

Real-time methods for spectral functions

Johannes Roth, Dominik Schweitzer, Leon Sieke, \& LvS

Phys. Rev. D 105 (2022) 116017 [arXiv:2112.12568 [hep-ph]]

Riva del Sole, 12 September 2022

HFHF

- spectral functions
- real-time methods
- field theory applications

Spectral Functions

commutator of interacting fields:

$$
\langle[\phi(x), \phi(0)]\rangle=\int_{0}^{\infty} d m^{2} \rho\left(m^{2}\right) i \Delta\left(x ; m^{2}\right)
$$

Fourier transform: $\quad \rho(\omega, \vec{p})=\int d^{4} x e^{i p x} i\langle[\phi(x), \phi(0)]\rangle$
spectral function:

$$
\Rightarrow \quad \rho(\omega, \vec{p})=2 \pi i \epsilon(\omega) \theta\left(p^{2}\right) \rho\left(p^{2}\right)
$$

$$
\left.\rho\left(p^{2}\right)=(2 \pi)^{3} \sum_{\psi} \delta^{4}\left(p-q_{\psi}\right)|\langle\Omega| \phi(0)| \psi\right\rangle\left.\right|^{2}, \quad p_{0}>0
$$

free fields (stable pion):
finite lifetime/width

two-particle thresholds:

retarded, imaginary part: $\quad \rho\left(p^{2}\right)=-\frac{1}{\pi} \operatorname{Im} D_{R}(p)$
discontinuity at cut of propagator:

$$
D(p)=\int_{0}^{\infty} d m^{2} \rho\left(m^{2}\right) \frac{1}{p^{2}+m^{2}}
$$

Euclidean space:

$$
p^{2}>0
$$

Euclidean data: $\quad D(t, \vec{p}=0)=\int_{0}^{\infty} d m \rho\left(m^{2}\right) \exp \{-m t\}$
(inverse Laplace, try e.g. MEM, but ill-posed numerical problem)
(i) Classical-statistical simulations

(ii) Gaussian state approximation
(iii) Real-time FRG

anharmonic oscillator:

$$
\hat{H}_{S}=\frac{\hat{p}^{2}}{2}+\frac{\omega_{0}^{2}}{2} \hat{x}^{2}+\frac{\lambda}{4!} \hat{x}^{4}
$$

- spectral function: $\quad \rho\left(t-t^{\prime}\right)=\mathrm{i}\left\langle\left[\hat{x}(t), \hat{x}\left(t^{\prime}\right)\right]\right\rangle_{\beta}$
- Fourier transform:

$$
\begin{aligned}
\rho(\omega)=\frac{1}{Z} \sum_{m, n} & \mathrm{e}^{-\beta E_{n}}\left(\delta\left(\omega-E_{m}+E_{n}\right)\right. \\
& \left.\left.\quad-\delta\left(\omega+E_{m}-E_{n}\right)\right)|\langle n| \hat{x}| m\right\rangle\left.\right|^{2}
\end{aligned}
$$

- Ohmic damping (Caldeira-Leggett):

$$
\begin{aligned}
\rho_{\gamma}(\omega)=\frac{1}{Z} \sum_{m, n} & \left.\mathrm{e}^{-\beta E_{n}}|\langle n| \hat{x}| m\right\rangle\left.\right|^{2} 2 \Delta E_{m n} \\
& \times \frac{1}{\pi} \frac{\gamma \omega}{\left(\omega^{2}-\Delta E_{m n}^{2}\right)^{2}+\gamma^{2} \omega^{2}}
\end{aligned}
$$

anharmonic oscillator:

$$
\left.\rho_{\gamma}(\omega)=\frac{1}{Z} \sum_{m, n} \mathrm{e}^{-\beta E_{n}}|\langle n| \hat{x}| m\right\rangle\left.\right|^{2} 2 \Delta E_{m n}
$$

$$
\times \frac{1}{\pi} \frac{\gamma \omega}{\left(\omega^{2}-\Delta E_{m n}^{2}\right)^{2}+\gamma^{2} \omega^{2}}
$$

