
Dunlavy and Venus found ⌫z “ 2.09 ˘ .06 using ferromagnetic films [1]. For Ising-like systems with a
conserved order parameter, on obtains the exact result z “ 4´⌘ using the dynamic renormalization group
framework [27]. However, numerical and experimental measurements are scarce. An early numerical study
by Yalabik and Gunton [38] applied the Monte-Carlo renormalization group approach on a 2D Ising model
with Kawasaki dynamics, i.e. nearest-neighbour spin flips, finding z “ 3.80, in very good agreement with
the result z “ 4´⌘ “ 3.75 from the dynamic renormalization group. In 2001, Zheng [39] conducted a study
on the critical dynamics of the two-dimensional Ising model with Kawasaki dynamics, and found that
short-time correlations exhibit scaling behavior with a dynamic critical exponent z “ 3.95p10q, slightly
larger than expected in 2+1D. When changing to a di↵erent dynamic scheme, where spin exchanges
happen over larger distances and the spin is no longer locally (but still globally) conserved, they found
a di↵erent, much smaller exponent z “ 2.325p10q. A study on a quasi-2D lipid bi-layer in water [2]
(Models B/H/HC) found that the exponent of the time scale of time-dependent correlation functions
changed from ze↵ „ 2 to ze↵ „ 3, depending on the ratio of the correlation length of the fluctuations
over a hydrodynamic length scale set by transport coe�cients. Drastic changes of the dynamic critical
exponent z upon seemingly slight changes of the dynamics are therefore not unheard of in systems with
conserved order parameter.

In a precursor study [12], we observed dynamic critical behavior of Models A and C based on the
dynamic equation (15), where the order parameter is not conserved. While Model A describes the
dynamic critical behavior of a system where both the order parameter and energy density are fluctuating,
e.g. Eq. (15) with a finite heat-bath coupling p� ° 0q, Model C applies e.g. to Hamiltonian systems
(� “ 0), where the order parameter can fluctuate but the total energy is conserved. By changing the
dynamic equations to Eq. (17), such that the order parameter is conserved, the classification scheme by
Hohenberg and Halperin [11] suggests that in the case where the theory is coupled to a heat bath (� ° 0),
we are dealing with the dynamics of Model B, describing a system with di↵usive dynamics of the order
parameter without additional conserved quantities. While the conservative limit of the relativistic Model
B evolution in Eq. (17) features the same set of conserved quantities as the usual Model D, i.e. a system
with di↵usive dynamics of the order parameter together with a conserved energy density, it turns out
that – as discussed in Section 3 – setting � “ 0 here, changes the low-energy spectrum of the theory on
Since the classification of this theory is far from obvious, we will simply refer to it as the conservative
limit of our Model B or in brief Model BC. When considering the critical behavior of Model BC, we will
indeed find dynamic critical exponents that are much smaller than the Model B and D value zB “ 4 ´ ⌘,
as in the limit � “ 0 we obtain values of the critical exponents, that are much closer to those of Models
A or C here.

To simplify notation, we remark that, generally, the spectral function does not depend on the direction
of the spatial momentum, and we therefore write ⇢p!, p, T q, with p ” |p| “

a
p2 denoting the magnitude

of spatial momentum from now on. The data presented in this section was obtained on lattices of size
10242 and 2563 for � § 0.1, as well as 2562 and 643 for � “ 1.0, in d “ 2 and 3 spatial dimensions,
respectively.

4.1. (Auto-)Correlation time

We start our study of the critical dynamics of the order parameter fluctuations by analyzing the
divergence of the characteristic timescale ⇠t in the vicinity of the critical point. Specifically, we consider
the behavior of the momentum-dependent auto-correlation time at criticality, defined as

