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Motivation

3D effective theories derived in strong-coupling 

Want to understand the phase-diagram of QCD 

The sign problem inhibits progress with direct simulations at nonzero μ

Alternatively…

Thimbles, Langevin, etc

Milder sign problem at nonzero baryon chemical potential (many d.o.f. integrated out) 

Amenable to both analytical as well as numerical approaches i.e. MFT and series expansions

BUT: Addition of light quarks hard and large number of effective couplings!

Figure 13. The Columbia plot in the con-
tinuum, as predicted by our analysis.

Figure 14. Suggested phase diagram for the
chiral phase transition as a function of Nf.

simulations of the phase transition with N· † 24 cannot reproduce the correct continuum
physics despite the improvement of the action. This has repercussions for, e.g., studies of
the Up1qA-anomaly with the Wilson action [63, 64]. By contrast, unimproved staggered
fermions should reproduce the second order of the Nf “ 3 transition for N· Á 10 already.

6 Conclusions

In summary, we have conducted a comprehensive analysis of the finite temperature chiral
transitions observed in the bare parameter space t—, am, Nf, N· u of lattice QCD with un-
improved staggered fermions. In particular, we have mapped out the chiral critical surface,
which separates the first-order transition region from the crossover region. In the plane of
vanishing bare quark mass, this surface terminates in a tricritical line N

tric
· pNfq, which for

our presently available data is consistent with N
tric
· † 8 for all Nf P r2, 6s.

The necessity to take the continuum limit before the chiral limit then enforces any
appropriate series of simulations to approach the combined limits from the crossover region
of the bare phase diagram. This implies the chiral phase transition in the massless limit to
be of second order for all Nf § 6, and possibly up to the conformal window Nf § N

˚
f . As

a crosscheck for our findings, we have reanalysed already published data from simulations
with Nf “ 3 Opaq-improved Wilson fermions, which are equally consistent with tricritical
scaling and a tricritical point at a finite N

tric
· . Hence, this entirely di�erent discretisation

is consistent with the continuum chiral phase transition to be of second order as well.
Taking our results seriously, the continuum Columbia plot for Nf “ 2 ` 1 would have

to be modified to look as in figure 13, with a second-order line all along the ms-axis. Our
analysis has nothing to say about the universality class of this second-order line. However,
chiral symmetry being di�erent in the limiting Nf P t2, 3u cases, one would expect the set of
critical exponents associated with these transitions to smoothly cross from one universality

– 23 –

Cuteri et al., JHEP (2021)
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Effective theory for heavy quarks

Historical roots: Z(N) symmetry + Yang-Mills
Svetitsky and Yaffe, Nucl. Phys. B (1982)

Polonyi and Szachlanyi, PLB (1982)

Step 1: split the integration of the temporal and spatial link integrations 
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5
Integration over spatial links after a dual expansion in  and ; has finite radius of convergence R!  β =

1
g2

κ =
1

2m + 8

Step 2: evaluate effective theory; mild sign problem  MC simulation→

Step 3: analytically evaluate theory using series expansion methods (weak coupling)
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Proof of Principle: Z(3) Spin Model
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6

Studied using variety of methods: flux rep, complex Langevin
Gattringer and Mercado, Nucl. Phys. B (2011)

Karsch and Wyld, PRL (1985) 

Linked cluster expansion for perturbative series up to O(τ14, κ30) Kim et al, JHEP (2020)
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Figure 1. Schematic phase diagram of the SU(3) spin model. A surface of first-order transitions
is bounded by a Z(2)-critical line beyond which the transitions are analytic crossover.

considered infinitely large. The corresponding grand-canonical partition function is given

by the functional integral

Z(τ,κ, µ) =

∫
DW e−S[W ] . (2.4)

It is obvious that for µ = 0 the action is real. The partition function then is straightforward

to simulate by standard Metropolis methods, which we will use as a benchmark for our series

expansions. In this case we work with finite volumes and periodic boundary conditions in

all directions. For µ != 0, the action is complex and the simulations exhibit a sign problem.