(i) Classical-Statistical Limit

- classical Langevin:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} X=P, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} P=-\omega_{0}^{2} X-\frac{\lambda}{6} X^{3}-\gamma P+\xi(t)
$$

- classical SF from FDR:

$$
\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle_{\beta}=2 \gamma T \delta\left(t-t^{\prime}\right)
$$

$$
\rho_{\mathrm{c}}\left(t-t^{\prime}\right)=-\frac{1}{2 T}\left\langle P(t) X\left(t^{\prime}\right)-X(t) P\left(t^{\prime}\right)\right\rangle_{\beta}
$$

- classical-statistical field theory simulations

$$
\rho_{\mathrm{c}}\left(t-t^{\prime}\right)=-\frac{1}{T} \partial_{t} F_{\mathrm{c}}\left(t-t^{\prime}\right)
$$

- high-temperature (Rayleigh-Jeans) limit: G. Aarts, PLB 518 (2001) 315
- critical SFs, dynamic scaling functions:
J. Berges, S. Schlichting, D. Sexty, NPB 832 (2010) 228
S. Schlichting, D. Smith, L.v.S., NPB 950 (2020) 114868
D. Schweitzer, S. Schlichting, L.v.S., NPB 960 (2020) 115165; arXiv:2110.01696

CRC-TR211
 Dissipative Quantum Systems

- Heisenberg-Langevin:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{x}(t)=\hat{p}(t), \quad \frac{\mathrm{d}}{\mathrm{~d} t} \hat{p}(t)=-\int_{0}^{t} \mathrm{~d} t^{\prime} \gamma\left(t-t^{\prime}\right) \hat{p}\left(t^{\prime}\right)-V^{\prime}(\hat{x}(t))+\hat{\xi}(t)
$$

- Ohmic bath:

$$
\gamma(t)=2 \int_{0}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \frac{J(\omega)}{\omega} \cos (\omega t)=\frac{2 \gamma \Lambda}{\pi} \frac{\sin (\Lambda t)}{\Lambda t} \xrightarrow{\Lambda \rightarrow \infty} 2 \gamma \delta(t)
$$

$$
J_{\Lambda}(\omega)=2 \gamma \omega \Theta(\Lambda-|\omega|)
$$

$$
\begin{aligned}
\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle_{\beta} & =\int_{0}^{\infty} \frac{\mathrm{d} \omega}{\pi} J(\omega) n_{\mathrm{B}}(\omega) \cos \left(\omega\left(t-t^{\prime}\right)\right) \\
& \rightarrow \gamma T\left(-\frac{\pi T}{\sinh ^{2}\left(\pi T\left(t-t^{\prime}\right)\right)}+\frac{1}{\pi T\left(t-t^{\prime}\right)^{2}}\right)
\end{aligned}
$$

$$
\xi(t) \equiv\langle\hat{\xi}(t)\rangle
$$

- Frequency:
colored noise

$$
\begin{aligned}
\langle\xi(-\omega) \xi(\omega)\rangle_{\beta} & =2 \gamma \omega n_{\mathrm{B}}(\omega), & & \omega>0 \\
& \rightarrow 2 \gamma T, & & T \gg \omega
\end{aligned}
$$

Gaussian-State Approximation

- Wigner function:

$$
w(x, p)=\int \mathrm{d} y \mathrm{e}^{-\mathrm{i} p y}\langle x+y / 2| \hat{\rho}|x-y / 2\rangle
$$

- GSA:

$$
=\mathcal{N} \exp \left\{-\frac{1}{2}\binom{x-X}{p-P}^{T}\left(\begin{array}{ll}
\sigma_{x x} & \sigma_{x p} \\
\sigma_{x p} & \sigma_{p p}
\end{array}\right)^{-1}\binom{x-X}{p-P}\right\}
$$