⇠tppq “
≥8
0 t ⇢pt, p, Tcq dt
≥8
0 ⇢pt, p, Tcq dt

, (82)
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Figure 7: Momentum-dependent correlation time ⇠t at criticality (⌧ “ 0) over the dimensionless momentum
scale p̄ at di↵erent values of the Langevin coupling � in d “ 2 (left) and 3 (right) spatial dimensions. Dashed
lines indicate power-law fits to the low-momentum limits of the data, the resulting amplitudes and exponents
are summarized in Table 2. The exponents for finite heat-bath coupling � are consistent with 4 ´ ⌘ for Model B
dynamics and considerably larger than those for � “ 0. The amplitudes ft,B scale approximately linearly with
the Langevin coupling. At higher momenta, here visible especially in d “ 3, a second power law emerges with a
smaller exponent (close to that for � “ 0) and a prefactor which is practically independent of �.

d zp� “ 1.0q ftp� “ 1.0q zp� “ 0.1q ftp� “ 0.1q zp� “ 0.0q ftp� “ 0.0q
2 3.83(10) 1.04(14) 3.716(17) 0.190(8) 2.354(23) 0.358(19)
3 3.95(8) 0.73(6) 3.91(6) 0.090(10) 2.20(13) 0.14(5)

Table 2: Amplitudes and exponents in d “ 2 and 3 spatial dimensions obtained from fits to the data in Fig. 7.
While the exponents obtained from the data at large � agree well with the expected dynamic critical exponents
z “ 4 ´ ⌘ of Model B, those from the data at vanishing � “ 0 are much smaller, closer to Models A or C.

i.e. as a function of the spatial momentum p at the critical temperature T “ Tc. Since the spatial
correlation length of the system ⇠ diverges at the critical point, the relevant infrared cut-o↵ at ⌧ “ 0 is
again imposed by the finite spatial momentum p here. We can therefore expect the momentum dependence
of the (auto-)correlation time ⇠t to be given by

⇠tpp̄q “ ftp̄
´z

, with p̄ ” f
`
⇠ p . (83)

Here, the dimensionless momentum scale p̄ is defined relative to the amplitude in the power-law divergence
(for ⌧ Ñ 0`) of the correlation length listed in Table 1 for the static critical behaviour of our scalar field
theory in d “ 2 and 3 spatial dimensions. Eq. (83) furthermore defines the universal dynamic critical
exponent z and a non-universal amplitude ft characterizing the typical time scale for critical dynamics.

Our results for the integrated auto-correlation times obtained from the measured spectral functions
are illustrated in Fig. 7. In both 2+1 and 3+1 dimensions, the correlation times ⇠tpp̄q show the expected
power-law behavior of Eq. (83). In particular, for finite heat-bath coupling � ° 0, the results at low
spatial momenta clearly exhibit a power law ⇠tpp̄q „ p̄

´zB consistent with the dynamic critical exponent
zB “ 4 ´ ⌘ of Model B, which smoothly merges into a second power law with a much smaller scaling
exponent at higher momentum scales. Evidently, the amplitudes ft of the critical power law at low
momentum strongly depend on the value of �, such that for smaller values of � the transition between
the two power laws occurs at lower momenta. When considering the case � “ 0, the critical behavior of
Model B ceases to exist, and therefore only the second power of the Model BC remains.

Based on our analysis of auto-correlation times in Fig. 7, we extract the dynamic critical exponent
z and non-unverisal amplitude ft from a �

2-fit to a power law of the form of Eq. (83). Our results for
the exponents and amplitudes are given in Table 2. While the exponents for finite heat-bath coupling
� ° 0 confirm the prediction by Model B, namely zB “ 4 ´ ⌘, the exponents for our conservative Model
BC with � “ 0, denoted by zBC in Fig. 7, are much smaller. Our analysis for the momentum-dependent
correlation times is overall consistent with the existence of two competing power laws in the infrared, with
leading exponent zB and subleading exponent zBC † zB , where the momentum scale of the transition
between the two at p „ �

