QCD phases at nonzero chemical potential

TECHNISCHE UNIVERSITÄT DARMSTADT

Michael Buballa

TU Darmstadt

HFHF Theory Retreat Castiglione della Pescaia, Italy, September 12 - 16, 2022

September 15, 2022 | Michael Buballa | 1

Introduction

Focus: Moderate temperature and (not asymptotically) high density

- theoretically hard:
 - non-perturbative
 - sign problem on the lattice
- phenomenologically interesting:
 - neutron stars and neutron-star mergers
 - CBM physics at FAIR
- regions of special interest:
 - critical point
 - color superconducting phases

Aim of this talk:

Pedagogical introduction, laying the ground for Lennart's and Hosein's talks.

Introduction

Focus: Moderate temperature and (not asymptotically) high density

200

- theoretically hard:
 - non-perturbative ►
 - sign problem on the lattice
- phenomenologically interesting:
 - neutron stars and neutron-star mergers
 - CBM physics at FAIR
- regions of special interest:
 - inhomogeneous chiral phases
 - color superconducting phases

Aim of this talk:

Pedagogical introduction, laying the ground for Lennart's and Hosein's talks.

Critical point?

Ouarks and Gluons

COLOR SUPERCONDUCTIVITY

September 15, 2022 | Michael Buballa | 3

- Noninteracting fermions at T = 0:
 - Particles at the Fermi surface can be created at the Fermi surface with no free-energy cost.

- Noninteracting fermions at T = 0:
 - Particles at the Fermi surface can be created at the Fermi surface with no free-energy cost.
- Add (arbitrarily small) attraction:
 - Fermi surface unstable against pair creation ("Cooper pairs")

- ▶ Noninteracting fermions at *T* = 0:
 - Particles at the Fermi surface can be created at the Fermi surface with no free-energy cost.
- Add (arbitrarily small) attraction:
 - Fermi surface unstable against pair creation ("Cooper pairs")
 - Bose condensation of the Cooper pairs

- Noninteracting fermions at T = 0:
 - Particles at the Fermi surface can be created at the Fermi surface with no free-energy cost.
- Add (arbitrarily small) attraction:
 - Fermi surface unstable against pair creation ("Cooper pairs")
 - Bose condensation of the Cooper pairs
 - → rearrangement of the Fermi surface
 - → gaps

- Noninteracting fermions at T = 0:
 - Particles at the Fermi surface can be created at the Fermi surface with no free-energy cost.
- Add (arbitrarily small) attraction:
 - Fermi surface unstable against pair creation ("Cooper pairs")
 - Bose condensation of the Cooper pairs
 - → rearrangement of the Fermi surface
 - → gaps
- BCS pairing:
 - pairs with vanishing total momentum: $\vec{p}^{(1)} = -\vec{p}^{(2)}$
 - each partner close to the Fermi surface
 - ightarrow works only if $\ p_F^{(1)} pprox p_F^{(2)}$

Δ

pF

QCD: attractive quark-quark interaction

 \rightarrow diquark condensates: $\langle q_i \mathcal{O}_{ij} q_j \rangle$

- QCD: attractive quark-quark interaction
 - \rightarrow diquark condensates: $\langle q_i \mathcal{O}_{ij} q_j \rangle$
- Pauli principle:

 $\mathcal{O} = \mathcal{O}_{\textit{spin}} \otimes \mathcal{O}_{\textit{color}} \otimes \mathcal{O}_{\textit{flavor}} = \textit{totally antisymmetric}$

- QCD: attractive quark-quark interaction
 - \rightarrow diquark condensates: $\langle q_i \mathcal{O}_{ij} q_j \rangle$
- Pauli principle:

 $\mathcal{O} = \mathcal{O}_{spin} \otimes \mathcal{O}_{color} \otimes \mathcal{O}_{flavor}$ = totally antisymmetric

- most attractive channel:
 - spin 0 (= antisymmetric)
 - color 3 (= antisymmetric)
 - \rightarrow antisymmetric in flavor
 - \rightarrow pairing between different flavors

- QCD: attractive quark-quark interaction
 - \rightarrow diquark condensates: $\langle q_i \mathcal{O}_{ij} q_j \rangle$
- Pauli principle:

 $\mathcal{O} = \mathcal{O}_{spin} \otimes \mathcal{O}_{color} \otimes \mathcal{O}_{flavor}$ = totally antisymmetric

- most attractive channel:
 - spin 0 (= antisymmetric)
 - color $\overline{3}$ (= antisymmetric)
 - \rightarrow antisymmetric in flavor
 - \rightarrow pairing between different flavors
- ▶ example: $(\uparrow \downarrow \downarrow \uparrow) \otimes (\mathbf{r} \, g g \, \mathbf{r}) \otimes (\mathbf{u} d du)$