The phase structure can be inferred from previous work curing the sign problem [6–9] and

is shown schematically in figure 1. Note that, when the continuous SU(3) variables L(x)

are restricted to their center elements in Z(3), the model reduces to the discrete 3-state

Potts model in three dimensions, which has been studied both numerically [14, 15] as well

as by expansion methods [16–18]. Its phase diagram looks qualitatively the same, here we

focus on the QCD-like SU(3) situation.

The natural observable to compute by series expansion is the free energy density

f = − log(Z)

V
, (2.5)

from which all other thermodynamic quantities can be derived. For comparison with Monte

Carlo simulations, which cannot evaluate the free energy directly, we study the combination

of first derivatives

∆S = −∂f

∂τ
− ∂f

∂η
, (2.6)

which is related to the trace of the energy momentum tensor and in QCD is called inter-

action measure. In order to identify phase transitions, we look for maximal fluctuations in

the spin model analogues of the magnetic susceptibility and the specific heat, respectively,

χ = −∂2f

∂η2
− ∂2f

∂η̄2
− 2

∂2f

∂η∂η̄
, (2.7)

C = −∂2f

∂τ2
. (2.8)

– 3 –

Free energy “Interaction Measure”  EOS→

first-order surface terminating in Z(2) boundary



Chris Winterowd HFHF 2022 6

Z(3) Spin Model (continued)
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Figure 2. The interaction measure from the highest three orders of our expansion. Left: at
zero chemical potential, compared to Monte Carlo data. Right: at large chemical potential, where
standard Monte Carlo suffers from the sign problem. The critical τ is marked by the blue dashed
line and based on simulations of a dual flux representation [6].

3.6 Resummation by Padé approximants

Finite series generally break down in the vicinity of phase transitions. A marked improve-

ment in convergence properties can often be obtained by infinite-order resummations, like

mappings of the expansion variables, use of renormalisation group techniques or approx-

imation by rational functions. For a general review and introduction, see [29]. Here we

model a function f(x), known only as finite power series,

f(x) =
N∑

n=0

cnx
n +O(xN+1) , (3.38)

by Padé approximants defined as rational functions,

[L,M ](x) ≡ a0 + a1x+ . . .+ aLxL

1 + b1x+ . . .+ bMxM
. (3.39)

The coefficients ai, bi are uniquely determined for L+M ≤ N , if N represents the highest

available order of the expansion. In this way the [L,M ] approximant reproduces the known

series up to and including O(xL+M ), where larger approximants represent more expansion

coefficients than smaller ones. As rational functions, Padé approximants are able to show

singular behaviour and scaling properties near phase transitions. Quite generally, diagonal

approximants with L = M are expected to show the best convergence properties, since

they are invariant under Euler transformations of the expansion variable [29], i.e., the

full function does not change under resummations of the power series caused by such

transformations.

In figure 2 we show the [6, 6] approximant to the O(τ12) series of ∆S. The phase

transition is now announced by a singularity in the approximant, and the equation of state

is quantitatively accurate up to the transition.

– 12 –
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Figure 7. Order of the center symmetry transition as a function of (κ, µ). A critical line of
endpoints separates the first-order region from the crossover region of parameter space, cf. figure 1.
Red data points are from numerical simulations, lines correspond to fits as described in the text.

i.e., center transformations are equivalent to shifts in imaginary chemical potential. More-

over, the partition function is an even function of µ, Z(µ) = Z(−µ), so that the free energy

density or the pressure can be expanded in powers of µ2. Analytic continuation between

real and imaginary µ is then trivial and can be utilised for sufficiently small chemical po-

tential. This provides another test for our computational method, which in principle does

not distinguish between real and imaginary chemical potential. Of course, the convergence

properties of the series are affected by the choice of parameter values and may well be

different in different directions of parameter space.