- Harmonic oscillator:
mixed thermal state

$$
\begin{aligned}
\hat{\rho}_{\mathrm{HO}} & =e^{-\beta \hat{H}} / Z=Z^{-1} \sum_{n} \mathrm{e}^{-\beta \omega_{0}(n+1 / 2)}|n\rangle\langle n| \\
w_{\mathrm{HO}}(x, p) & =\frac{2}{F\left(\omega_{0}\right)} \mathrm{e}^{-\frac{p^{2}+\omega_{0}^{2} x^{2}}{\omega_{0} F\left(\omega_{0}\right)}}, \quad F(\omega)=\operatorname{coth} \frac{\beta \omega}{2}
\end{aligned}
$$

thermal distribution

Gaussian-State Approximation

- General Gaussian state:
coherent states

$$
\begin{gathered}
\hat{\rho}_{G}=\tilde{\mathcal{N}} \int \mathrm{d} X \mathrm{~d} P \exp \left\{-\frac{X^{2}}{2 \sigma_{x x}^{c}}-\frac{P^{2}}{2 \sigma_{p p}^{c}}\right\}|X, P\rangle\langle X, P| \\
\sigma_{x x}^{c}=n_{\mathrm{B}}\left(\omega_{0}\right) / \omega_{0}, \quad \sigma_{p p}^{c}=\omega_{0} n_{\mathrm{B}}\left(\omega_{0}\right)
\end{gathered}
$$

$$
F\left(\omega_{0}\right)=2 n_{\mathrm{B}}\left(\omega_{0}\right)+1
$$

$$
\neq F\left(\omega_{0}\right) / 2 \omega_{0}
$$

mixed thermal state

- Gaussian WF with: covariance matrix

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{x x} & \sigma_{x p} \\
\sigma_{x p} & \sigma_{p p}
\end{array}\right), \quad f=\sqrt{\sigma_{x x} \sigma_{p p}-\sigma_{x p}^{2}}
$$ symplectic EV

$$
=1 / 2
$$

if and only if pure

- von Neumann entropy:

$$
S=-\operatorname{Tr}(\hat{\rho} \ln \hat{\rho})=\left(f+\frac{1}{2}\right) \ln \left(f+\frac{1}{2}\right)-\left(f-\frac{1}{2}\right) \ln \left(f-\frac{1}{2}\right)
$$

(ii) Gaussian-State Approximation $\frac{\text { Justus }}{\text { TGIEEBGIG }}$

- HLE in GSA:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} X & =P, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} P=-\left(\omega_{0}^{2}+\frac{\lambda}{2} \sigma_{x x}\right) X-\frac{\lambda}{6} X^{3}-\gamma P+\xi(t) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \sigma_{x x} & =2 \sigma_{x p}, \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \sigma_{x p} & =\sigma_{p p}-\sigma_{x x} \mathcal{C}\left(X, \sigma_{x x}\right)-\gamma \sigma_{x p}+\langle\langle\hat{x}(t) \hat{\xi}(t)\rangle\rangle, \\
\frac{\mathrm{d}}{\mathrm{~d} t} \sigma_{p p} & \left.=-2 \sigma_{x p} \mathcal{C}\left(X, \sigma_{x x}\right)-2 \gamma \sigma_{p p}+2\langle\hat{p}(t) \hat{\xi}(t)\rangle\right\rangle
\end{aligned}
$$