Pairing patterns in flavor space:
no pairing: "normal quark matter" (NQ)

Pairing patterns in flavor space:

two-flavor superconducting (2SC) phase

(+ two analogous phases with us or ds pairing)

Pairing patterns in flavor space:

uSC phase

(similar: dSC phase, sSC)

 Pairing patterns in flavor space: color-flavor locked (CFL) phase

- Pairing patterns in flavor space: color-flavor locked (CFL) phase
- CFL pairing (more explicitly):

$$(\uparrow\downarrow - \downarrow\uparrow) \otimes \left((ud - du) \otimes (rg - gr) + (ds - sd) \otimes (gb - bg) + (su - us) \otimes (br - rb) \right)$$

(More) formal definition of the phases

Diquark condensates:

 $(\uparrow\downarrow - \downarrow\uparrow) \otimes (ud - du) \otimes (r g - g r) \leftrightarrow \langle q^T C \gamma_5 \tau_2 \lambda_2 q \rangle \sim : \Delta_2$

 $(\uparrow\downarrow - \downarrow\uparrow) \otimes (ds - sd) \otimes (g b - b g) \leftrightarrow \langle q^T C \gamma_5 \tau_5 \lambda_5 q \rangle \sim : \Delta_5$

$$(\uparrow\downarrow - \downarrow\uparrow) \otimes (su - us) \otimes (br - rb) \leftrightarrow \langle q^T C \gamma_5 \tau_7 \lambda_7 q \rangle \sim : \Delta_7$$

 $C = i\gamma^2\gamma^0$ charge conjugation matrix, $C\gamma_5 \rightarrow J^P = 0^+$

- τ_A : antisymmetric Gell-Mann matrices in flavor space
- λ_A : antisymmetric Gell-Mann matrices in color space
- Phases:
 - NQ: $\Delta_2 = \Delta_5 = \Delta_7 = 0$
 - 2SC: $\Delta_2 \neq 0$, $\Delta_5 = \Delta_7 = 0$
 - ► CFL: $\Delta_2 = \Delta_5 = \Delta_7 \neq 0$ (ideal case; realistic: $\Delta_2 \approx \Delta_5 \approx \Delta_7 \neq 0$)

Symmetries of the 2SC phase

$$\Delta_2 = \langle \boldsymbol{q}^T \, \boldsymbol{C} \gamma_5 \, \tau_2 \, \lambda_2 \, \boldsymbol{q} \rangle$$

- gauge symmetries:
 - ► color: $q \to e^{i\theta_a \frac{\lambda^a}{2}} q$ blue quarks unpaired $\Rightarrow SU(3)_c \to SU(2)_c$
 - → 5 of the 8 gluons get a nonzero Meissner mass.
 - ► electromagnetism: $q \rightarrow e^{i\alpha Q}q$, $Q = \text{diag}_f(\frac{2}{3}, -\frac{1}{3})$ broken

But there is an unbroken U(1) gauge symmetry with charge $\tilde{Q} = Q - \frac{1}{2\sqrt{3}}\lambda_8$.

- color superconductor but not electromagnetic superconductor
- global symmetries:
 - ▶ baryon number: $q \rightarrow e^{i\alpha}q \Rightarrow \Delta_2 \rightarrow e^{2i\alpha}\Delta_2$ broken

But there is an unbroken "modified baryon number" $q o e^{ilpha(1-\sqrt{3}\lambda_8)}q$

• $SU(2)_L \times SU(2)_R$ chiral symmetry: conserved

→ same global symmetries as 2-flavor restored phase, no Goldstone bosons

Symmetries of the (ideal) CFL phase

$$\langle \boldsymbol{q}^{\mathsf{T}} \, \boldsymbol{C} \gamma_5 \, \tau_2 \, \lambda_2 \, \boldsymbol{q} \rangle = \langle \boldsymbol{q}^{\mathsf{T}} \, \boldsymbol{C} \gamma_5 \, \tau_2 \, \lambda_2 \, \boldsymbol{q} \rangle = \langle \boldsymbol{q}^{\mathsf{T}} \, \boldsymbol{C} \gamma_5 \, \tau_2 \, \lambda_2 \, \boldsymbol{q} \rangle = \Delta$$

- color: $SU(3)_c$ broken completely
- chiral symmetry: SU(3)_L × SU(3)_R broken completely but:

residual *SU*(3) under combined color-flavor rotations: $q \rightarrow e^{i\theta_a(\tau_a - \lambda_a^T)}q$

- → "color-flavor locking": $SU(3)_c \times SU(3)_L \times SU(3)_R \rightarrow SU(3)_{V+c}$
- → 8 massive gluons + 8 pseudoscalar Goldstone bosons (chiral limit)
- **baryon number:** U(1) broken \rightarrow 1 scalar Goldstone boson
- electromagnetism:

unbroken U(1) gauge symmetry with charge $\tilde{Q} = Q - \frac{1}{2}\lambda_3 - \frac{1}{2\sqrt{3}}\lambda_8$