We have repeated our analysis described in the last section for a series of parameter

values and mapped out how the location of the critical endpoint changes as a function

of κ and µ. Thus the complete phase diagram of the theory is determined, as shown in

figure 7. For every choice of (κ, µ) there is a τc(κ, µ) marking the phase boundary for

center symmetry transition. The figure shows the second-order critical line separating the

parameter region with first-order transitions from that of smooth crossovers, i.e., it is a

projection into the transition surface of figure 1. The expected analyticity of the critical

line around µ = 0 is clearly observed, and at this moderate accuracy the entire range of

chemical potentials is well described by fitting a next-to-leading-order Taylor expansion in

µ2 about zero. Note that at −µ2 = (π/3)2 = (1.05)2 the boundary to the neighbouring

center sector is crossed, beyond which the phase diagram is dictated by the Roberge-Weiss

symmetry. This point is marked by a cusp, where two critical lines from neighbouring center

sectors meet, and which thus is tricritical in all theories featuring this center symmetry,

such as the Z(3) Potts model or QCD [36]. As a consequence, the critical line is leaving

this point with a known tricritical exponent, and a fit to this functional form also describes

our results over the whole range.

Finally, we remark that the parameter range 0.016 < κ < 0.03 corresponds to a

situation, where there is a crossover for µ = 0 but a critical point followed by a first-

order transition beyond some imaginary µc, as is often expected for QCD and real µ. We

conclude that the computational technique and analysis examined here is in principle able

to handle such a situation.

– 18 –

Order of the phase transition of τc(κ, μ)

phase transition computed with susceptibilities

Results compatible with numerical “solutions”

Pade approximants needed for phase transition
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Background

Direct application of strong-coupling expansion for free energy 

Accurate determination of deconfinement transition in  and  theorySU(2) SU(3)

Resummation of gauge action accomplished by character expansion of gauge action

Formulae for talk

C. Winterowd

August 10, 2022

Abstract

List of formulae

1 Formulae

W (x) ⌘
N⌧�1Y

⌧=0

U0(x, ⌧) (1)

L(x) ⌘ �f(W (x)) = Tr W (x) (2)

L⇤(x) ⌘ �f̄(W (x)) (3)

SW =
�

2

X

p

<Tr Up (4)

SF =
X

n

(
 ̄(n) (n)�

X

µ

�
 ̄(n)(1� �µ)Uµ(n) (n+ µ̂) +  ̄(n)(1 + �µ)Uµ(n) (n)

�
)

(5)

Z =

Z
[dU ][d d ̄]e�(SG+SF ) =

Z
[dU0][dUi] detQ e�SG (6)

detQ = detQstat detQkin (7)

detQkin = eTr logQkin (8)

1

Formulae for talk

C. Winterowd

August 10, 2022

Abstract

List of formulae

1 Formulae

W (x) ⌘
N⌧�1Y

⌧=0

U0(x, ⌧) (1)

L(x) ⌘ �f(W (x)) = Tr W (x) (2)

L⇤(x) ⌘ �f̄(W (x)) (3)

SW =
�

2

X

p

<Tr Up (4)

SF =
X

n

(
 ̄(n) (n)�

X

µ

�
 ̄(n)(1� �µ)Uµ(n) (n+ µ̂) +  ̄(n)(1 + �µ)Uµ(n) (n)

�
)

(5)

Z =

Z
[dU ][d d ̄]e�(SG+SF ) =

Z
[dU0][dUi] detQ e�SG (6)

detQ = detQstat detQkin (7)

detQkin = eTr logQkin (8)

1

Formulae for talk

C. Winterowd

August 10, 2022

Abstract

List of formulae

1 Formulae

W (x) ⌘
N⌧�1Y

⌧=0

U0(x, ⌧) (1)

L(x) ⌘ �f(W (x)) = Tr W (x) (2)

L⇤(x) ⌘ �f̄(W (x)) (3)

SW =
�

2

X

p

<Tr Up (4)

SF =
X

n

(
 ̄(n) (n)�

X

µ

�
 ̄(n)(1� �µ)Uµ(n) (n+ µ̂) +  ̄(n)(1 + �µ)Uµ(n) (n)

�
)

(5)

