

Real-time lattice simulations of QCD in a semi-classical approximation

Andreas Halsch, Owe Philipsen

AG Philipsen Institut für Theoretische Physik Goethe-Universität Frankfurt

HFHF retreat 2022 September 13, 2022

Outline

The simulation Starting point: Lattice QCD The Color Glass Condensate (CGC) Stochastic fermions

Simulating in a static box Initialization and equation of motions Observables Towards pressure isotropization

Results

Simulating in an expanding box Milne coordinates Equations of motion and observables Expanding box fermions Initialization Results

The simulation

Lattice QCD

QCD Lagrangian with $N_f = 1$ quark flavor, in temporal gauge $A_0 = 0$

$$\mathcal{L}_{QCD} = ar{\psi} \Big(\mathrm{i} \gamma^{\mu} D_{\mu} - m \Big) \psi - rac{1}{2} \mathrm{tr} F^{\mu
u} F_{\mu
u}$$

Lattice discretization:

We keep real time! \rightarrow Hypercubic lattice $N_x \times N_y \times N_z$ in Minkowski time with spacing *a*.

Lattice Wilson gauge action

$$\mathcal{L}_{YM} = -\frac{1}{2} \text{tr} F^{\mu\nu} F_{\mu\nu} \quad \rightarrow \quad \mathcal{L}_{YM} = \text{Re tr} \left[E_i E_i - 2 \sum_{i < j} \left(1 - U_{ij} \right) \right]$$

Chromo-electrical field $F_{0i}(x) = \partial_t A_i(x) = \frac{1}{g^2} E_i(x).$

Lattice QCD

Lattice covariant derivative

$$D_i\psi(x)=\frac{1}{2a}\Big(U_i(x)\psi(x+\hat{i})-U_i^{\dagger}(x-\hat{i})\psi(x-\hat{i})\Big).$$

"Conventional" discretization in time direction $a_t \ll a$

$$\partial_t \psi(\mathbf{x}) = \frac{1}{2a_t} \Big(\psi(\mathbf{x} + \hat{t}) - \psi(\mathbf{x} - \hat{t}) \Big).$$

Fermion doubling problem: Remove spacial doublers by adding the Wilson term

$$\mathcal{L}_{W} = \frac{r}{2a} \sum_{i} \bar{\psi}(x) \Big(U_{i}(x)\psi(x+\hat{i}) - 2\psi(x) + U_{i}^{\dagger}(x-\hat{i})\psi(x-\hat{i}) \Big).$$

Full lattice Lagrangian:

$$g^{2}a^{4}\mathcal{L}_{QCD} = \operatorname{Re}\operatorname{tr}\left[E_{i}E_{i}-2\sum_{i< j}\left(1-U_{ij}\right)\right] + \frac{\mathrm{i}g^{2}}{2a_{t}}\left[\bar{\psi}(x)\gamma^{0}\psi(x+\hat{t})-\bar{\psi}(x)\gamma^{0}\psi(x-\hat{t})\right]$$
$$+ \frac{\mathrm{i}g^{2}}{2}\sum_{i=1}^{3}\left[\bar{\psi}(x)(\gamma^{i}-\mathrm{i}r)U_{i}(x)\psi(x+\hat{t})-\bar{\psi}(x)(\gamma^{i}+\mathrm{i}r)U_{i}^{\dagger}(x-\hat{t})\psi(x-\hat{t})\right]$$
$$- g^{2}(m+3r)\bar{\psi}(x)\psi(x).$$

Color glass initial conditions

Physical system: very early, gluon dominated phase of a heavy ion collision

 \rightarrow Effective description of densely packed gluons at very high energy densities.

Color charge densities ρ_1 and ρ_2 of the incoming nuclei \rightarrow frozen in due to time dilation \rightarrow form a static current (MV-model¹)

$$J^{\mu a}(x) = \delta^{\mu +} \rho_1^a(x_{\perp}, x^-) + \delta^{\mu -} \rho_2^a(x_{\perp}, x^+),$$

with (x^{\pm}, x_{\perp}) lightcone coordinates and the Kronecker deltas $\delta^{\mu\pm}$ reside the current to the lightcone.

