

SMASH Hadronic Transport and Hybrid Approach

Hannah Elfner

September 15th 2022, HFHF Retreat, Castiglione della Pescaia

Outline

- SMASH transport approach
 - Status and recent developments
- SMASH Hybrid Approach
 - Interfacing SMASH and vHLLE
 - Particle production at SPS/BES energies
 - μ_B dependence of transport coefficients
- Summary

SMASH Transport Approach

The Phase Diagram

Standard approach at high energiesNon-equilibrium initial evolution

- Viscous hydrodynamics
- Hadronic rescattering

- Two regimes with wellestablished approaches
- Goals:
 - -Constraints on the equation of state of nuclear matter
 - Determine limit of applicability of hadronic transport approach
 - -Qualitative signatures of first order phase transition

Standard approach at low beam energies

- Hadronic transport approaches
- Resonance dynamics
- Nuclear potentials

HFHF Retreat 09/15/2022 smash

Simulating Many Accelerated Strongly-Interacting Hadrons

- Hadronic transport approach:
 - Includes > 150 mesons and baryons
 - Based on relativistic Boltzmann equation

$$p^{\mu}\partial_{\mu}f_i(x,p) + m_i F^{\alpha}\partial^p_{\alpha}f_i(x,p) = C^i_{\text{coll}}$$

https://smash-transport.github.io

- Open source code: C++, Git, Python Analysis Suite
- Already used by HADES, CBM, JETSCAPE, BEST and individuals

The SMASH Team

In Frankfurt:

- Gabriele Inghirami
- Alessandro Sciarra
- Jan Staudenmaier
- Zuzana Paulinyova
- Justin Mohs
- Jan Hammelmann
- Niklas Götz
- Renan Hirayama
- Nils Saß
- Antonio Bozic
- Lucas Constantin
- Julia Gröbel
- Branislav Balinovic
- + Anna Schäfer

- In US/Bielefeld:
 - Dmytro Oliinychenko
 - Agnieszka Sorensen
 - Oscar Garcia-Montero

Group excursion in May 2022

Degrees of Freedom

Easily configurable by human-readable input files

N	Δ	٨	Σ	Ξ	Ω		Un	flavored		Strange															
N ₉₃₈	Δ ₁₂₃₂	Λ ₁₁₁₆	Σ ₁₁₈₉	Ξ ₁₃₂₁	Ω ⁻ 1672	π ₁₃₈	f _{0 980}	f _{2 1275}	π 2 1670	K 494															
N 1440	Δ ₁₆₂₀	Λ_{1405}	Σ ₁₃₈₅	Ξ ₁₅₃₀	Ω ⁻ 2250	π_{1300}	f _{0 1370}	f ₂ ′ ₁₅₂₅		K* ₈₉₂															
N ₁₅₂₀	Δ ₁₇₀₀	Λ ₁₅₂₀	Σ ₁₆₆₀	Ξ ₁₆₉₀		π_{1800}	f _{0 1500}	f _{2 1950}	ρ _{3 1690}	K _{1 1270}															
N ₁₅₃₅	Δ ₁₉₀₀	Λ_{1600}	Σ ₁₆₇₀	Ξ ₁₈₂₀			f _{0 1710}	f _{2 2010}		K _{1 1400}															
N ₁₆₅₀	Δ ₁₉₀₅	Λ ₁₆₇₀	Σ1750	Ξ ₁₉₅₀		η ₅₄₈		f _{2 2300}	Фз 1850	K* ₁₄₁₀															
N ₁₆₇₅	Δ ₁₉₁₀	Λ ₁₆₉₀	Σ1775	Ξ ₂₀₃₀		ŋ ´958	a 0 980	f _{2 2340}		$K_{0}^{*}_{1430}$															
N ₁₆₈₀	Δ ₁₉₂₀	Λ_{1800}	Σ ₁₉₁₅			η 1295	a 0 1450		a _{4 2040}	$K_{2}^{*}_{1430}$															
N ₁₇₀₀	Δ ₁₉₃₀	Λ_{1810}	Σ ₁₉₄₀			η 1405		f _{1 1285}		K* ₁₆₈₀															
N ₁₇₁₀	Δ ₁₉₅₀	Λ ₁₈₂₀	Σ ₂₀₃₀			η 1475	ф 1019	f _{1 1420}	f _{4 2050}	K _{2 1770}															
IN ₁₇₂₀		Λ ₁₈₃₀	Σ2250				\$ 1680			$K_{3}^{*}_{1780}$															
N ₁₈₇₅		Λ ₁₈₉₀				σ 800		a _{2 1320}		K _{2 1820}															
N 1900		Λ_{2100}					h _{1 1170}			$K_{4}^{*}_{2045}$															
N 2060		Λ ₂₁₁₀				ρ ₇₇₆		$\pi_{1 \ 1400}$				L													
N2080		Λ_{2350}				ρ 1450	b _{1 1235}	π_{11600}			+ ar	C(ht	orr in:	orres inart	orresp	orrespo	orrespon	orrespone	orrespond inarticles	orrespond inarticles	orrespond inarticles	orrespond inarticles	orrespond inarticles	orrespond ⁱ inarticles	orrespondi inarticles
N ₂₁₀₀						ρ ₁₇₀₀					Pe	۲ ۲	יףי דוו	turh	turbat	turbativ	turbativ	turbative	turbative	turbative	turbative	turbative	turbative	turbative	turbative
N ₂₁₂₀							a _{1 1260}	η _{2 1645}			tr	ea	atr	atme	atmen	atment	atment c	atment o	atment of	atment of					
N ₂₁₉₀						ω ₇₈₃					pł di	۱C اد	oto	otons	tons a	tons ar	tons and	tons and	tons and	tons and	tons and	tons and	tons and	tons and	tons and
N ₂₂₂₀						ω ₁₄₂₀		ω _{3 1670}				0	n n	nin	nin sv	nin svr	nin sym	nin symr	nin symn	nin symm	nin symm				
N ₂₂₅₀				A	s of SMASH-1.7	ω ₁₆₅₀					13	Γ	ייי	- no	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Spin Syn	phi sym	phi synn	phi synni	phi synni					