Z =

Z
[dU ][d d ̄]e�(SG+SF ) =

Z
[dU0][dUi] detQ e�SG (6)

detQ = detQstat detQkin (7)

detQkin = eTr logQkin (8)

1

e�SG = c
Np

0

Y

p

 
1 +

X

r

drar(�)�r(Up)

!
(9)

cr =

Z
dU�⇤

r(U)e�SG(U) (10)

Se↵ = Ssymm + S0 (11)

Ssymm =
X

x,r

X

n

0X

{xi,ri}

cr{xi,ri}�r(W (x))
nY

i

�ri(W (x+ xi)) (12)

e�Ssymm = Ñ
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expansion coefficients

Subtraction of zero-temperature ( ) graphs Nτ → ∞

Langelage, Münster, Philipsen, JHEP (2008)

Langelage and Philipsen, JHEP (2010)
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Polyakov Loop Effective Theories

Originally both spatial and temporal gauge links integrated out
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Apply moment-cumulant formalism when computing the free energy: f = −
1
V

log Z
disjoint “polymers”

Integrate over just spatial links and obtain a dimensionally-reduced effective theory solely in 
terms of Polyakov loops 

In order to arrive at an effective three-dimensional theory, we integrate out the spatial

degrees of freedom and get schematically [16]:

Z =

∫

[dU0] exp [−Seff ] ;

−Seff = ln

∫

[dUi] exp

[

β

2N

∑

p

(

tr Up + tr U †
p

)
]

≡

≡ λ1S1 + λ2S2 + . . . . (2.2)

We expand around β = 0 and arrange the effective couplings λn = λn(β, Nτ ) in increasing

order in β of their leading terms. Thus, the λn become less important the higher n. As we

shall see, the interaction terms Sn depend only on Polyakov loops

Lj ≡ tr Wj ≡ tr
Nτ∏

τ=1

U0(#xj , τ) . (2.3)

This is the reason for a “dimensional reduction” occurring here, as the time dimension is
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effective couplings depend on  and !β Nτ
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Polyakov Loop Effective Theories

Simulations of two-coupling model give good agreement with YM simulations

Effective couplings  represent couplings between Polyakov loops in the effective theoryλi
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Figure 14. Critical line in the SU(3) two-coupling space, determined from χ(|L|). Dashed lines
give the parameter space representing a 4d theory with fixed Nτ . Left: (λ1,λ2). Right: (λ1,λa).

any difference. For finer lattices, of interest for continuum physics, the results are within

statistical errors indistinguishable from the the simpler one-coupling theory.

Next, we are considering a two coupling theory with λ1,λa. In this case the partition

function reads

Z =
(∏

x

∫

dLx

) ∏

<ij>

(1 + 2λ1ReLiL
∗
j)

∏

<ij>

eλa(Tr(a)Wi)(Tr(a)Wj)e
∑

x Vx . (3.16)

Here Tr(a) denotes the trace in the adjoint representation, Tr(a)W = |TrW |2−1, which can

be used to rewrite the action in terms of fundamental loops. For the numerical evaluation,

we again expand the λ1,λa terms to (M1 = 3,M2 = 1), and proceed in complete analogy

as in the case discussed above. The result for the critical line in this two-coupling space is

shown in figure 14 (right). Here we find

λ1,c = a+ bλa with a = 0.10637(15), b = −1.422(22) . (3.17)

Once more, the set of curves intersecting the critical line correspond to lines of fixed Nτ in

the 4d theory. We observe that λa has slightly larger effect than λ2 at fixed Nτ , in accord

with the fact that it starts at lower order in u, cf. Eq. (2.23). Nevertheless, its influence

is smaller than that of the strong coupling truncation in λ1, as we shall see, and hence

negligible at this order.

4 Mapping back to 4d Yang-Mills

Having established the critical couplings for our effective theories and tested their reliability,

we are now ready to map them back to the original thermal Yang-Mills theories by using

Eqs. (2.13, 2.21). In Tables 1, 2 we collect the values for the critical gauge couplings, βc,

obtained in this way from the effective theories and compare them to the values obtained

from simulations of the full 4d theories for SU(2), SU(3), respectively.