Dynamical gauge fields $A^{\mu} \rightarrow$ coupled to the static current via the classical Yang-Mills equation

$$D_{\mu}F^{\mu\nu}=J^{\nu}.$$

\Rightarrow The gauge fields behave classical (at LO)!

¹Larry D. McLerran and Raju Venugopalan. "Computing quark and gluon distribution functions for very large nuclei". In: **Phys. Rev. D** 49 (1994), pp. 2233–2241.

- The distribution of color charge ρ_1^a/ρ_2^a is assumed to be Gaussian \rightarrow Gaussian variance $g^4\mu^2$, where μ^2 is the color charge per unit area.
- The quantity µ² is obtained from the saturation scale¹ Q_s

$$Q_s \approx g^2 \mu$$
.

 \Rightarrow At a given momentum only a finite amount of gluons can be packed into a nucleon.

- Experiment: $Q_s \approx 2 GeV^2$ for ultra-relativistic Au heavy-ion collisions at LHC.
- Conventional choice g = 2 $(\alpha_s \approx 0.3).^2$

¹T. Lappi. "Wilson line correlator in the MV model: Relating the glasma to deep inelastic scattering". In: Eur. Phys. J. C55 (2008), pp. 285–292.

²H. Fujii et al. "Initial energy density and gluon distribution from the Glasma in heavy-ion collisions". In: **Phys. Rev.** C79 (2009), p. 024909

Stochastic low-cost fermions²

Solution of the free Dirac equation with canonical quantized fermions

$$\psi(x) = \int \sum_{s} \left(\hat{a}_{s}(\mathbf{p}) u_{s}(p) e^{-ipx} + \hat{b}_{s}^{\dagger}(\mathbf{p}) v_{s}(p) e^{ipx} \right) \frac{1}{\sqrt{2p_{0}}} \frac{d^{3}p}{(2\pi)^{\frac{3}{2}}}$$

- Replace the creation and annihilation operators by complex numbers $\xi, \eta \in \mathbb{C}$.
- Introduce an ensemble of size N_{ens} of "gendered" fermion fields

$$\psi_{M/F}(x) = \int \sum_{s} \left(\xi_s(\mathbf{p}) u_s(p) e^{-ipx} \pm \eta_s^*(\mathbf{p}) v_s(p) e^{ipx} \right) \frac{1}{\sqrt{2p_0}} \frac{d^3p}{(2\pi)^{\frac{3}{2}}}$$

Sample the complex numbers according to

$$\langle \xi_r(\mathbf{p})\xi_s^*(\mathbf{k})\rangle_{N_{ens}} = (2\pi)^3 \delta(\mathbf{p}-\mathbf{k})\delta_{rs}.$$

The statistical propagator is given via an ensemble average

$$F(x,y) = \frac{1}{2} \left\langle \left[\psi(x), \bar{\psi}(y) \right] \right\rangle = \left\langle \psi_{M/F}(x) \bar{\psi}_{F/M}(y) \right\rangle_{N_{ens}}$$

²S. Borsanyi and M. Hindmarsh. "Low-cost fermions in classical field simulations". In: Phys. Rev. D79 (2009), p. 065010.

Running the simulation

- 1. Initialization³
 - $\Rightarrow \text{ Initialization of gauge links } U_i \text{ and the chromo-electric field } E_i \text{ via CGC.}$
 - ⇒ Initialization of fermion fields as vacuum fields, using the low-cost method.
- 2. Time evolution of the fields via the EoM $^{\rm 4}$
- 3. Measurement of observables and output.
- \Rightarrow Simulation in a static box and expanding box.
- \Rightarrow Main research questions
 - ⇒ Pressure isotropization of longitudinal vs. transversal pressure $P_L/P_T \rightarrow 1$?
 - \Rightarrow Validity of the approximation?