1{pzB´zBCq vanishes in the non-dissipative limit for Langevin coupling � Ñ 0.
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Figure 7: Momentum-dependent correlation time ⇠t at criticality (⌧ “ 0) over the dimensionless momentum
scale p̄ at di↵erent values of the Langevin coupling � in d “ 2 (left) and 3 (right) spatial dimensions. Dashed
lines indicate power-law fits to the low-momentum limits of the data, the resulting amplitudes and exponents
are summarized in Table 2. The exponents for finite heat-bath coupling � are consistent with 4 ´ ⌘ for Model B
dynamics and considerably larger than those for � “ 0. The amplitudes ft,B scale approximately linearly with
the Langevin coupling. At higher momenta, here visible especially in d “ 3, a second power law emerges with a
smaller exponent (close to that for � “ 0) and a prefactor which is practically independent of �.

d zp� “ 1.0q ftp� “ 1.0q zp� “ 0.1q ftp� “ 0.1q zp� “ 0.0q ftp� “ 0.0q
2 3.83(10) 1.04(14) 3.716(17) 0.190(8) 2.354(23) 0.358(19)
3 3.95(8) 0.73(6) 3.91(6) 0.090(10) 2.20(13) 0.14(5)

Table 2: Amplitudes and exponents in d “ 2 and 3 spatial dimensions obtained from fits to the data in Fig. 7.
While the exponents obtained from the data at large � agree well with the expected dynamic critical exponents
z “ 4 ´ ⌘ of Model B, those from the data at vanishing � “ 0 are much smaller, closer to Models A or C.

i.e. as a function of the spatial momentum p at the critical temperature T “ Tc. Since the spatial
correlation length of the system ⇠ diverges at the critical point, the relevant infrared cut-o↵ at ⌧ “ 0 is
again imposed by the finite spatial momentum p here. We can therefore expect the momentum dependence
of the (auto-)correlation time ⇠t to be given by

⇠tpp̄q “ ftp̄
´z

, with p̄ ” f
`
⇠ p . (83)

Here, the dimensionless momentum scale p̄ is defined relative to the amplitude in the power-law divergence
(for ⌧ Ñ 0`) of the correlation length listed in Table 1 for the static critical behaviour of our scalar field
theory in d “ 2 and 3 spatial dimensions. Eq. (83) furthermore defines the universal dynamic critical
exponent z and a non-universal amplitude ft characterizing the typical time scale for critical dynamics.

Our results for the integrated auto-correlation times obtained from the measured spectral functions
are illustrated in Fig. 7. In both 2+1 and 3+1 dimensions, the correlation times ⇠tpp̄q show the expected
power-law behavior of Eq. (83). In particular, for finite heat-bath coupling � ° 0, the results at low
spatial momenta clearly exhibit a power law ⇠tpp̄q „ p̄

´zB consistent with the dynamic critical exponent
zB “ 4 ´ ⌘ of Model B, which smoothly merges into a second power law with a much smaller scaling
exponent at higher momentum scales. Evidently, the amplitudes ft of the critical power law at low
momentum strongly depend on the value of �, such that for smaller values of � the transition between
the two power laws occurs at lower momenta. When considering the case � “ 0, the critical behavior of
Model B ceases to exist, and therefore only the second power of the Model BC remains.

Based on our analysis of auto-correlation times in Fig. 7, we extract the dynamic critical exponent
z and non-unverisal amplitude ft from a �

2-fit to a power law of the form of Eq. (83). Our results for
the exponents and amplitudes are given in Table 2. While the exponents for finite heat-bath coupling
� ° 0 confirm the prediction by Model B, namely zB “ 4 ´ ⌘, the exponents for our conservative Model
BC with � “ 0, denoted by zBC in Fig. 7, are much smaller. Our analysis for the momentum-dependent
correlation times is overall consistent with the existence of two competing power laws in the infrared, with
leading exponent zB and subleading exponent zBC † zB , where the momentum scale of the transition
between the two at p „ �

1{pzB´zBCq vanishes in the non-dissipative limit for Langevin coupling � Ñ 0.
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Figure 7: Momentum-dependent correlation time ⇠t at criticality (⌧ “ 0) over the dimensionless momentum
scale p̄ at di↵erent values of the Langevin coupling � in d “ 2 (left) and 3 (right) spatial dimensions. Dashed
lines indicate power-law fits to the low-momentum limits of the data, the resulting amplitudes and exponents
are summarized in Table 2. The exponents for finite heat-bath coupling � are consistent with 4 ´ ⌘ for Model B
dynamics and considerably larger than those for � “ 0. The amplitudes ft,B scale approximately linearly with
the Langevin coupling. At higher momenta, here visible especially in d “ 3, a second power law emerges with a
smaller exponent (close to that for � “ 0) and a prefactor which is practically independent of �.

d zp� “ 1.0q ftp� “ 1.0q zp� “ 0.1q ftp� “ 0.1q zp� “ 0.0q ftp� “ 0.0q
2 3.83(10) 1.04(14) 3.716(17) 0.190(8) 2.354(23) 0.358(19)
3 3.95(8) 0.73(6) 3.91(6) 0.090(10) 2.20(13) 0.14(5)

Table 2: Amplitudes and exponents in d “ 2 and 3 spatial dimensions obtained from fits to the data in Fig. 7.
While the exponents obtained from the data at large � agree well with the expected dynamic critical exponents
z “ 4 ´ ⌘ of Model B, those from the data at vanishing � “ 0 are much smaller, closer to Models A or C.

i.e. as a function of the spatial momentum p at the critical temperature T “ Tc. Since the spatial
correlation length of the system ⇠ diverges at the critical point, the relevant infrared cut-o↵ at ⌧ “ 0 is
again imposed by the finite spatial momentum p here. We can therefore expect the momentum dependence
of the (auto-)correlation time ⇠t to be given by

⇠tpp̄q “ ftp̄
´z

, with p̄ ” f
`
⇠ p . (83)

Here, the dimensionless momentum scale p̄ is defined relative to the amplitude in the power-law divergence
(for ⌧ Ñ 0`) of the correlation length listed in Table 1 for the static critical behaviour of our scalar field
theory in d “ 2 and 3 spatial dimensions. Eq. (83) furthermore defines the universal dynamic critical
exponent z and a non-universal amplitude ft characterizing the typical time scale for critical dynamics.

Our results for the integrated auto-correlation times obtained from the measured spectral functions
are illustrated in Fig. 7. In both 2+1 and 3+1 dimensions, the correlation times ⇠tpp̄q show the expected
power-law behavior of Eq. (83). In particular, for finite heat-bath coupling � ° 0, the results at low
spatial momenta clearly exhibit a power law ⇠tpp̄q „ p̄

´zB consistent with the dynamic critical exponent
zB “ 4 ´ ⌘ of Model B, which smoothly merges into a second power law with a much smaller scaling
exponent at higher momentum scales. Evidently, the amplitudes ft of the critical power law at low
momentum strongly depend on the value of �, such that for smaller values of � the transition between
the two power laws occurs at lower momenta. When considering the case � “ 0, the critical behavior of
Model B ceases to exist, and therefore only the second power of the Model BC remains.

Based on our analysis of auto-correlation times in Fig. 7, we extract the dynamic critical exponent
z and non-unverisal amplitude ft from a �

2-fit to a power law of the form of Eq. (83). Our results for
the exponents and amplitudes are given in Table 2. While the exponents for finite heat-bath coupling
� ° 0 confirm the prediction by Model B, namely zB “ 4 ´ ⌘, the exponents for our conservative Model
BC with � “ 0, denoted by zBC in Fig. 7, are much smaller. Our analysis for the momentum-dependent
correlation times is overall consistent with the existence of two competing power laws in the infrared, with
leading exponent zB and subleading exponent zBC † zB , where the momentum scale of the transition
between the two at p „ �

1{pzB´zBCq vanishes in the non-dissipative limit for Langevin coupling � Ñ 0.
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• real-time methods for spectral functions:
(i)   classical-statistical simulations
(ii)  Gaussian state approximation
(iii) real-time FRG

tested in (open) QM system

• field theory applications:

study critical dynamics
Models A, B, C

J. Roth & LvS, in preparation
J. Roth, MSc Thesis, JLU, March 2022
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