## Inhomogeneous phases beyond mean field

#### Lennart Kurth

TU Darmstadt - CRC-TR 211













 In many effective models one finds inhomogeneous phases in the mean field approximation.
 QM



#### Goal

Find out if there are inhomogeneous phases in the quark meson model for some reasonable approximation that goes beyond mean field

- O. Schnetz, M. Thies, and K. Urlichs, Annals Phys. 314 (2004) 425-447
- D. Nickel, Phys. Rev. D80, 074025 (2009)
- S. Carignano, M. Buballa, and B.-J. Schaefer, Phys.Rev. D90, 014033 (2014)

Lennart Kurth

Inhomogeneous phases beyond mean field

HFHF Retreat | 15.09.2022

1 / 29

## Basic concepts



$$S = \int d^4x \left( \bar{\psi} (Z^{\rm F} \partial \!\!\!/ + g\sigma + g \mathrm{i} \gamma_5 \tau \cdot \pi) \psi + \frac{Z^{\rm B}}{2} (\partial_\mu \sigma) (\partial^\mu \sigma) \right. \\ \left. + \frac{Z^{\rm B}}{2} (\partial_\mu \pi) \cdot (\partial^\mu \pi) + \frac{\kappa}{2} (\sigma^2 + \pi^2) + \frac{\lambda}{4} (\sigma^2 + \pi^2)^2 \right)$$

▶ 4 Bosons:  $\sigma, \pi$  and  $2N_{\rm c}$  Fermions:  $\bar{\psi}, \psi$ 

- ▶ 3 couplings: g,  $\kappa$ ,  $\lambda$  and 2 wave function renormalizations:  $Z^{\rm F}$ ,  $Z^{\rm B}$
- Chirally symmetric
- Renormalizable



#### ► If

 $\Gamma[\text{some spatially varying }\phi] < \Gamma[\text{any spatially contant }\phi]$ 

then the system is in an inhomogeneous phase

- Typically at large  $\mu$  and small T
- $\phi$  is macroscopic order parameter  $\rightarrow$  do not confuse with microscopic degrees of freedom
- Can be found by
  - ansatz that allows for inhomogeneity
  - stability analysis



 $\blacktriangleright$  "Taylor expand"  $\Gamma$  around homogeneous  $\bar{\phi}$ 

$$\begin{split} \Gamma[\phi] &= \Gamma\left[\bar{\phi}\right] + \int \mathrm{d}p \, \frac{\delta\Gamma}{\delta\phi(p)} \left[\bar{\phi}\right] \left(\phi(p) - \bar{\phi}\right) \\ &+ \frac{1}{2} \int \mathrm{d}p \int \mathrm{d}q \, \frac{\delta^2\Gamma}{\delta\phi(p)\delta\phi(q)} \left[\bar{\phi}\right] \left(\phi(p) - \bar{\phi}\right) \left(\phi(q) - \bar{\phi}\right) \end{split}$$

- Choose  $\bar{\phi}$  such that  $\Gamma[\bar{\phi}]$  is minimal
- $\frac{\delta\Gamma}{\delta\phi(p\neq 0)}[\bar{\phi}] = 0$  because of translation symmetry
- Negative eigenvalue of  $\frac{\delta^2 \Gamma}{\delta \phi(p) \delta \phi(q)} [\bar{\phi}]$  implies inhomogeneous phase



$$Z[\bar{\eta}, \eta, J_{\sigma}, J_{\pi}] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}\sigma\mathcal{D}\pi \exp\left(-S[\sigma, \pi, \bar{\psi}, \psi] + \text{sources}\right)$$

$$\downarrow \text{ MFA}$$

$$Z = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left(-S[\langle\sigma\rangle, \langle\pi\rangle, \bar{\psi}, \psi]\right)$$

Use that S is quadratic in ψ, ψ to evaluate fermionic path integral
 Find ⟨σ⟩, ⟨π⟩ by minimizing − log(Z) ≈ free energy Ω ≈ effective action Γ)

The functional renormalization group (FRG)

- is exact
- $\blacktriangleright$  transforms path integral into  $\infty$ -dim. PDE
- requires/allows for uncontrolled/non-perturbative approximations

$$Z[J] = \int \mathcal{D}\phi \exp\left(-S[\phi] + \text{sources}\right)$$
$$\downarrow \text{ FRG}$$

" UV"

$$S = \Gamma_{\Lambda} \xrightarrow{\partial_k \Gamma_k[\phi] = \frac{1}{2} \operatorname{STr} \left( \left( \Gamma_k^{(2)}[\phi] + R_k^{\mathrm{T}} \right)^{-1} \partial_k R_k^{\mathrm{T}} - \operatorname{norm.} \right)}_{\text{Wetterich equation}} \to \Gamma_0 = \Gamma$$

classical action

quantum effective action



" IR"