→ color but not electromagnetic superconductor, baryon number superfluid

- Realistic systems

- Realistic systems

► Reminder:

- Cooper instability: each partner close to the Fermi surface
- BCS pairing: $\vec{p}^{(1)} = -\vec{p}^{(2)}$
- ightarrow works only if $p_F^{(1)} \approx p_F^{(2)}$

- Realistic systems

Reminder:

- Cooper instability: each partner close to the Fermi surface
- BCS pairing: $\vec{p}^{(1)} = -\vec{p}^{(2)}$
- ightarrow works only if $\ p_F^{(1)} pprox p_F^{(2)}$
- Quark masses: $M_s \gg M_{u,d} \Rightarrow$ unequal Fermi momenta $p_F^{(f)} = \sqrt{\mu^2 M_f^2}$

TECHNISCHE

- Realistic systems

► Reminder:

- Cooper instability: each partner close to the Fermi surface
- BCS pairing: $\vec{p}^{(1)} = -\vec{p}^{(2)}$
- ightarrow works only if $\ p_F^{(1)} pprox p_F^{(2)}$
- Quark masses: $M_s \gg M_{u,d} \Rightarrow$ unequal Fermi momenta $p_F^{(f)} = \sqrt{\mu^2 M_f^2}$
- Chandrasekhar, Clogston (1962): pairing still favored if $\delta p_F \lesssim \frac{\Delta}{\sqrt{2}}$

- Realistic systems

► Reminder:

- Cooper instability: each partner close to the Fermi surface
- BCS pairing: $\vec{p}^{(1)} = -\vec{p}^{(2)}$
- ightarrow works only if $\ p_F^{(1)} pprox p_F^{(2)}$
- Quark masses: $M_s \gg M_{u,d} \Rightarrow$ unequal Fermi momenta $p_F^{(f)} = \sqrt{\mu^2 M_f^2}$
- Chandrasekhar, Clogston (1962): pairing still favored if $\delta p_F \lesssim \frac{\Delta}{\sqrt{2}}$
- Expected phase structure:
 - $\mu \gg M_s \Rightarrow p_F^{(s)} \approx p_F^{(u,d)} \rightarrow \text{CFL}$
 - $\mu \lesssim M_{s} \Rightarrow p_{\scriptscriptstyle F}^{(s)} \ll p_{\scriptscriptstyle F}^{(u,d)}$ ightarrow 2SC

- Realistic systems

Reminder:

- Cooper instability: each partner close to the Fermi surface
- BCS pairing: $\vec{p}^{(1)} = -\vec{p}^{(2)}$
- ightarrow works only if $\ p_F^{(1)} pprox p_F^{(2)}$
- Quark masses: $M_s \gg M_{u,d} \Rightarrow$ unequal Fermi momenta $p_F^{(f)} = \sqrt{\mu^2 M_f^2}$
- Chandrasekhar, Clogston (1962): pairing still favored if $\delta p_F \lesssim \frac{\Delta}{\sqrt{2}}$
- Expected phase structure:
 - $\mu \gg M_s \Rightarrow p_F^{(s)} \approx p_F^{(u,d)} \rightarrow \text{CFL}$

▶
$$\mu \lesssim M_s \Rightarrow p_F^{(s)} \ll p_F^{(u,d)} \rightarrow 2SC$$

Figure: NJL [M. Oertel, MB (2002); MB (2005)]

Role of the strange quark mass

- ► NJL model: treatment of (dynamical) masses and gaps on an equal footing
 - \rightarrow *T* and μ dependent quantities

Role of the strange quark mass

- NJL model: treatment of (dynamical) masses and gaps on an equal footing
 - \rightarrow *T* and μ dependent quantities

► Masses: _____

$$M_s = m_s - 4G\langle\bar{s}s\rangle + 2K\langle\bar{u}u\rangle\langle\bar{d}d\rangle$$

- \rightarrow M_s large in the 2SC phase
- → stabilizes the 2SC phase

Role of the strange quark mass

- NJL model: treatment of (dynamical) masses and gaps on an equal footing
 - \rightarrow *T* and μ dependent quantities

► Masses: ____

$$M_{s}=m_{s}-4G\langle\bar{s}s\rangle+2K\langle\bar{u}u\rangle\langle\bar{d}d\rangle$$

- → M_s large in the 2SC phase
- → stabilizes the 2SC phase
- Dyson-Schwinger QCD studies

[Nickel, Alkofer, Wambach (2006)]

- → gluons screened by light quarks
- → M_s smaller in the 2SC phase
- → CFL phase favored much earlier