- Mesons and baryons according to particle data group
- Isospin multiplets and anti-particles are included

Elementary Cross Sections

- Total cross section for pp/pπ collisions
- Parametrized elastic cross section
- Many resonance contributions to inelastic cross section
- Reasonable description of experimental data
- Transition from resonances to strings at intermediate energies

J. Weil et al, PRC 94 (2016)

Pion Production in Au+Au

- Potentials decrease pion production, while Fermi motion increases yield
- Nice agreement with SIS experimental data

Note: consecutive addition of features

J. Weil et al, PRC 94 (2016)

Recent Developments

- Hybrid approach with vHLLE -> main topic of today's talk
- Update of nuclear mean fields
 - Coulomb field and momentum dependence
 - Clustering for light nuclei
- Multi-particle interactions (see Jan Staudenmaier)
 - 2<->1, 2<->2, 2<->3, 5<->2, ... with stochastic rates
- Study collisional broadening (see Renan Hirayama)
- Fluctuations of conserved quantities
 - Effect of hadronic rescattering on skewness, kurtosis etc (work in progress by Jan Hammelmann)
- Improved interface for usage as third party library (e.g. in JETSCAPE

SMASH Equilibration and Higher Beam Energies

Time Evolution of Heavy-Ion Collisions

 Detailed dynamical modeling is essential to learn something about hot and dense QGP stage

Hybrid approaches are current tool of choice

Hybrid approaches

Transport

Microscopic description of the whole phase-space distribution

Non-equilibrium evolution based on the Boltzmann equation

$$(p^{\mu}\partial_{\mu})f = I_{coll}$$

Partonic or hadronic degrees of freedom

Cross-sections are calculable using different techniques

Phase transition?

Hydrodynamics

Macroscopic description Local equilibrium is assumed

$$\partial_{\mu} T^{\mu\nu} = 0 \qquad \partial_{\mu} \left(n u^{\mu} \right) = 0$$

+viscous corrections

Propagation according to conservation laws

Equation of state is an explicit input

Boundary conditions: Breakdown of equilibrium assumptions?

Time Evolution

 Density and temperature in a central cell for heavy ion collisions at SIS-18 energies

J. Staudenmaier, N. Kübler and HE, PRC 103, 2021

2-4 times nuclear ground state density reached

Local Equilibrium

Percentage of fireball close to local equilibrium in different collision systems (left) and in Au+Au collisions at different beam energies (right)
 X, Y < 0.3 and ε > 1 MeV/fm³

 Calculation within coarse-grained SMASH hadronic transport approach by investigating properties of T^{µv}