## What has been done so far





S. Carignano, M. Buballa, and B.-J. Schaefer, Phys.Rev. D90, 014033 (2014)

## Inhomogeneous phases in mean field



 $m_{\sigma} = 550, \, 590, \, 610, \, 650 \, \text{MeV}$ 



S. Carignano, M. Buballa, and B.-J. Schaefer, Phys.Rev. D90, 014033 (2014)

Lennart Kurth

8 / 29

## Homogeneous phases beyond mean field





## Inhomgeneous phases beyond mean field





## Reproducing mean field results with the functional renormalization group



$$\partial_k \Gamma_k[\phi] = \frac{1}{2} \operatorname{STr} \left( \left( \Gamma_k^{(2)}[\phi] + R_k^{\mathrm{T}} \right)^{-1} \partial_k R_k^{\mathrm{T}} - \operatorname{norm.} \right)$$

$$\Gamma^{(2)} = \begin{pmatrix} \frac{\delta \Gamma}{\delta \sigma \delta \sigma} & \frac{\delta \Gamma}{\delta \sigma \delta \pi} & \frac{\delta \Gamma}{\delta \sigma \delta \psi} & \frac{\delta \Gamma}{\delta \sigma \delta \psi} \\ \frac{\delta \Gamma}{\delta \pi \delta \sigma} & \frac{\delta \Gamma}{\delta \pi \delta \pi} & \frac{\delta \Gamma}{\delta \pi \delta \phi} & \frac{\delta \Gamma}{\delta \pi \delta \psi} \\ \frac{\delta \Gamma}{\delta \psi \delta \sigma} & \frac{\delta \Gamma}{\delta \psi \delta \pi} & \frac{\delta \Gamma}{\delta \psi \delta \psi} & \frac{\delta \Gamma}{\delta \psi \delta \psi} \\ \frac{\delta \Gamma}{\delta \psi \delta \sigma} & \frac{\delta \Gamma}{\delta \psi \delta \pi} & \frac{\delta \Gamma}{\delta \psi \delta \psi} & \frac{\delta \Gamma}{\delta \psi \delta \psi} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{\delta \Gamma}{\delta \psi \delta \psi} & \frac{\delta \Gamma}{\delta \psi \delta \psi} \\ \frac{\delta \Gamma}{\delta \psi \delta \psi} & \frac{\delta \Gamma}{\delta \psi \delta \psi} \end{pmatrix}$$

$$R = \begin{pmatrix} R^{\sigma} & 0 & 0 & 0 \\ 0 & R^{\pi} & 0 & 0 \\ 0 & 0 & 0 & R^{q} \\ 0 & 0 & -(R^{q})^{\mathrm{T}} & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & R^{q} \\ -(R^{q})^{\mathrm{T}} & 0 \end{pmatrix}$$

## Mean field approximation in FRG: 3D regulator



- In MFA no ansatz for  $\Gamma_k$  is needed
- Choose 3D Litim regulator

$$\begin{split} R^{\mathsf{B}}_{k} &= Z^{\mathsf{B}}(k^{2}-\vec{p}^{2})\,\Theta(k^{2}-\vec{p}^{2})\\ R^{\mathsf{F}}_{k} &= Z^{\mathsf{F}}\vec{\gamma}\cdot\vec{p}\bigg(\frac{k}{|\vec{p}|}-1\bigg)\,\Theta(k^{2}-\vec{p}^{2}) \end{split}$$

- Exactly reproduces renormalized homogeneous mean field results
   But:
  - Meson propagator not Lorentz invariant
  - Wrong results for inhomogeneous phase (no matter how you project/fit)

#### Ad hoc solution

Allow for breaking of Lorentz symmetry in the UV action

Mean field approximation in FRG: 3D regulator



$$S = \int d^4x \left( \bar{\psi} (Z_{||}^{\rm F} \gamma^0 \partial_0 + Z_{\perp}^{\rm F} \vec{\gamma} \cdot \vec{\nabla} + g\sigma + g i \gamma_5 \tau \cdot \pi) \psi \right. \\ \left. + \frac{Z_{||}^{\rm B}}{2} (\partial_0 \sigma) (\partial_0 \sigma) + \frac{Z_{\perp}^{\rm B}}{2} (\vec{\nabla} \sigma) \cdot (\vec{\nabla} \sigma) + \frac{Z_{||}^{\rm B}}{2} (\partial_0 \pi) \cdot (\partial_0 \pi) \right. \\ \left. + \frac{Z_{\perp}^{\rm B}}{2} (\vec{\nabla} \pi) \cdot (\vec{\nabla} \pi) + \frac{\kappa}{2} (\sigma^2 + \pi^2) + \frac{\lambda}{4} (\sigma^2 + \pi^2)^2 \right)$$