- color neutrality: $n_r = n_g = n_b$
- electric neutrality: $n_Q = \frac{2}{3}n_u \frac{1}{3}n_d \frac{1}{3}n_s n_e = 0$
- ► β equilibrium: $\mu_e = \mu_d \mu_u \implies n_e \ll n_{u,d}$

constraints in compact stars:

- color neutrality: (minor effect)
- electric neutrality:

$$rac{2}{3}n_u - rac{1}{3}n_d - rac{1}{3}n_s pprox 0$$

• β equilibrium:

- color neutrality: (minor effect)
- electric neutrality:

$$rac{2}{3}n_u - rac{1}{3}n_d - rac{1}{3}n_s pprox 0$$

- β equilibrium:
- $M_s > M_{u,d} \Rightarrow$ All flavors have different Fermi momenta.

- color neutrality: (minor effect)
- electric neutrality:

$$rac{2}{3}n_u - rac{1}{3}n_d - rac{1}{3}n_s pprox 0$$

- β equilibrium:
- $M_s > M_{u,d} \Rightarrow$ All flavors have different Fermi momenta.
- Expansion in small M_S [Alford, Rajagopal (2002)]
 - → equidistant splitting
 - → no 2SC phase in compact stars

- color neutrality: (minor effect)
- electric neutrality:

$$rac{2}{3}n_u - rac{1}{3}n_d - rac{1}{3}n_s pprox 0$$

- β equilibrium:
- $M_s > M_{u,d} \Rightarrow$ All flavors have different Fermi momenta.
- Expansion in small M_S [Alford, Rajagopal (2002)]
 - → equidistant splitting
 - → no 2SC phase in compact stars
- ► Large M_s
 - ightarrow $n_s \approx 0$, $n_d \approx 2 n_u \ \Rightarrow \ p_F^{(d)} \approx 2^{1/3} p_F^{(u)} \approx 1.26 \, p_F^{(u)}$
 - → 2SC pairing possible for strong couplings

Phase diagram without neutrality constraints

[M. Oertel, MB (2002)]

Phase diagram with neutrality constraints: "strong" qq coupling (H = G) [Rüster, Werth, MB, Shovkovy, Rischke, (2005)]

Phase diagram with neutrality constraints: "intermediate" qq coupling (H = 0.75 G)

Phase diagram with neutrality constraints: "intermediate" qq coupling (H = 0.75 G) [Rüster, Werth, MB, Shovkovy, Rischke, (2005)]

→ strong parameter dependence

September 15, 2022 | Michael Buballa | 13

• unequal Fermi momenta: $p_F^{a,b} = \bar{p}_F \pm \delta p_F$

- unequal Fermi momenta: $p_F^{a,b} = \bar{p}_F \pm \delta p_F$
 - ▶ splitting of the quasiparticle modes: $\omega(\vec{p}) \rightarrow |\omega(\vec{p}) \pm \delta p_F|$

- unequal Fermi momenta: $p_F^{a,b} = \bar{p}_F \pm \delta p_F$
 - ▶ splitting of the quasiparticle modes: $\omega(\vec{p}) \rightarrow |\omega(\vec{p}) \pm \delta p_F|$
 - $\delta p_F > \Delta \rightarrow$ gapless modes

- unequal Fermi momenta: $p_F^{a,b} = \bar{p}_F \pm \delta p_F$
 - ▶ splitting of the quasiparticle modes: $\omega(\vec{p}) \rightarrow |\omega(\vec{p}) \pm \delta p_F|$
 - $\delta p_F > \Delta \rightarrow$ gapless modes

gapless CSC phases

- unstable solution (maximum) at fixed µ_e
- can be most favored neutral homogeneous solution

• unequal Fermi momenta: $p_F^{a,b} = \bar{p}_F \pm \delta p_F$

- splitting of the quasiparticle modes: $\omega(\vec{p}) \rightarrow |\omega(\vec{p}) \pm \delta p_F|$
- $\delta p_F > \Delta \rightarrow$ gapless modes

gapless CSC phases

- unstable solution (maximum) at fixed µ_e
- can be most favored neutral homogeneous solution
- Meissner effect:

$$m^2_{M,a} = -\frac{1}{2} \lim_{\vec{p} \to 0} \left(g_{ij} + \frac{p_i p_j}{p^2} \right) \Pi^{ij}_{aa}(0, \vec{p})$$

free energy

 $\delta p_F \! > \! \Delta$

• unequal Fermi momenta: $p_F^{a,b} = \bar{p}_F \pm \delta p_F$

- splitting of the quasiparticle modes: $\omega(\vec{p}) \rightarrow |\omega(\vec{p}) \pm \delta p_F|$
- $\delta p_F > \Delta \rightarrow$ gapless modes

gapless CSC phases

- unstable solution (maximum) at fixed µ_e
- can be most favored neutral homogeneous solution
- Meissner effect:

$$m_{M,a}^2 = -\frac{1}{2} \lim_{\vec{p} \to 0} \left(g_{ij} + \frac{p_i p_j}{p^2} \right) \Pi_{aa}^{ij}(0, \vec{p})$$

$$\begin{array}{c} (160 \text{ VMB}^{-1}) \\ -12 \\ -$$

[Shovkovy, Huang (2003)]