The agreement is remarkable in all cases, with the relative error of the effective theory

– 16 –

Langelage et al., JHEP 2010

Map back to  for fixed  using strong-coupling  
expressions for couplings
βc Nτ
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Including heavy quarks

Terms generated by gauge action invariant under global  center symmetry Z(3)

Introduction of quarks explicitly breaks this symmetry 
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terms  and cubic symmetry Z(3)

explicit breaking terms
Hopping parameter expansion of quark determinant

“static” “kinetic” expanded as series in κ2

One hopes that low-orders are sufficient
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Mean-Field Theory (General)

Express field by its average plus fluctuations: , Lx → L̄ + δLx L*x = L̄* + δL*x
Expand the action around vanishing fluctuations 

Neglect higher-order non-local fluctuations:  O(δLxδLy)

Expectation values factorize as everything is local

Modification for log-action: each power of the field receives its own mean -field 
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5
Resummation: keep all local fluctuations: δLn

x δL*m
x
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Applied to Z(3) spin-model and lattice chiral models ( ) phase diagramT, μ
Greensite and Splittorf, PRD (2012)Kogut et al., Nucl. Phys. B (1982)
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Mean-Field Theory in PET

Exponentially increasing number of terms describing interactions between Polyakov-loops
Distance between interaction terms grows with increasing order in κ2
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determinant expressed in terms of closed loops
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5

product of hops (spatial/temporal) 
from Dirac matrix 

• Effort to compute all these terms will overtake MC evaluation of full determinant

• One is forced to truncate hopping parameter expansion at desired order

HOWEVER: coordination number effectively increases as corrections are included

Mean-field theory exact at infinite coordination number 
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Mean-Field Theory (Results)

Pure gauge mean-field results compared with high-order series expansion 

Resummation works and gives good agreement (~3%)

Konrad, 2022

Self-consistency vs. variational approach 
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Include terms from the hopping interaction to O(κ4)

Mean-Field Theory (Results) Konrad, 2022 Chabane, 2022

Extend to nonzero baryon  and isospin chemical potential:   μB μI = μu = − μd

,  Nf = 3 Nτ = 4

Towards the phase diagram of cold and dense heavy QCD 13 / 14

Results:

Result:
�
µ

I
, µ

B

�
Phase Diagram

(µI, µB) Phase Diagram: Different Temperatures
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Determining couplings non-perturbatively
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Bergner et al., JHEP 2015
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3

Effective action can be expanded and powers of characters at given site can be reexpressed

as linear combination of characters

Better representation which includes long-range correlations is log action

in practice, number of terms truncated
no correlation at distances  

larger than largest separation of  
terms in effective action

Observable calculated in full effective theory (no truncation) should match full QCD

Express correlators in QCD as a perturbative series in couplings of log-action
“Inverse” Monte Carlo method Wozar et al., PRD (2007)
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Determining couplings non-perturbatively
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Figure 3. Polyakov loop correlator in full Yang-Mills and the e�ective theory (3.7) at — = 5.4
on a 243 ◊ 4 lattice. The di�erent truncations of the e�ective theories are based on the couplings
determined by (3.11), as well as the strong coupling series (3.9) for the one-coupling theory.

of two-point interactions up to ⁄4 results in good agreement. Thus the main improvement
achieved by our numerical procedure are better estimates of the longer range interactions,
where no su�ciently long strong coupling series are available.