Splitting of wave function renormalization constants

$$\begin{split} R^{\mathsf{B}}_{k} &= Z^{\mathsf{B}}_{\perp}(k^{2}-\vec{p}^{2})\,\Theta(k^{2}-\vec{p}^{2})\\ R^{\mathsf{F}}_{k} &= Z^{\mathsf{F}}_{\perp}\vec{\gamma}\cdot\vec{p} \bigg(\frac{k}{|\vec{p}|}-1\bigg)\,\Theta(k^{2}-\vec{p}^{2}) \end{split}$$

- Unambiguous parameter fitting
- Exactly reproduces all renormalized mean field results (a posteriori justification)

Couplings





3D Litim,  $N_c = 3$ ,  $m_q = 300 \text{ MeV}$ ,  $f_n = 88 \text{ MeV}$ 

## Possible observables











## Local potential ansatz in pion-quark truncation



To include the meson contributions we need an ansatz

$$\begin{split} \Gamma^{\mathsf{ansatz}} &= \int \mathrm{d}^4 x \bigg( \bar{\psi} (Z_{||}^{\mathrm{F}} \gamma^0 \partial_0 + Z_{\perp}^{\mathrm{F}} \vec{\gamma} \cdot \vec{\nabla} + g\sigma + g \mathrm{i} \gamma_5 \tau \cdot \pi) \psi \\ &+ \frac{Z_{||}^{\mathrm{B}}}{2} (\partial_0 \sigma) (\partial_0 \sigma) + \frac{Z_{\perp}^{\mathrm{B}}}{2} (\vec{\nabla} \sigma) \cdot (\vec{\nabla} \sigma) + \frac{Z_{||}^{\mathrm{B}}}{2} (\partial_0 \pi) \cdot (\partial_0 \pi) \\ &+ \frac{Z_{\perp}^{\mathrm{B}}}{2} (\vec{\nabla} \pi) \cdot (\vec{\nabla} \pi) + U_k \left( \sigma^2 + \pi^2 \right) \bigg) \end{split}$$

- Only U can change during the flow
- Also choose as background homogeneous field configurations

Propagators in this approximation are of tree-level form

- $\rightarrow$  Inhomogeneous phases excluded by construction
- $\rightarrow$  Not "beyond mean field"





Non-linear 2-dim. scalar 2nd order partial differential equation



$$\partial_k \Gamma_k[\phi] = \frac{1}{2} \operatorname{STr} \left( \left( \Gamma_k^{(2)}[\phi] + R_k^{\mathrm{T}} \right)^{-1} \partial_k R_k^{\mathrm{T}} - \operatorname{norm.} \right)$$

$$\Gamma^{(2)} = \begin{pmatrix} \frac{\delta\Gamma}{\delta\sigma\delta\sigma} & \frac{\delta\Gamma}{\delta\sigma\delta\pi} & \frac{\delta\Gamma}{\delta\sigma\delta\psi} & \frac{\delta\Gamma}{\delta\sigma\delta\psi} \\ \frac{\delta\Gamma}{\delta\pi\delta\sigma} & \frac{\delta\Gamma}{\delta\pi\delta\pi} & \frac{\delta\Gamma}{\delta\pi\delta\psi} & \frac{\delta\Gamma}{\delta\pi\delta\psi} \\ \frac{\delta\Gamma}{\delta\bar{\psi}\delta\sigma} & \frac{\delta\Gamma}{\delta\bar{\psi}\delta\pi} & \frac{\delta\Gamma}{\delta\bar{\psi}\delta\bar{\psi}} & \frac{\delta\Gamma}{\delta\bar{\psi}\delta\psi} \\ \frac{\delta\Gamma}{\delta\bar{\psi}\delta\sigma} & \frac{\delta\Gamma}{\delta\bar{\psi}\delta\pi} & \frac{\delta\Gamma}{\delta\bar{\psi}\delta\bar{\psi}} & \frac{\delta\Gamma}{\delta\bar{\psi}\delta\psi} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{\delta\Gamma}{\delta\pi\delta\pi} & \frac{\delta\Gamma}{\delta\pi\delta\bar{\psi}} & \frac{\delta\Gamma}{\delta\bar{\psi}\delta\psi} \\ \frac{\delta\Gamma}{\delta\bar{\psi}\delta\pi} & \frac{\delta\Gamma}{\delta\bar{\psi}\delta\bar{\psi}} & \frac{\delta\Gamma}{\delta\bar{\psi}\delta\psi} \end{pmatrix} \\ R = \begin{pmatrix} R^{\sigma} & 0 & 0 & 0 \\ 0 & R^{\pi} & 0 & 0 \\ 0 & 0 & 0 & R^{q} \\ 0 & 0 & -(R^{q})^{\mathrm{T}} & 0 \end{pmatrix} \rightarrow \begin{pmatrix} R^{\pi} & 0 & 0 \\ 0 & 0 & R^{q} \\ 0 & -(R^{q})^{\mathrm{T}} & 0 \end{pmatrix}$$