• chromomagnetic instability:
$$m_{M,a}^2 < 0$$
 for $\delta p_F > \begin{cases} \frac{\Delta}{\sqrt{2}} & a = 4, ..., 7\\ \Delta & a = 8 \end{cases}$

September 15, 2022 | Michael Buballa | 14

Main issues

- strong parameter dependence
- unstable phases

September 15, 2022 | Michael Buballa | 16

1. Theoretical approaches: starting from QCD

1. Theoretical approaches: starting from QCD

Dyson-Schwinger equations:

[Nickel, Alkofer, Wambach (2006, 2008), Müller, MB, Wambach (2013, 2016)]

- phase diagram without neutrality constraints
- no cutoff artifacts at large μ
- determination of the pressure difficult
- still strong dependence on truncations and renormalization conditions

[Müller et al. (2013)]

1. Theoretical approaches: starting from QCD

Dyson-Schwinger equations:

[Nickel, Alkofer, Wambach (2006, 2008), Müller, MB, Wambach (2013, 2016)]

- phase diagram without neutrality constraints
- no cutoff artifacts at large μ
- determination of the pressure difficult
- still strong dependence on truncations and renormalization conditions

TECHNISCHE

1. Theoretical approaches: starting from QCD

Dyson-Schwinger equations:

[Nickel, Alkofer, Wambach (2006, 2008), Müller, MB, Wambach (2013, 2016)]

- phase diagram without neutrality constraints
- no cutoff artifacts at large μ
- determination of the pressure difficult
- still strong dependence on truncations and renormalization conditions

September 15, 2022 | Michael Buballa | 16

Getting rid of the parameter dependence

1. Theoretical approaches: starting from QCD

Dyson-Schwinger equations:

[Nickel, Alkofer, Wambach (2006, 2008), Müller, MB, Wambach (2013, 2016)]

- phase diagram without neutrality constraints
- no cutoff artifacts at large μ
- determination of the pressure difficult
- still strong dependence on truncations and renormalization conditions

Functional renormalization group:

[Braun, Schallmo (2022)]

study 2SC pairing at T = 0 by solving QCD flow equations at large µ → very large gaps!

2. Using empirical information

September 15, 2022 | Michael Buballa | 17

2. Using empirical information

 Fitting NJL parameters to astrophysical constraints and heavy-ion data:

[Klähn, Blaschke, ... (2006, 2007, 2013, ...)]

- purely hadronic matter inconsistent (see also [Annala et al. (2020)])
- vector repulsion to be stiff enough
- strong qq interaction

[Klähn, Łastowiecki, Blaschke (2013)]

2. Using empirical information

 Fitting NJL parameters to astrophysical constraints and heavy-ion data:

[Klähn, Blaschke, ... (2006, 2007, 2013, ...)]

- purely hadronic matter inconsistent (see also [Annala et al. (2020)])
- vector repulsion to be stiff enough
- strong qq interaction
- Signals of CSC in the gravitational-wave spectrum from neutron-star mergers?
 - part of project B09 in the CRC-TR 211
 ↔ Hosein's thesis project (see his talk for preparatory work)

[Klähn, Łastowiecki, Blaschke (2013)]

CSC phases in neutron-star mergers (propaganda plots)

Overlay of unrelated calculations:

Points from merger simulations with purely hadronic EoS [E. Most, L. Rezzolla, priv. comm.] and NJL phase diagrams [Rüster et al. (2005, 2006)]

"strong" qq coupling

CSC phases in neutron-star mergers (propaganda plots)

Overlay of unrelated calculations:

Points from merger simulations with purely hadronic EoS [E. Most, L. Rezzolla, priv. comm.] and NJL phase diagrams [Rüster et al. (2005, 2006)]

"intermediate" qq coupling

CSC phases in neutron-star mergers (propaganda plots)

Overlay of unrelated calculations:

Points from merger simulations with purely hadronic EoS [E. Most, L. Rezzolla, priv. comm.] and NJL phase diagrams [Rüster et al. (2005, 2006)]

"intermediate" qq coupling + neutrino chemical potential μ_{ν} = 200 MeV

- Proto-neutron stars: neutrinos trapped during the first few seconds
 - → lepton number conserved
 - → more electrons:

 $\mu_{e} = \mu_{d} - \mu_{u} + \mu_{\nu}$

→ favors 2SC, suppresses CFL [Steiner, Reddy, Prakash, PRD (2002)]