G. Inghirami and H. Elfner, EPJC 82 (2022)

Moving to Higher Energies

- High energy cross-section is dominated by string excitation and fragmentation
 J. Mohs, S. Ryu and HE, J.Phys.G 47 (2020)
- Soft strings
 - Pythia is only employed for fragmentation
 - Single-diffractive, double diffractive and nondiffractive processes
- Hard strings
 - Fully treated by Pythia
 - All species mapped to pions and nucleons

 Note: SMASH-2.0 includes optimised Pythia calls to reduce run-time

Baryon Stopping and Initial State

- All parameters of the string model are tuned to elementary pp data from SPS
- Proton rapidity spectrum is described over a large range of beam energies
 J. Mohs, S. Ryu, HE J.Phys.G 47 (2020)

Outlook: Employ SMASH as dynamical initial state

SMASH Hybrid Approach

SMASH-vHLLE Hybrid Approach

- Modular hybrid approach for intermediate and high energy heavy-ion collisions
- Open source and public

https://github.com/smashtransport/smash-vhlle-hybrid

SMASH

- Hadronic transport approach
- Initial conditions

VHLLE

- 3+1 D viscous hydrodynamics (event-by-event)
- Cornelius routine for hypersurface

smash-hadron-sampler

- Cooper-Frye sampler
- Particlization of fluid elements

A. Schäfer et al., arXiv: 2112.08724
Weil et al.: PRC 94 (2016)
DOI: 10.5281/zenodo.3484711
Huovinen et al.: Eur. Phys. J A 48 (2012)
Karpenko et al.: PRC 91, 064901 (2015)
Karpenko et al.: Comput. Phys. Commun. 185 (2014)

SMASH

- Hadronic transport approach
- Evolution of hadronic rescattering

Hannah Elfner

Initial Conditions from SMASH

- Nuclei are initialised according to Woods-Saxon profiles
- Propagation and collisions until full overlap time $\tau_0 = -\frac{R_p + R_t}{\tau_0}$

A. Schäfer, PhD thesis

- Full energy-momentum tensor and charge distributions (B, S, Q) at constant τ hypersurface
- Fluctuations from nucleon positions and initial collisions
- Particles are smeared with Gaussian distributions

VHLLE

- 3+1 dimensional viscous hydrodynamic evolution
- Shear (and bulk) viscosity are included $\partial_{\mu}T^{\mu\nu} = 0 \qquad \qquad \partial_{\mu}J^{\mu}_{i} = 0 \qquad i = B, Q, S$
- Equation of state from chiral model (update in progress)
 J. Steinheimer, S. Schramm and H. Stöcker, J.Phys.G 38 (2011)
- For correct mapping of degrees of freedom on hypersurface the SMASH hadron gas equation of state is used
- $(e,n_B,n_Q) \rightarrow (T,p,\mu_B,\mu_Q,\mu_S)$

Karpenko et al.: PRC 91, 064901 (2015) Karpenko et al.: Comput. Phys. Commun. 185 (2014)

Cooper-Frye Particlization

- Constant energy density hypersurface of ~2-5*ε₀ is constructed
- All SMASH hadron species are sampled according to thermal distribution functions (with δf correction for shear viscosity according to Grad 14 moment)

- Work in progress:
 - Sampling according to micro canonical ensemble D. Oliinychenko, V. Koch, PRL 123 (2019)
 - Finite spectral functions
 - for resonances at sampling

Parameter choices

 Parameters for initial state granularity and transport coefficients similar to prior UrQMD-vHLLE hybrid

System	√s	η/s	R⊥	Rη
Au + Au	7.7 GeV	0.2	1.4	1.2
Pb + Pb	8.8 GeV	0.2	1.4	1.0
Pb + Pb	17.3 GeV	0.15	1.4	0.7
Au + Au	27.0 GeV	0.12	1.0	0.5
Au + Au	39.0 GeV	0.08	1.0	0.3
Au + Au	62.4 GeV	0.08	1.0	0.6
Au + Au	130.0 GeV	0.08	1.0	0.8
Au + Au	200.0 GeV	0.08	1.0	1.0

Parameters for hydrodynamical evolution, unless stated differently on the plots

Y. Karpenko et al, PRC 91, 2015

 $R_{\perp},\,R_{\eta}:$ transverse and longitudinal smearing parameter

Current work: Constant shear viscosity and bulk viscosity is neglected

Particle Spectra

 Rapidity and transverse mass spectra of pions, kaons, protons at different energies -> Hybrid approach in decent agreement with measurements
 A. Schäfer et al., arXiv: 2112.08724

Excitation Function

 Particle yields at midrapidity are well described over a large range of beam energies
 A. Schäfer et al., arXiv: 2112.08724