Inserting the local potential ansatz in the pion-quark truncation yields

$$\partial_k U = \frac{Z_\perp^{\mathrm{B}} k^4}{4\pi^2 \sqrt{Z_{\parallel}^{\mathrm{B}} \left( Z_\perp^{\mathrm{B}} k^2 + \frac{1}{\sigma} \partial_\sigma U \right)}} - \frac{2N_{\mathrm{c}} (Z_\perp^{\mathrm{F}})^2 k^4}{3\pi^2 Z_{\parallel}^{\mathrm{F}} \sqrt{(Z_\perp^{\mathrm{F}} k)^2 + g^2 \sigma^2}} + \mathrm{norm}.$$

Non-linear 2-dim. scalar 1st order partial differential equation

- Convert to ODE system via method of characteristics
- Result still chirally symmetric by construction
- But: In π-q truncation m<sub>σ</sub> = 0 (compare O(N) model in large N limit)





3D Litim,  $N_c = 3$ ,  $m_a = 300$  MeV,  $T_c = 176$  MeV,  $f_n = 88$  MeV

Λ/MeV

## Possible observables









# Local potential ansatz in pion-quark truncation with iteration

## CRC-TR 211

#### Ad hoc solution

Iterate the Wetterich equation to get non-trivial momentum structure

Step 1: Solve Wetterich equation in some approximation

$$\partial_k \Gamma_k^{\text{ansatz}}[\phi] = \frac{1}{2} \operatorname{STr}\left( \left( \Gamma_k^{\text{ansatz}^{(2)}}[\phi] + R_k^{\mathrm{T}} \right)^{-1} \partial_k R_k^{\mathrm{T}} - \operatorname{norm.} \right) \Big|_{\text{truncation}}$$

Step 2: Integrate right hand side of untruncated Wetterich equation for result of step 1

$$\Gamma_k^{\text{baditer}}[\phi] = S[\phi] + \int_{\Lambda}^k \mathrm{d}s \, \frac{1}{2} \, \mathrm{STr}\left(\left(\Gamma_s^{\text{ansatz}(2)}[\phi] + R_s^{\mathrm{T}}\right)^{-1} \partial_s R_s^{\mathrm{T}} - \mathrm{norm.}\right)$$

► Step 3: Do not iterate the potential to keep symmetry breaking  $\Gamma_k^{\text{iterated}}[\phi] = \Gamma_k^{\text{baditer}}[\phi] - \int d^4x U_{\text{baditer}} + \int d^4x U_{\text{ansatz}}$ 



- Iteration leaves true solution unchanged
- ▶ No truncation in step  $1 \rightarrow$  step 3 does nothing
- I would call iterated LPA "beyond mean field" (even in π-q trunc.)
- Momentum structure of meson propagator in restored phase is the same as in MFA

- But: Non-trivial momentum structure does not enter differential equation
  - Flow can not compensate for these contributions
  - Complications if ansatz is too simple



3D Litim,  $N_c = 3$ ,  $m_a = 300 \text{ MeV}$ ,  $T_c = 142 \text{ MeV}$ ,  $f_n = 88 \text{ MeV}$ 



## Possible observables











#### Summary

- Renormalized mean field can be exactly reproduced in FRG
- $\Lambda \to \infty$  seems possible for "pure" LPA (in  $\pi$ -q trunc.)
- Iteration of flow equation + too simple ansatz = small maximal  $\Lambda$
- Inhomogeneous phases beyond mean field in quark-meson model still neither confirmed nor ruled out.

### Outlook

- More general ansätze
- Include sigma contribution/diffusion term
- Calculate spectral functions to fit real time quantities
- Include explicit symmetry breaking

## Appendix

## Flow equation diagrams





## Flow equation diagrams



$$\partial_k R^{\sigma||} = \frac{\partial}{\partial q_0^2} \Big( \partial_k K^{\sigma} \Big), \quad \partial_k R^{\sigma \perp} = \frac{\partial}{\partial \vec{q}^2} \Big( \partial_k K^{\sigma} \Big)$$
$$\partial_k R^{\pi||} = \frac{\partial}{\partial q_0^2} \Big( \partial_k K^{\pi} \Big), \quad \partial_k R^{\pi \perp} = \frac{\partial}{\partial \vec{q}^2} \Big( \partial_k K^{\pi} \Big)$$
$$\partial_k R^{\psi||} = \frac{\partial}{\partial (i\gamma^0 q_0)} \Big( \partial_k K^{\psi} \Big), \quad \partial_k R^{\psi \perp} = \frac{\partial}{\partial (i\vec{\gamma} \cdot \vec{q})} \Big( \partial_k K^{\psi} \Big)$$