- Proto-neutron stars: neutrinos trapped during the first few seconds
 - → lepton number conserved
 - → more electrons:

 $\mu_{e} = \mu_{d} - \mu_{u} + \mu_{\nu}$

→ favors 2SC, suppresses CFL [Steiner, Reddy, Prakash, PRD (2002)]

 $\mu_{\nu} = 0$

- Proto-neutron stars: neutrinos trapped during the first few seconds
 - → lepton number conserved
 - → more electrons:

 $\mu_{e} = \mu_{d} - \mu_{u} + \mu_{\nu}$

→ favors 2SC, suppresses CFL [Steiner, Reddy, Prakash, PRD (2002)]

 μ_{ν} = 200 MeV

- Proto-neutron stars: neutrinos trapped during the first few seconds
 - → lepton number conserved
 - → more electrons:

 $\mu_{e} = \mu_{d} - \mu_{u} + \mu_{\nu}$

→ favors 2SC, suppresses CFL [Steiner, Reddy, Prakash, PRD (2002)]

 $\mu_{
u}$ = 400 MeV

- Proto-neutron stars: neutrinos trapped during the first few seconds
 - → lepton number conserved
 - → more electrons:

 $\mu_{e} = \mu_{d} - \mu_{u} + \mu_{\nu}$

- → favors 2SC, suppresses CFL [Steiner, Reddy, Prakash, PRD (2002)]
- also relevant for neutron-star mergers!

[Rüster, Werth, M.B., Shovkovy, Rischke, PRD (2006)]

Main issues

- strong parameter dependence
- unstable phases

Kaon condensation in the CFL phase

► CFL: chiral symmetry broken \rightarrow Goldstone bosons $\sim O(10 \text{ MeV})$

[Son, Stephanov, PRD (2000)]

- $\blacktriangleright \ \mu_s^{\rm eff} \simeq \frac{m_s^2 m_u^2}{2\mu} \ \rightarrow \ {\cal K}^0 \ {\rm condensation} \ \ {\rm [T. Schäfer, PRL (2000); Bedaque, Schäfer, NPA (2002)]}$
- ► NJL model: include pseudoscalar diquark conds. [M.B., PLB (2005); M.M. Forbes, PRD (2005)]

Kaon condensation in the CFL phase

▶ CFL: chiral symmetry broken → Goldstone bosons $\sim O(10 \text{ MeV})$

[Son, Stephanov, PRD (2000)]

- $\blacktriangleright \ \mu_s^{eff} \simeq \frac{m_s^2 m_u^2}{2\mu} \ \rightarrow \ K^0 \ \text{condensation} \ \ \text{[T. Schäfer, PRL (2000); Bedaque, Schäfer, NPA (2002)]}$
- ► NJL model: include pseudoscalar diquark conds. [M.B., PLB (2005); M.M. Forbes, PRD (2005)]
- phase diagram:

- BCS pairing disfavored for $\delta p_F \gtrsim \frac{\Delta}{\sqrt{2}}$
- alternative: pairs with nonzero total momentum

- BCS pairing disfavored for $\delta p_F \gtrsim \frac{\Delta}{\sqrt{2}}$
- alternative: pairs with nonzero total momentum
- FF: [P. Fulde, R.A. Ferrell, Phys. Rev., 1964]
 - single plane wave, $\langle q(\vec{x})q(\vec{x})\rangle \sim \Delta e^{2i\vec{q}\cdot\vec{x}}$ for fixed \vec{q}
 - disfavored by phase space

- BCS pairing disfavored for $\delta p_F \gtrsim \frac{\Delta}{\sqrt{2}}$
- alternative: pairs with nonzero total momentum
- FF: [P. Fulde, R.A. Ferrell, Phys. Rev., 1964]
 - single plane wave, $\langle q(\vec{x})q(\vec{x})\rangle \sim \Delta e^{2i\vec{q}\cdot\vec{x}}$ for fixed \vec{q}
 - disfavored by phase space
- LO: [Larkin, Ovchinnikov, Zh. Eksp. Teor. Fiz., 1964]
 - multiple plane waves (e.g., $\cos(2\vec{q} \cdot \vec{x})$)

- BCS pairing disfavored for $\delta p_F \gtrsim \frac{\Delta}{\sqrt{2}}$
- alternative: pairs with nonzero total momentum
- FF: [P. Fulde, R.A. Ferrell, Phys. Rev., 1964]
 - single plane wave, $\langle q(\vec{x})q(\vec{x})\rangle \sim \Delta e^{2i\vec{q}\cdot\vec{x}}$ for fixed \vec{q}
 - disfavored by phase space
- LO: [Larkin, Ovchinnikov, Zh. Eksp. Teor. Fiz., 1964]
 - multiple plane waves (e.g., $\cos(2\vec{q} \cdot \vec{x})$)
- ► LOFF in CSC (→ [Anglani et al., Rev. Mod. Phys. (2014)]) Indications: chromomagnetic instabilities ↔ instabilities towards LOFF phases [Giannakis, Ren; Giannakis, Hou, Ren, PLB (2005)]