3.4 Di�erent N· and the continuum limit

Before we turn to the more involved interaction terms, we discuss the behaviour of the
e�ective couplings towards the continuum limit of the 4d Yang-Mills theory. Since the
strong coupling series for larger distance interactions are parametrically suppressed by
additional powers of N· compared to the nearest neighbour interaction, it is tempting to
expect their relevance to diminish with growing N· [7]. However, Figure 2 shows that at
the phase transition all couplings become of comparable size. This is not unexpected, since
the critical coupling represents the convergence radius of the strong coupling expansion.
The general behaviour for growing N· can be inferred by inspecting (3.11). The ⁄̃i on the
left side of the equations are given by bare Polyakov loop correlators. For fixed temperature
in the 4d Yang-Mills theory, these get smaller with growing N· , i.e. the continuum limit of
(3.11) is zero. The numerical values of the couplings for N· = 6 are shown in Figure 2(d).
The e�ective couplings at a fixed u are smaller than for N· = 4, a behaviour also shared
by the corresponding strong coupling series. Consequently, all couplings remain small on
the way to the continuum.
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u(�)

�̃1
�̃2
�̃3
�̃4
�̃5

(a) Measured correlations (N· = 4)
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(b) E�ective couplings (N· = 4)
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(c) Logarithmic representation (N· = 4)
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(d) E�ective couplings (N· = 6)

Figure 2. (a) E�ective couplings defined by correlators, (2.3), from simulations of 4d Yang-Mills
on N· = 4. (b) Solution of equations (3.11). Lines show the strong coupling series for the couplings.
(c) Same as (b) in logarithmic representation. (d) Same as (b) for N· = 6. Vertical lines mark the
critical coupling u(—c) in full Yang-Mills theory.

numerical solution for the set of equations (3.11) is shown in Figure 2(b) and 2(c). At small
— the result agrees with the prediction from the strong coupling expansion, which provides
a good approximation for the couplings ⁄1 and ⁄2 over a wide range. The disagreement
between the numerical determination and the strong coupling expansion is larger for the
long range interactions and presumably due to the much shorter series for these couplings.

While the phase transition on an N· = 4 lattice is predicted with a good accuracy in the
one-coupling e�ective theory, the long range interactions are necessary to reproduce the
Polyakov line correlator of the 4d Yang-Mills theory. This is illustrated in Figure 3. In [12]
we observed that the mis-match of the correlator remains when additional couplings are
added in the strong coupling approach, since their leading order contributions are too small.
The situation is di�erent with the numerically determined e�ective couplings. While the
correlator in the one-coupling theory still shows large deviations from the full one, inclusion

– 9 –

Expansion guided by knowledge of couplings from strong-coupling

Expressions for correlators can be inverted to obtain λi(β, κ, Nτ), hi(β, κ, Nτ)

couplings become large at  βc

Pure YM, ; good agreement Nτ = 4,6
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Evaluation of log-action
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5

Given a set of couplings , how to efficiently evaluate Z (and it’s derivatives)?{λi, hi}

Brute-force evaluation on thermodynamically large system difficult (disconnected graphs)

cast as sum over subgraphs

Give a subgraph , weight can be determined by performing site integrals g

terms generated by hopping expansion
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Finite-cluster method
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4.4 Logarithmic resummations

4.4.4 Resummation of the Ÿ4-action

Including the log-resummations, the Ÿ4-action reads in terms of the › (we use the more loose
notation for readability and the precise expressions should be clear)
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Next we compute the necessary › (in the more loose notation, the G inside the Pe� is omitted in
the notation but implied):
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Subsequently, Pe� of the graphs is computed to be
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Before we put everything together we remark that although the logarithmic identity

log(xy) = log(x) + log(y) (4.133)

only holds modulo 2fii for complex number we do not have to worry about those extra factors here

51

Each graph weight  depends only on the topology of  and NOT the underlying latticeϕ̃(g) g

Derivation of effective action or evaluation of  could have worked on arbitrary 

embedding graph
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4 The hopping expansion as a polymer expansion, logarithmic resummations

their graph union is a connected graph. Starting from equation (4.9) we get
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The cluster expansion formula then gives

≠Se� [W ] = log(det(Qstat))

+
|Gc(G�s

)|ÿ

n=1

ÿ

{G1,...,Gn}œCn(Gc(G�s
))

ÿ

(k1,...,kn)œ(Nú)
n

C(G1,k1),...,(Gn,kn)Ï(G1)k1 · · · Ï(Gn)kn ,

(4.46)

with the expansion coe�cients

C(G1,k1),...,(Gn,kn) = 1
k1! · · · kn!