- adiabatic approximation:

$$
\mathcal{C}(t) \equiv \mathcal{C}\left(X, \sigma_{x x}\right)=\omega_{0}^{2}+\frac{\lambda}{2}\left(X^{2}(t)+\sigma_{x x}(t)\right)
$$

$$
\begin{aligned}
\mathcal{C}(t) & =\mathcal{C}_{0}(T)+\delta \mathcal{C}(t) \\
\mathcal{C}_{0}(T) & \equiv\left\langle\mathcal{C}\left(X, \sigma_{x x}\right)\right\rangle_{\beta}=\omega_{0}^{2}+\frac{\lambda}{2}\left\langle\hat{x}^{2}\right\rangle_{\beta}
\end{aligned}
$$

time independent

(iii) Real-Time FRG

- Keldysh action:

$$
\begin{aligned}
& S[\phi]=\frac{1}{2} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \phi^{T}(-\omega)\left(\begin{array}{cc}
0 & \omega^{2}-\mathrm{i} \gamma \omega-\omega_{0}^{2} \\
\omega^{2}+\mathrm{i} \gamma \omega-\omega_{0}^{2} & 2 \mathrm{i} \gamma \omega \operatorname{coth}\left(\frac{\omega_{0}}{2 T}\right)
\end{array}\right) \phi(\omega) \\
&-\frac{2 \lambda}{4!} \int_{-\infty}^{\infty} d t\left(\phi^{c}(t) \phi^{c}(t) \phi^{c}(t) \phi^{q}(t)+\phi^{c}(t) \phi^{q}(t) \phi^{q}(t) \phi^{q}(t)\right)
\end{aligned}
$$

- causal regulator for FRG:

$$
\Delta S_{k}[\phi]=\frac{1}{2} \int_{-\infty}^{\infty} \mathrm{d} t \int_{-\infty}^{\infty} \mathrm{d} t^{\prime} \phi^{T}(t) R_{k}\left(t, t^{\prime}\right) \phi\left(t^{\prime}\right)
$$

via scale-dependent "heat-bath"

$$
\begin{aligned}
R_{k}^{R / A}(\omega) & =-\int_{0}^{\infty} \frac{d \omega^{\prime}}{2 \pi} \frac{2 \omega^{\prime} J_{k}\left(\omega^{\prime}\right)}{(\omega \pm i \varepsilon)^{2}-\omega^{\prime 2}} \\
R_{k}^{K}(\omega) & =\left(R_{k}^{R}(\omega)-R_{k}^{A}(\omega)\right) \operatorname{coth} \frac{\omega}{2 T}=i J_{k}(\omega) \operatorname{coth} \frac{\omega}{2 T}
\end{aligned}
$$

$$
J_{k}(\omega)=2 k \omega \exp \left\{-\omega^{2} / k^{2}\right\}
$$

(iii) Real-Time FRG

- causal regulator for FRG:

$$
R_{k}^{R / A}(\omega)=-\int_{0}^{\infty} \frac{d \omega^{\prime}}{2 \pi} \frac{2 \omega^{\prime} J_{k}\left(\omega^{\prime}\right)}{(\omega \pm i \varepsilon)^{2}-\omega^{\prime 2}} \quad-\alpha k^{2}
$$

avoid unphysical regulator poles

- simple example:
(a) $\alpha=0$
(b) $\alpha=1 / 2$
(c) $\alpha=1$

$$
J_{k}(\omega)=2 k \omega \exp \left\{-\omega^{2} / k^{2}\right\}
$$

Drude model with frequency $\omega_{\mathrm{D}}=k$

$$
\omega_{p, \pm}(k=0)=-\mathrm{i} \frac{\gamma}{2} \pm \sqrt{\omega_{0}^{2}-\frac{\gamma^{2}}{4}}
$$

$$
\begin{array}{r}
R_{k}^{R / A}(\omega)=\frac{1}{2} \frac{k^{2}}{1 \mp \mathrm{i} \omega / k}-\alpha k^{2} \\
G_{k}^{R / A}(\omega)=-\frac{1}{\omega^{2} \pm \mathrm{i} \gamma \omega-\omega_{0}^{2}+R_{k}^{R / A}(\omega)}
\end{array}
$$