NJL-model results

still missing: comprehensive calculation of neutral phase diagram with LOFF phases

INHOMOGENEOUS CHIRAL PHASES

September 15, 2022 | Michael Buballa | 24

- $\blacktriangleright \langle \bar{q}q \rangle = \langle \bar{q}_L q_R \rangle + \langle \bar{q}_R q_L \rangle$
- chiral-symmetry breaking in vacuum: pairing a left-handed quark with a right-handed antiquark (and vice versa)

- $\land \langle \bar{q}q \rangle = \langle \bar{q}_L q_R \rangle + \langle \bar{q}_R q_L \rangle$
- chiral-symmetry breaking in vacuum: pairing a left-handed quark with a right-handed antiquark (and vice versa)
- ► finite chemical potential \rightarrow "pairing stress" (large excitation energy $E \approx 2\mu$)

TECHNISCHE UNIVERSITÄT DARMSTADT

[Kojo et al. (2010)]

- $\blacktriangleright \langle \bar{q}q \rangle = \langle \bar{q}_L q_R \rangle + \langle \bar{q}_R q_L \rangle$
- chiral-symmetry breaking in vacuum: pairing a left-handed quark with a right-handed antiquark (and vice versa)
- ► finite chemical potential \rightarrow "pairing stress" (large excitation energy $E \approx 2\mu$)
- alternative: particle-hole pairing

•
$$P_{tot} = 0 \Leftrightarrow P_{rel} \approx 2\mu$$

 $\rightarrow\,$ interaction weak $\,\rightarrow\,$ not favored

[Kojo et al. (2010)]

- $\blacktriangleright \langle \bar{q}q \rangle = \langle \bar{q}_L q_R \rangle + \langle \bar{q}_R q_L \rangle$
- chiral-symmetry breaking in vacuum: pairing a left-handed quark with a right-handed antiquark (and vice versa)
- ► finite chemical potential \rightarrow "pairing stress" (large excitation energy $E \approx 2\mu$)
- alternative: particle-hole pairing
 - $P_{tot} = 0 \iff P_{rel} \approx 2\mu$
 - ightarrow interaction weak ightarrow not favored
 - $P_{rel} pprox 0 \Leftrightarrow P_{tot} pprox 2\mu \rightarrow$ interaction strong \rightarrow favored in some window

- $\blacktriangleright \langle \bar{q}q \rangle = \langle \bar{q}_L q_R \rangle + \langle \bar{q}_R q_L \rangle$
- chiral-symmetry breaking in vacuum: pairing a left-handed quark with a right-handed antiquark (and vice versa)
- ► finite chemical potential \rightarrow "pairing stress" (large excitation energy $E \approx 2\mu$)
- alternative: particle-hole pairing
 - $P_{tot} = 0 \Leftrightarrow P_{rel} \approx 2\mu$
 - ightarrow interaction weak ightarrow not favored
 - $P_{rel} pprox 0 \Leftrightarrow P_{tot} pprox 2\mu \rightarrow$ interaction strong \rightarrow favored in some window

\rightarrow inhomogeneous chiral condensates!

Phase diagram

NJL: inhomogeneous phase covers homogeneous first-order line

Phase diagram

- NJL: inhomogeneous phase covers homogeneous first-order line
- DSE: phase-transition region qualitatively similar

- ► Main difficulty: Functional minimization of the free energy w.r.t. to arbitrarily shaped condensate functions $\phi(\vec{x})$
 - e.g., $\Omega[\phi(\vec{x})] = \frac{T}{V} \operatorname{Tr} \log \frac{S^{-1}[\phi(\vec{x})]}{T} + \frac{1}{V} \int_{V} d^{3}x \left\{ \frac{1}{2} (\nabla \phi(\vec{x}))^{2} + U(\phi(\vec{x})) \right\}$

► Main difficulty: Functional minimization of the free energy w.r.t. to arbitrarily shaped condensate functions $\phi(\vec{x})$

e.g., $\Omega[\phi(\vec{x})] = \frac{T}{V} \operatorname{Tr} \log \frac{S^{-1}[\phi(\vec{x})]}{T} + \frac{1}{V} \int_{V} d^{3}x \left\{ \frac{1}{2} (\nabla \phi(\vec{x}))^{2} + U(\phi(\vec{x})) \right\}$