⁴Guy D. Moore. "Real time simulations in lattice gauge theory". In: Nucl. Phys. B
 Proc. Suppl. 83 (2000). Ed. by M. Campostrini et al., pp. 131–135
 ³Soeren Schlichting and Derek Teaney. "The First fm/c of Heavy-Ion Collisions". In: Ann. Rev.
 Nucl. Part. Sci. 69 (2019), pp. 447–476.

Simulating in a static box

Initialization and equation of motions

• Gauge links U_i and chromo-electric fields E_i from the MV-model, solving

$$D_{\mu}F^{\mu\nu} = J^{\nu}, \quad J^{\nu a}(x) = \delta^{\nu+}\rho_{1}^{a}(x_{\perp}, x^{-}) + \delta^{\nu-}\rho_{2}^{a}(x_{\perp}, x^{+}).$$

Fermions as stochastic vacuum fermions

$$\psi_{M/F}(x) = \int \sum_{s} \left(\xi_s(\mathbf{p}) u_s(p) e^{-i\rho x} \pm \eta_s^*(\mathbf{p}) v_s(p) e^{i\rho x} \right) \frac{1}{\sqrt{2\rho_0}} \frac{d^3 p}{(2\pi)^{\frac{3}{2}}}$$

Static box equations of motion:

Fermion field evolution via the Dirac equation

$$\psi_G(x+\hat{t}) = \psi_G(x-\hat{t}) + 2\mathrm{i}a_t\gamma^0(m+3r)\psi_G(x) -a_t\gamma^0\sum_{i=1}^3\left(\left(\gamma^i-\mathrm{i}r\right)U_i(x)\psi_G(x+\hat{i}) - \left(\gamma^i+\mathrm{i}r\right)U_i^{\dagger}(x-\hat{i})\psi_G(x-\hat{i})\right).$$

Gauge link evolution via the chromo-electric field

$$U_i(x+\hat{t})=e^{iga_taE_i(x)}U_i(x).$$

Chromo-electric field equation of motion

Derivation from the partition function

$$Z_{\mathcal{C}} = \int \int \rho(t_0) e^{i \int_{\mathcal{C}} \int \mathcal{L}_{QCD}[A, \bar{\psi}, \psi] dt d^3 \times} [dA] [d\bar{\psi} d\psi],$$

with $\rho(t_0)$ the initial density matrix (initial conditions), C the time contour (Schwinger-Keldysh contour).

Integrating out \tilde{A} leads to the EoM:⁴

$$\begin{split} E_i^a(x+\hat{t}) &= E_i^a(x) + 2Z_R a_t \sum_{j \neq i} \mathrm{Imtr} \Big[T^a \Big(U_{ji}(x) + U_{-ji}(x) \Big) \Big] \\ &+ g^2 a_t \mathrm{Retr} \Big[F(x+\hat{i},x) \big(\gamma^i - \mathrm{i}r \big) T^a U_i(x) \Big]. \end{split}$$

As well as a constraint: (Gauss constraint)

$$0 = g^2 \operatorname{Retr} \left[F(x+\hat{t},x)\gamma^0 T^a \right] - \frac{2}{a_t} Z_R \sum_i \operatorname{Imtr} \left[T^a \left(U_{i0}(x) + U_{-i0}(x) \right) \right].$$

⁴Valentin Kasper et al. "Fermion production from real-time lattice gauge theory in the classical-statistical regime". In: Phys. Rev. D 90.2 (2014), p. 025016.

^{10/24} Andreas Halsch — Real-time lattice simulations of QCD in a ,semi-classical approximation

Static box observables

Derivation from the energy-momentum tensor $T^{\mu\nu}$.