ˆk1+···+kn log(Pe�(Gc(G�s
)))

ˆÏ(G1)k1 · · · ˆÏ(Gn)kn

-----
Ï(Gi)=0

, (4.47)

where

Pe�(Gc(G�s
)) := 1 +

|Gc(G�s
)|ÿ

n=1

ÿ

{G1,...,Gn}œDn(Gc(G�s
))

Ï(G1) · · · Ï(Gn). (4.48)

Although equation (4.46) is exact in the strong coupling limit, in practice one introduces trun-
cations to the infinite sum by including only contributions up to a certain power in

Ÿ = max
fœ{1,...,Nf }

(Ÿ(f)). (4.49)

For practical reasons, it is also important to understand in which cases the application of Ï to
two di�erent graph yields the same result, or at least when the contribution of one graph can be
easily obtained from the other. This will be discussed in the next section.

4.2 Equivalent graph weights

In many expansion schemes, isomorphic graphs usually have the same weight. However, in our case
the graph weights depend on the temporal gauge transporters W . Specifically, the weight Ï(G)
of the graph G has a dependence on the W at the vertices VG of G. When it is useful, we will
highlight this fact in our notation by writing Ï(G)[VG]. Due to this dependence, isomorphic graphs
in general do not have the same weight. However, one might still hope that given an isomorphism
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Scheunert, 2021

Avoids embedding of disconnected graphs and preserves log-structure

Direct evaluation of weights on small clusters

Ideal for evaluation of series expansion for correlators in the effective theory 
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Finite-cluster method

Completely generalizable to arb. reps and n-point correlation functions

Main cost in computing generalized weak embedding numbers of colored graphs

Incorporation of higher-order in  terms relatively straightforwardκ2 modification of ϕ̃(g)
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Z
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X
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⇠(G(p)

⇤s
) (44)
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5

Direct application to  for effective theorylog Z

introduces rooted/colored vertices 
at canonical positions
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Publically available software for graph isomorphism (canoncalization) problem: Nauty
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Conclusion and Outlook

• Efficient method for calculating series expression for arbitrary correlators in PEFT 

• Matching between correlators in QCD and PEFT

• Can in principle do better then strong-couplings expressions for couplings

•  dynamical Wilson simulations in order to obtain both gauge and fermion couplingsNf = 2

• Perform determination of couplings at imaginary  and use analytic continuationμ

• Ultimate goal: exploring chiral region with PEFT 

• Mean-field studies at non-zero μB, μI
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Backup

4.4 Logarithmic resummations

The last step was simply an application of Taylor’s formula. While it is possible to identify loga-
rithms for n > 2 in this way, it becomes cumbersome and error-prone relatively quickly. We will
discuss a better method in section 4.4.3.

4.4.2 On the importance of the logarithmic resummation when evaluating the
e�ective theory

The importance of the logarithmic resummations for the e�ective theory of Yang-Mills theory was
already stressed in [118]. Similar observations can be made in our case.

First, we want to make some general remarks. There are both numerical as well as analytic ways
to evaluate the e�ective theory. Independently of how it is evaluated, the point of the e�ective
theory is that, when it is evaluated, it generates higher order terms in the expansion it is based
on, and in that sense it corresponds to a partial resummation of certain terms. Naturally, the
e�ective theory cannot generate all higher order terms but of the higher order terms it generates,
they should occur in a direct evaluation of the original theory. This however might not be the case,
if the higher order terms would be canceled if one would have included higher order terms in the
e�ective theory before evaluating it. This is exactly what happens if the logarithmic resummation
is not included as we will illustrate for a simple example.