- strategy 1: choose certain ansatz functions
 - chiral density wave (= single plane wave) [Nakano and Tatsumi (2005)]
 - 1D Jacobi elliptic functions ("real kink crystal") [Nickel (2009)]
 - 2D modulations (quadratic, hexagonal) [Carignano, MB (2012)]

► Main difficulty: Functional minimization of the free energy w.r.t. to arbitrarily shaped condensate functions $\phi(\vec{x})$

e.g., $\Omega[\phi(\vec{x})] = \frac{T}{V} \operatorname{Tr} \log \frac{S^{-1}[\phi(\vec{x})]}{T} + \frac{1}{V} \int_{V} d^{3}x \left\{ \frac{1}{2} (\nabla \phi(\vec{x}))^{2} + U(\phi(\vec{x})) \right\}$

- strategy 1: choose certain ansatz functions
 - chiral density wave (= single plane wave) [Nakano and Tatsumi (2005)]
 - ► 1D Jacobi elliptic functions ("real kink crystal") [Nickel (2009)]
 - 2D modulations (quadratic, hexagonal) [Carignano, MB (2012)]
- strategy 2: lattice field theory [M. Wagner (2007), Lenz et al. 2020, ...]

► Main difficulty: Functional minimization of the free energy w.r.t. to arbitrarily shaped condensate functions $\phi(\vec{x})$

e.g., $\Omega[\phi(\vec{x})] = \frac{T}{V} \operatorname{Tr} \log \frac{S^{-1}[\phi(\vec{x})]}{T} + \frac{1}{V} \int_{V} d^{3}x \left\{ \frac{1}{2} (\nabla \phi(\vec{x}))^{2} + U(\phi(\vec{x})) \right\}$

- strategy 1: choose certain ansatz functions
 - chiral density wave (= single plane wave) [Nakano and Tatsumi (2005)]
 - 1D Jacobi elliptic functions ("real kink crystal") [Nickel (2009)]
 - > 2D modulations (quadratic, hexagonal) [Carignano, MB (2012)]
- strategy 2: lattice field theory [M. Wagner (2007), Lenz et al. 2020, ...]
- strategy 3: stability analysis

split $\phi(\vec{x}) = \bar{\phi} + \delta \phi(\vec{x}), \quad \bar{\phi} = \text{homogeneous minimum}$ and expand in powers of the fluctuations $\Omega = \sum_{n} \Omega^{(n)}, \quad \Omega^{(n)} = \mathcal{O}(\delta \phi^{n})$

► Main difficulty: Functional minimization of the free energy w.r.t. to arbitrarily shaped condensate functions $\phi(\vec{x})$

e.g., $\Omega[\phi(\vec{x})] = \frac{T}{V} \operatorname{Tr} \log \frac{S^{-1}[\phi(\vec{x})]}{T} + \frac{1}{V} \int_{V} d^{3}x \left\{ \frac{1}{2} (\nabla \phi(\vec{x}))^{2} + U(\phi(\vec{x})) \right\}$

- strategy 1: choose certain ansatz functions
 - chiral density wave (= single plane wave) [Nakano and Tatsumi (2005)]
 - 1D Jacobi elliptic functions ("real kink crystal") [Nickel (2009)]
 - > 2D modulations (quadratic, hexagonal) [Carignano, MB (2012)]
- strategy 2: lattice field theory [M. Wagner (2007), Lenz et al. 2020, ...]
- strategy 3: stability analysis

split $\phi(\vec{x}) = \bar{\phi} + \delta\phi(\vec{x}), \quad \bar{\phi} = \text{homogeneous minimum}$ and expand in powers of the fluctuations $\Omega = \sum_n \Omega^{(n)}, \quad \Omega^{(n)} = \mathcal{O}(\delta\phi^n)$ $\Omega^{(2)} < 0 \rightarrow \text{instability towards an inhomogeneous phase (sufficient condition)}$

Inhomogeneous chiral phases: current state

- seen in NJL and Quark-Meson model in (extended) mean-field approximation, QCD with DSEs; indications from FRG ("moat regime") [Fu et al. (2020)]
- rather robust against model extensions and variations:

(review: [MB, S. Carignano (2015)])

- 3 flavors
- vector interactions
- magnetic fields
- explicit symmetry breaking

Inhomogeneous chiral phases: current state

- seen in NJL and Quark-Meson model in (extended) mean-field approximation, QCD with DSEs; indications from FRG ("moat regime") [Fu et al. (2020)]
- rather robust against model extensions and variations:

(review: [MB, S. Carignano (2015)])

- 3 flavors
- vector interactions
- magnetic fields
- explicit symmetry breaking
- open questions:
 - Are the inhomogeneous phases stable against fluctuations beyond mean field?
 - → FRG approach, see Lennart's talk (next)
 - What are the favored condensate shapes?
 - What is the role of the cutoff? (see Laurin's talk on Friday)