Energy density

$$\epsilon(x) = T^{00}(x) = Z \operatorname{ReTr}\left[E_i E_i + 2\sum_{i < j} [1 - U_{ij}]\right] - g^2(m + 3r) \operatorname{tr}\left[F(x, x)\right] \\ + g^2 \frac{i}{2} \sum_i \left(\operatorname{tr}\left[F(x + \hat{i}, x)(\gamma^i - \operatorname{i}r)U_i(x)\right] - \operatorname{tr}\left[F(x - \hat{i}, x)(\gamma^i + \operatorname{i}r)U_i^{\dagger}(x - \hat{i})\right]\right).$$

Longitudinal pressure

$$P_{L}(x) = T^{33}(x) = Z \operatorname{ReTr} \left[E_{1}^{2} + E_{2}^{2} - E_{3}^{2} + 2 \left[1 + U_{12} - U_{13} - U_{23} \right] \right] + g^{2} \frac{i}{2} \left(\operatorname{tr} \left[F(x + \hat{3}, x) \gamma^{3} U_{3}(x) \right] - \operatorname{tr} \left[F(x - \hat{3}, x) \gamma^{3} U_{3}^{\dagger}(x - \hat{3}) \right] \right).$$

Transversal pressure

$$P_{T}(x) = \frac{1}{2} \sum_{i=1}^{2} T^{ii}(x) = Z \operatorname{ReTr} \Big[E_{3}^{2} + 2(1 - U_{12}) \Big] \\ + g^{2} \frac{i}{4} \sum_{i=1}^{2} \Big(\operatorname{tr} \Big[F(x + \hat{i}, x) \gamma^{i} U_{i}(x) \Big] - \operatorname{tr} \Big[F(x - \hat{i}, x) \gamma^{i} U_{i}^{\dagger}(x - \hat{i}) \Big] \Big).$$

Towards pressure isotropization

No isotropization in a static box in pure classical YM-theory with CGC initial conditions.

Additional quantum fluctuations necessary

$$E_i = g^3 \mu^2 [f(z - \Delta z) - f(z)]\xi^i, \quad f(z) = \Delta \cos(2\pi z/L_z),$$

with Gaussian random numbers ξ_i and a parametrization $\Delta = 0.1$.⁵

 \Rightarrow Non isotropzation in a static box is rooted by the choice of initial conditions.⁶

⁵Paul Romatschke and Raju Venugopalan. "The Unstable Glasma". In: Phys. Rev. D 74 (2006), p. 045011.

⁶K. Fukushima. "Turbulent pattern formation and diffusion in the early-time dynamics in relativistic heavy-ion collisions". In: **Phys. Rev.** C89.2 (2014), p. 024907.

Energy density

⇒ Energy distributed in the gauge and fermion sector. ⇒ Quantum quench at $t \neq t_0$ when coupling both sectors.

Pressure isotropization

2

Mass dependence

20x20x100 lattice, a_t =0.05, N_{ens} =750, r=1, g=2, μ =1.5, Δ =0.1

Simulating in an expanding box

Milne coordinates

Heavy lon collision as a longitudinally expanding system \rightarrow Bjorken flow⁷ \Rightarrow Best described in Milne coordinates (expansion in z-direction)

$$au=\sqrt{t^2-z^2}$$
 (proper time), $\eta=rac{1}{2}{\sf ln}igg(rac{t+z}{t-z}igg)$ (spacetime rapidity).

Non-trivial metric

$$g_{\mu
u} = {\sf diag}ig(1,-1,-1,- au^2ig), \hspace{0.5cm} g^{\mu
u} = {\sf diag}ig(1,-1,-1,-rac{1}{ au^2}ig).$$

And Jacobian

$$\int d^4x \quad \rightarrow \quad \int \sqrt{-g} d\tau dx_{\perp} d\eta = \int \tau d\tau dx_{\perp} d\eta.$$

Especially note

$$\partial_0 = \cosh \eta \ \partial_\tau - \frac{1}{\tau} \sinh \eta \ \partial_\eta, \quad \partial_3 = - \sinh \eta \ \partial_\tau + \frac{1}{\tau} \cosh \eta \ \partial_\eta.$$

⁷J. D. Bjorken. "Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region". In: Phys. Rev. D 27 (1983), pp. 140–151.

Equations of motion and observables

Derivation of the equation of motion and observables in analogy to the static box.

 \Rightarrow Longitudinal and transversal direction need some additional care.