(iii) Real-Time FRG

- Effective average action:

truncation

$$
\begin{aligned}
& \Gamma_{k}[\phi]= \frac{1}{2} \\
& \int_{x x^{\prime}} \phi^{T}(x)\left(\begin{array}{cc}
0 & \Gamma_{k}^{(2), A}\left(x, x^{\prime}\right) \\
\Gamma_{k}^{(2), R}\left(x, x^{\prime}\right) & \Gamma_{k}^{(2), K}\left(x, x^{\prime}\right)
\end{array}\right) \phi\left(x^{\prime}\right)+\frac{3}{4!} \int_{x x^{\prime}} \phi^{\alpha}(x) \phi^{\beta}(x) \Gamma_{k}^{\alpha \beta ; \beta^{\prime} \alpha^{\prime}}\left(x, x^{\prime}\right) \phi^{\beta^{\prime}}\left(x^{\prime}\right) \phi^{\alpha^{\prime}}\left(x^{\prime}\right) \\
&-\frac{1}{6!} \int_{x}\left(\frac{3}{2} \mu_{k}\left(\phi^{c}(x)\right)^{5} \phi^{q}(x)+5 \mu_{k}\left(\phi^{c}(x)\right)^{3}\left(\phi^{q}(x)\right)^{3}+\frac{3}{2} \mu_{k} \phi^{c}(x)\left(\phi^{q}(x)\right)^{5}\right)+O\left(\phi^{8}\right),
\end{aligned}
$$

- two-loop exact:

use for 2-point function
S. Huelsmann, S. Schlichting, Ph. Scior, PRD 102 (2020) 096004

(iii) Real-Time FRG

- one-loop structure:

for 4-point function
- flow of local vertices:

$$
\partial_{k} \frac{\delta \Gamma_{k}[\phi]}{\delta \phi^{q}(x)}=-\frac{i}{2}
$$

use for 6-point function

- combined vertex and loop expansion
here order $\quad Q=2 l+n=6$
- verify high-temperature (classical) limit: $\quad T=32 \omega_{0}, \gamma=0.06 \omega_{0}$

(b) $\lambda=4$

- relevant thermal coupling:

$$
\lambda T=1
$$

$$
\lambda T=128
$$

- also for FRG, with loop expansion need: $\quad \lambda T \lesssim 4$

- lower temperatures:

- compare static vs adiabatic GSA:

Field Theory Applications

- classical-statistical SFs:

avoided crossing

Schlichting, Smith, von Smekal, NPB 950 (2020) 114868

Classical-Statistical SFs

Z_{2} scalar fields with Langevin (Model A) dynamics

$$
\begin{aligned}
\ddot{\phi}(\boldsymbol{x}, t)=-\frac{\delta \mathfrak{H}[\phi]}{\delta \phi(\boldsymbol{x}, t)}-\gamma \dot{\phi}(\boldsymbol{x}, t)+\sqrt{2 \gamma T} & \eta(\boldsymbol{x}, t) \\
& \left\langle\eta\left(\boldsymbol{x}^{\prime}, t^{\prime}\right) \eta(\boldsymbol{x}, t)\right\rangle=\delta\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}\right) \delta\left(t^{\prime}-t\right)
\end{aligned}
$$

- dynamic scaling functions:
- use scaling relation of critical SF:

$$
\rho(\omega, p, \tau)=s^{2-\eta} \rho\left(s^{z} \omega, s p, s^{\frac{1}{\nu}} \tau\right)
$$

to determine new universal scaling funct.'s $f_{\omega}, f_{p}, f_{\tau}^{ \pm}$, e.g.

$$
\rho(\omega, p, \tau)=\bar{p}^{-(2-\eta)} f_{p}\left(\bar{\omega} / \bar{p}^{z}, \tau / \bar{p}^{1 / \nu}\right)
$$

dynamic (two-variable) scaling function
Schweitzer, Schlichting, von Smekal, NPB 960 (2020) 115165