- Mean transverse momentum is also well described by the hybrid approach (too small in pure SMASH)
- More strangeness production and larger radial flow from hydrodynamics necessary from $\sqrt{s_{\rm NN}}$ ~ 10 GeV

Anisotropic Flow

- Integrated v₂ and v₃ for charged particles
- v₂: Good agreement with STAR data at high energies and in central collisions
- v₃: STAR data underestimated at all energies and centralities
- Potential explanation:
 - Too short lifetime of the hydrodynamical fireball
 - Initial state fluctuations washed out in smearing

process

A. Schäfer et al., arXiv: 2112.08724

μ_B dependence of η/s

Parametrization of n/s

- Parametrization in energy and net baryon density instead of temperature and chemical potential
- Linear dependence above and below a minimal shear viscosity/entropy ratio

Matched to pQCD and SMASH box calculation

Effective Shear Viscosity

- Integrated shear viscosity is larger in our calculation than in temperature dependent or constant case
- Explicit density dependence has only minor effect

N. Götz, HE, arXiv:2207.05778

Yields and Transverse Momenta

Charged particle yields are not affected much

 Average transverse momentum decreases with higher viscosity, density dependence is visible
 N. Götz, HE, arXiv:2207.05778

Elliptic Flow

- Elliptic flow decreases with increasing viscosity as expected
- Density dependence does not have a big effect

N. Götz, HE, arXiv:2207.05778

Flow from Stages

N. Götz, HE, arXiv:2207.05778

- Depending on switching energy density more flow is developed within hydrodynamic stage or transport stage
- Shown 0.1, 0.3, 0.5 GeV/fm³

Independence of Switching

 The energy density dependent parametrization of the shear viscosity allows to have the final flow independent of the switching transition criterion

 Hint that the viscosity in the hadronic stage is similar in SMASH and the hybrid approach

Summary

- Hybrid approaches based on relativistic hydrodynamics and hadron transport provide realistic dynamical description
- SMASH hadronic transport has been coupled to vHLLE viscous hydrodynamics
- Particle production and flow at intermediate beam energies is better described within hybrid than in pure transport approach
- Transport coefficients depend on temperature and density
- Added an energy density dependence and an explicit net baryon density dependence for shear viscosity
- Average transverse momentum is sensitive to density dependence of shear viscosity
- Elliptic flow is independent of switching transition criterion, when energy density dependent transport coefficient is used
- Outlook: Bulk viscosity and dynamical initialization

How to Use SMASH?

- Visit the webpage to find publications and link to SMASH-2.2 results https://smash-transport.github.io
- Download the code at https://github.com/smash-transport/smash

SMASH-2.2 has HepMC and RIVET

- Checkout the Analysis Suite at https://github.com/smash-transport/smash-analysis
- Find user guide and documentation at https://github.com/smash-transport/smash/releases
- Animations and Visualization Tutorial under https://smash-transport.github.io/movies.html

Simulating Many Accelerated Stron	gly-interacting Hadrons		Edit	<> Code () Issues	0 Pull requests 0 🔟 Insights 🗘 Settings	
Manage topics		413 contributors	ஷ் GPL-3.0	Releases Tags	Draft a	new release
Branch: master - New pull request		Create new file Upload files Find file	Clone or download -	on 4 Dec 2018 🗞 🔍	SMASH-1.5.1 ◆ f068109 Lip Litar.gz	
elfnerhannah Merge pull request #132	2 from smash-transport/schaefer/fix_bug_nuclear	- Latest commit	f068109 on 4 Dec 2018	Latest release	First public version of SMASH	Edit
3rdpartybin	Adjustments for running with JetScape Updated benchmark decaymodes		4 months ago 3 months ago	♡ SMASH-1.5 -	elfnerhannah released this on 27 Nov 2018 · 6 commits to master since this release	
🖿 cmake	Use lightweight tags for version		4 months ago		Useful extras:	
doc	Updated links in README.md and CONTRIB	UTING.md to link to the correct	3 months ago		Here is an overview of Physics results for elementary cross-sections, basic bulk observables a	and
examples/using_SMASH_as_library	Update pythia version in README.md and re	emoved trailing whitespace.	4 months ago		infinite matter calculations	
input	Fix parity for light nuclei decays		3 months ago		User Guide	
Src Src	Merge pull request #132 from smash-transp	port/schaefer/fix_bug_nuclear	2 months ago		HTML Documentation	
annah Elfner			HFHF Ret	treat		35

09/15/2022