Exemplary:

$$U_{i}(x+\hat{t}) = e^{iga_{t}aE_{i}(x)}U_{i}(x) \begin{cases} U_{i}(x+\hat{\tau}) &= \exp\left(i\frac{a_{\tau}}{\tau}E_{i}(x)\right)U_{i}(x), \\ U_{\eta}(x+\hat{\tau}) &= \exp\left(ia_{\tau}a_{\eta}\tau E_{\eta}(x)\right)U_{\eta}(x). \end{cases}$$

Energy density Yang-Mills part

$$\epsilon_{YM}(x) = Z_R \operatorname{Re} \operatorname{tr} \left[\frac{1}{\tau^2} E_i^2 + E_{\eta}^2 + 2(1 - U_{12}) + \frac{2}{a_{\eta}^2 \tau^2} \sum_{i=1}^2 (1 - U_{i\eta}) \right]$$

Exception: Dirac equation and fermions!

Expanding box fermions

Dirac equation is linear in ∂_0 and $\partial_3\to$ significantly changed when introducing Milne coordinates.

One can show

$$i\gamma^0\partial_0 + i\gamma^3\partial_3 = i\gamma^0 e^{-\eta\gamma^0\gamma^3}\partial_\tau + \frac{i}{\tau}\gamma^3 e^{-\eta\gamma^0\gamma^3}\partial_\eta.$$

Defining an expanding box spinor⁸

$$\hat{\psi}(\tau, \mathbf{x}_{\perp}, \eta) = \sqrt{\tau} e^{-\frac{\eta}{2}\gamma^0 \gamma^3} \psi(\mathbf{x}),$$

leads to a much simpler Dirac equation in the expanding box

$$\left[\mathrm{i}\gamma^0\partial_ au+rac{\mathrm{i}}{ au}\gamma^3\partial_\eta+\mathrm{i}\gamma^i\partial_i-m
ight]\hat\psi(au,\mathbf{x}_\perp,\eta)=0.$$

 \Rightarrow Evolution equation of the spinors in the simulation.

 \Rightarrow Note: Nonlinear partial differential equation of motion (additional $1/\tau$)!

⁸Francois Gelis and Naoto Tanji. "Quark production in heavy ion collisions: formalism and boost invariant fermionic light-cone mode functions". In: JHEP 02 (2016), p. 126.

Initialization

CGC initial conditions in analogy to the static box.

Non-trivial vacuum spinor solution of the Dirac equation in an expanding box (nonlinear eq.).

Ansatz

$$\hat{\psi}(\tau, \mathbf{x}_{\perp}, \eta) = \int \sum_{s=1}^{2} \left(\hat{a}_{s}(\mathbf{k}_{\perp}, y_{k}) \hat{\psi}^{+}_{\mathbf{k}_{\perp}, y_{k}, s}(\tau, \mathbf{x}_{\perp}, \eta) + \hat{b}^{\dagger}_{s}(\mathbf{k}_{\perp}, y_{k}) \hat{\psi}^{-}_{\mathbf{k}_{\perp}, y_{k}, s}(\tau, \mathbf{x}_{\perp}, \eta) \right) \frac{d^{2}k_{\perp}}{(2\pi)^{2}} dy_{k},$$

with

$$\hat{\psi}^{\pm}_{\mathbf{k}_{\perp},y_{k},s}(\tau,\mathbf{x}_{\perp},\eta) = \int \hat{\psi}^{\pm}_{\mathbf{k}_{\perp},\nu,s}(\tau) e^{i\nu\eta} e^{\pm i\mathbf{k}_{\perp}\mathbf{x}_{\perp}} e^{-i\nu y_{k}} d\nu$$