Classical-Statistical SFs

Z_{2} scalar fields with diffusive (Model B) dynamics

$$
\begin{aligned}
\ddot{\phi}(\boldsymbol{x}, t)=\mu \nabla^{2} \frac{\delta \mathfrak{H}[\phi]}{\delta \phi(\boldsymbol{x}, t)}-\gamma \dot{\phi}(\boldsymbol{x}, t)+ & \sqrt{2 \gamma T} \eta(\boldsymbol{x}, t) \\
& \left\langle\eta\left(\boldsymbol{x}^{\prime}, t^{\prime}\right) \eta(\boldsymbol{x}, t)\right\rangle=-\mu \nabla^{2} \delta\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}\right) \delta\left(t^{\prime}-t\right)
\end{aligned}
$$

conserved order parameter

$$
Q=\int \mathrm{d}^{d} x \phi(\boldsymbol{x}, t) \quad \text { with } \quad \dot{Q}=0
$$

- spectral functions:

$$
\rho_{\mathrm{BW}}(\omega, \boldsymbol{p})=\frac{\mu \boldsymbol{p}^{2} \Gamma_{p} \omega}{\left(\omega^{2}-\omega_{p}^{2}\right)^{2}+\Gamma_{p}^{2} \omega^{2}}
$$

non-critical:

$$
\begin{aligned}
\omega_{p}^{2} & =\mu \boldsymbol{p}^{2}\left(m^{2}(T)+\boldsymbol{p}^{2}\right) & \text { critical: } \\
\Gamma_{p}(\gamma) & =\Gamma_{p}(0)+\gamma & \omega_{p}^{2}=\omega_{0}^{2} \bar{p}^{z_{\omega}} \\
\Gamma_{p}(0) & =\bar{\Gamma}(T) \cdot \begin{cases}|\boldsymbol{p}|, & T \ll T_{c} \\
\boldsymbol{p}^{2}, & T \gg T_{c}\end{cases} & \Gamma_{p}=\Gamma_{0} \bar{p}^{z_{\Gamma}}
\end{aligned}
$$

Schweitzer, Schlichting, von Smekal, arXiv:2110.01696

Classical-Statistical SFs

- critical dynamics of relativistic diffusion:

$$
d=2
$$

$$
\xi_{t} \sim \xi^{z}
$$

Schweitzer, Schlichting, von Smekal, arXiv:2110.01696

JUSTUS-LIEBIG-
 Real-Time FRG - Critical Dynamics T] Gilssen

- effective average action: Martin-Siggia-Rose

Model A

$$
\begin{aligned}
\Gamma_{k}= & \frac{1}{2} \int_{p} \Delta \phi^{T}(-p)\left(\begin{array}{cc}
0 & Z_{k}^{\|}(\omega) \omega^{2}-Z_{k}^{\perp} \boldsymbol{p}^{2}-m_{k}^{2}-i \gamma_{k}(\omega) \omega \\
4 i \gamma_{k}(\omega) T
\end{array}\right) \Delta \phi(p) \\
& -\frac{\kappa_{k}}{\sqrt{8}} \int_{x}\left(\phi^{c}-\phi_{0, k}^{c}\right)^{2} \phi^{q}-\frac{\lambda_{k}}{12} \int_{x}\left(\phi^{c}-\phi_{0, k}^{c}\right)^{3} \phi^{q}, \quad \eta_{k}^{\perp}=-k \partial_{k} \log Z_{k}^{\perp}
\end{aligned}
$$

- critical SFs:

$$
\rho(\omega, 0) \sim \omega^{-\sigma} \quad \sigma=\frac{2-\eta_{\perp}}{z}
$$

Summary

- real-time methods for spectral functions:
(i) classical-statistical simulations
(ii) Gaussian state approximation
(iii) real-time FRG
tested in (open) QM system
- field theory applications:
study critical dynamics
Models A, B, C
J. Roth, MSc Thesis, JLU, March 2022
J. Roth \& LvS, in preparation

Thank you for your attention!