Solving the Dirac equation for the mode functions $\hat{\psi}^{\pm}_{{\bf k}_{\perp},y_{k},{\bf s}}(\tau,{\bf x}_{\perp},\eta)$ leads to

$$\begin{split} \hat{\psi}^{+}_{\mathbf{k}_{\perp},\nu,s}(\tau,\mathbf{x}_{\perp},\eta) &= -\frac{i}{2}\sqrt{\frac{\pi\tau}{2}}e^{i\nu\eta + i\mathbf{k}_{\perp}\mathbf{x}_{\perp}}e^{\frac{\nu\pi}{2}} \\ &\times \left(e^{-i\frac{\pi}{4}}H^{(2)}_{i\nu+\frac{1}{2}}(M_{\mathbf{k}_{\perp}}\tau)P^{+} + e^{i\frac{\pi}{4}}H^{(2)}_{i\nu-\frac{1}{2}}(M_{\mathbf{k}_{\perp}}\tau)P^{-}\right)u_{s}(\mathbf{k}_{\perp},y_{k}=0), \end{split}$$

 $P^{\pm}=rac{1}{2}ig(1\pm\gamma^0\gamma^3ig),\ M_{\mathbf{k}_{\perp}}=\sqrt{k_{\perp}^2+m^2}$ and the Hankel functions.

Finally: replace $\hat{a}, \hat{b}^{\dagger}$ by complex numbers and use stochastic fermions.

Energy density

Note: Necessity of a finite initial time since $\frac{1}{\tau}$ is singular for $\tau = 0$

 \rightarrow stable results for $\tau = 80a_{\tau}$.

Lattice spacing in longitudinal direction has to be set independently $a_{\eta} = 0.1$.

20x20x20 lattice, g=2, μ =1.5, τ_0 =80a $_{\tau}$, a $_n$ =0.1, m=0.1a, N $_{ens}$ =150

Pressure

Pressure ratio $P_L/P_{\mathcal{T}}$ in the expanding box, compared to the pure Yang-Mills simulation

Necessary to move towards isotropization: a pressure instability

$$P_{L}^{YM}(\tau,\nu=\nu_{0})=\frac{1}{NxNy}\int\frac{1}{N_{z}}\int P_{L}^{YM}(\tau,\mathbf{x}_{\perp},\eta)e^{i\eta\nu_{0}}d\eta dx_{\perp}$$

In a pure gauge simulation vanishes for $\nu_0 \neq 0$, because of the initial conditions. \Rightarrow Picks up a contribution for $\Delta \neq 0 \rightarrow$ pressure instability driving isotropization.

 \Rightarrow How about a semiclassical simulation including fermions?

20x20x20 lattice, static box, g=2, µ=1.5, pressure instability

22/24 Andreas Halsch — Real-time lattice simulations of QCD in a ,semi-classical approximation

Necessary to move towards isotropization: a pressure instability

$$\mathcal{P}_{L}^{YM}(\tau,\nu=\nu_{0})=\frac{1}{\mathit{N}\mathsf{x}\mathit{N}\mathsf{y}}\int\frac{1}{\mathit{N}_{z}}\int\mathcal{P}_{L}^{YM}(\tau,\mathbf{x}_{\perp},\eta)e^{\mathrm{i}\eta\nu_{0}}d\eta d\mathsf{x}_{\perp}$$

In a pure gauge simulation vanishes for $\nu_0 \neq 0$, because of the initial conditions.

 \Rightarrow Picks up a contribution for $\Delta \neq 0 \rightarrow$ pressure instability driving isotropization.

 \Rightarrow How about a semiclassical simulation including fermions?

In an expanding box:

20x20x20 lattice, g=2, μ=1.5, τ₀=80 a_τ, a_n=0.1

In an expanding box:

20x20x20 lattice, g=2, μ =1.5

Conclusion

Conclusion

Static box:

- Pressure isotropization due to the coupling to fermions.
- Light fermions seem to slow down the isotropization.

Beware: Continuum limit not possible since the classical theory is UV-divergent (Rayleigh-Jeans divergence).

 \Rightarrow Possible Solution: Matching of the energy density fixing *a* and *N_i*.

Expanding box:

- No pressure isotropization observed at this point.
- Pressure instability occurs, but is not strong enough to drive the isotropization.
- \Rightarrow Scan the parameter space further: *a*, *a*_{η}, *g*, *m* dependence?

Perspectives:

- Occupation of modes \rightarrow validity of the approximation.
- Systematic study of NLO quantum effects in the gauge sector.⁹

⁹Thomas Epelbaum and Francois Gelis. "Pressure isotropization in high energy heavy ion collisions". In: Phys. Rev. Lett. 111 (2013), p. 232301.

BACKUP

The Keldysh-Contour

Non-equilibrium real time calculations require a certain contour for the time integration referred to as Keldysh-Contour ${\cal C}$

- \Rightarrow t_i labels the initial time \rightarrow initial condition.
- ⇒ Propagators become matrices that can either live on the upper- or lower-branch alone, denoting

$$\Delta^{11}/\Delta^{22},$$

 \Rightarrow or connecting branches, e.g. in the form of Wightman functions

$$\Delta^>/\Delta^<$$
.

Derivation of the chromo-electric EoM

$$Z_{\mathcal{C}} = \int \int \rho(t_0) e^{iS_{QCD}[A,\bar{\psi},\psi]} [dA] [d\bar{\psi}d\psi] \rightarrow \int \int \rho_A(t_0) e^{itr\log\left[\Delta_{\mathcal{C}}[A]^{-1}\right] + iS_{YM}[\bar{A},\tilde{A}]} [d\tilde{A}] [dA]$$

Taylor expanding with respect to \tilde{A}

$$\operatorname{tr}\log\left[\Delta_{\mathcal{C}}[A]^{-1}\right] \approx \operatorname{tr}\log\left[\Delta_{\mathcal{C}}[\bar{A}]\right] + \frac{\operatorname{ig}}{2}\operatorname{tr}\left(\Delta_{\mathcal{C}}[\bar{A}]\operatorname{sgn}_{\mathcal{C}}\gamma^{\mu}\tilde{A}_{\mu}^{\mathfrak{a}}\mathcal{T}^{\mathfrak{a}}\right) + \mathcal{O}(\tilde{A}^{2})$$

and rewriting (neglecting $\mathcal{O}(\tilde{A}^2))$

$$\begin{split} S_{YM}[\bar{A},\tilde{A}] &= \underbrace{S_0[\tilde{A},\bar{A}]}_{\text{no interactions}} + \underbrace{S_1[\tilde{A},\bar{A}]}_{\sim\mathcal{O}(\tilde{A})} + \underbrace{S_2[\bar{A},\tilde{A}]}_{\sim\mathcal{O}(\tilde{A}^3)} \\ &\approx \int_{\mathcal{C}^+} \tilde{A}_{\nu}^{a} \Big[\partial_{\mu} F^{\mu\nu,a}[\bar{A}] - g f^{abc} \bar{A}_{\mu}^{b} F^{\mu\nu,c}[\bar{A}] \Big] dx. \end{split}$$

Integrating out \tilde{A} leads to

$$\partial_{\mu}F^{\mu\nu,a}(x) - gf^{abc}\bar{A}^{b}_{\mu}(x)F^{\mu\nu,c}(x) = -gtr[F_{\bar{A}}(x,x)\gamma^{\nu}T^{a}]$$

 \Rightarrow Lattice discretization, including Wilson term and the renormalization Z-factor leads to the result given previously.

Renormalization

- $Z = 1 + \delta Z$ -renormalization factor:
 - \Rightarrow Quantum nature of the fermion fields \rightarrow fermion loops allowed and renormalization (in principle) necessary.
 - \Rightarrow Derivation as in Borsanyi, Hindmarsh via fermion loop corrections.
 - $\Rightarrow\,$ Counterterm for the Yang-Mills sector affects equations of motions and observables

$$\mathcal{L}_C = -rac{Z-1}{4}F^{\mu
u,a}F^a_{\mu
u}.$$

Observation: In analogy to Zong-Gang Mou et al.¹⁰ only a small deviation δZ occurs.

- Vacuum contribution:
 - ⇒ Fermion sector of observables has a negative vacuum contribution due to antiparticles (Dirac sea).
 - \Rightarrow Subtraction of the vacuum contribution of the fermion sector at initial time t_0

$$\mathcal{O}^{R}(t) = \mathcal{O}(t) - \mathcal{O}(t_{0}).$$

 $^{^{10}}$ Zong-Gang Mou et al. "Ensemble fermions for electroweak dynamics and the fermion preheating temperature". In: JHEP 11 (2013), p. 097.

^{24/24} Andreas Halsch — Real-time lattice simulations of QCD in a ,semi-classical approximation

Renormalization Z-factor

Ansatz: $A_{\mu} = \tilde{A}_{\mu}^{\pm} + \bar{A}$ quantum and classical field. Quantum field on the Keldysh-Contour C on upper- and lower-branch.

Effective linearized action:

$$\begin{split} \mathcal{S}_{eff}[\mathcal{A}^{\pm}_{\mu},\psi^{\pm},\bar{\psi}^{\pm}] &= \int \mathcal{L}_{free}(\tilde{\mathcal{A}}^{\pm}_{\mu},\psi^{\pm},\bar{\psi}^{\pm}) + \left(\tilde{\mathcal{A}}^{a+}_{\nu} - \tilde{\mathcal{A}}^{a-}_{\nu}\right) \Big[\partial_{\mu}F^{\mu\nu,a}[\bar{\mathcal{A}}] - gf^{abc}\bar{\mathcal{A}}^{b}_{\mu}F^{\mu\nu,c}[\bar{\mathcal{A}}]\Big] \\ &- g\bar{\psi}^{+}\gamma^{\nu} \left(\tilde{\mathcal{A}}^{+,a}_{\nu} + \bar{\mathcal{A}}^{a}_{\nu}\right)T^{a}\psi^{+} + g\bar{\psi}^{-}\gamma^{\nu} \left(\tilde{\mathcal{A}}^{-,a}_{\nu} + \bar{\mathcal{A}}^{a}_{\nu}\right)T^{a}\psi^{-}d^{4}x. \end{split}$$

Derivation of a "linearized" EoM from the condition $\langle \tilde{A}^{d,+}_{\alpha}(y) \rangle = 0^{11}$ $0 = \partial_{\mu}F^{\mu\nu,a}[\bar{A}] - gf^{abc}\bar{A}^{b}_{\mu}F^{\mu\nu,c}[\bar{A}] - gtr\Big[S^{++}(x,x)\gamma^{\nu}T^{a}\Big]$ $+ ig^{2}\int \theta(x_{0} - z_{0}) \underbrace{tr\Big[S^{<}(x,z)\gamma^{\mu}T^{b}S^{>}(z,x)\gamma^{\nu}T^{a} - S^{>}(x,z)\gamma^{\mu}T^{b}S^{<}(z,x)\gamma^{\nu}T^{a}\Big]}_{\rightarrow \Sigma^{\mu\nu,ab}(x,z)} \bar{A}^{b}_{\mu}(z)d^{4}z$

Z-factor from fermion self energy $\Sigma^{\mu
u,ab}(x,z)$

$$\delta Z = -\int_{0}^{\infty} \frac{t^2}{2} \Sigma_{0}(t) dt = g^2 \int \frac{\mathbf{p}^2}{4E_{\mathbf{p}}^5} \frac{d^3p}{(2\pi)^3}$$

¹¹J. Baacke et al. "Initial time singularities in nonequilibrium evolution of condensates and their resolution in the linearized approximation". In: **Phys. Rev. D** 63 (2001), p. 045023.

Matching the energy density

Estimate of the initial energy density at LHC ($\tau_0=0.1~{\rm fm/c},~\sqrt{s_{NN}}=2.76~{\rm TeV})^{12}$

Extract the lattice size $V = N \times N \times N$ from matching energy densities

¹² Giuliano Giacalone et al. "Hydrodynamic attractors, initial state energy and particle production in relativistic nuclear collisions". In: Phys. Rev. Lett. 123.26 (2019), p. 262301. ^{24/24} Andreas Halsch — Real-time lattice simulations of QCD in a ,semi-classical approximation