Specifically, we consider the O(Ÿ2) e�ective action for Nf = 1 with partition function (we assume
that Ï(G) is truncated to O(Ÿ2) for all G œ Gc)

Z =
⁄

d[W ] det(Qstat) exp

Q

a
ÿ

G̃1œ(Oho�sÛG1)

Ï(G̃1)

R

b (4.115)

=
⁄

d[W ] det(Qstat) exp

Q

a2Ÿ2N·

Nc

ÿ

Èn,mÍ
(W1100(n) ≠ W0011(n))(W1100(m) ≠ W0011(m))

R

b

(4.116)

and compare it to its log-resummed version

Z =
⁄

d[W ] det(Qstat) exp

Q

a
ÿ

G̃1œ(Oho�sÛG1)

log
1
1 + Ï(G̃1)

2
R

b (4.117)

=
⁄

d[W ] det(Qstat)
Ÿ

Èn,mÍ

A

1 + 2Ÿ2N·

Nc
(W1100(n) ≠ W0011(n))(W1100(n) ≠ W0011(n))

B

. (4.118)

Now, when evaluating Z perturbatively, it is clear that for the the first version one will have to
obtain the integral

Ÿ2k
⁄

SU(Nc)

dW det(1 + h1W )2 det
1
1 + h̄1W †

22

tr
3

h1W

1 + h1W

4k

(4.119)

for ever higher values of k œ N when increasing the order of Ÿ In contrast to this, the highest
k that is necessary for all orders in Ÿ is 2d = 6 for the log-resummed version. This means that
higher order corrections in the e�ective theory lead to the cancellation of certain contributions in
the evaluation of the e�ective theory and these cancellations are missed when the log-resummation
is not included.

Furthermore, consider full lattice QCD. When evaluating the partition function in a finite volume,
one will always obtain only finite orders in Ÿ, since the fermion determinant is simply a finite
polynomial in a finite volume or, from another viewpoint, there are only a finite number Grassmann
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 contribution to log-actionO (κ2)

4 The hopping expansion as a polymer expansion, logarithmic resummations

I5 =
N· ≠1ÿ

·1=0

N· ≠1ÿ

·2=0

⁄
d

Ë
�, �̄

È
e�̄Qstat� tr(R1(·1, n1)L1(·1, n1)) tr(R1(·2, n2)L1(·2, n2)), (4.85)

I6 =
N· ≠1ÿ

·1=0

N· ≠1ÿ

·2=0

⁄
d

Ë
�, �̄

È
e�̄Qstat� tr(R1(·1, n1)L1(·1, n1)) tr(R2(·2, n2)L2(·2, n2)). (4.86)

The integrals are calculated using Wick’s theorem. After that one can rewrite the expression in
terms of color and Dirac traces, of which the latter can be evaluated to a real number. As the
procedure is roughly the same for all integrals and has been implemented on the computer during
this thesis, we only show it for the first integral. Note that the fact that G2 and G3 do not have
equivalent graph weights proves the claim made in section 4.2, that isomorphic graphs in general
do not have equivalent graph contributions.

At first, an “unsummed” version of I1, I1 =: qN· ≠1

·1=0
I1(·1), is computed. We start by inserting

the expressions for R and L from equation (4.7) and equation (4.8)

I1(·1) =
⁄

d
Ë
�, �̄

È
e�̄Qstat� tr(R1(·1, n1)L1(·1, n1)) (4.87)

=
⁄

d
Ë
�, �̄

È
e�̄Qstat�R1(·1, n1)c1c2L1(·1, n1)c2c1 (4.88)

= Kf1f2Kf3f4(1 ≠ “1)–1–2(1 + “1)–3–4

◊

⁄
d

Ë
�, �̄

È
e�̄Qstat��̄(·1, n1)f1

–1c2�(·1, n2)f2
–2c1�̄(·1, n2)f3

–3c1�(·1, n1)f4
–4c2

(4.89)

= ≠Kf1f2Kf3f4(1 ≠ “1)–1–2(1 + “1)–3–4

◊

⁄
d

Ë
�, �̄

È
e�̄Qstat��̄(·1, n1)f1

–1c2�(·1, n1)f4
–4c2�̄(·1, n2)f3

–3c1�(·1, n2)f2
–2c1

(4.90)

In the next step, Wick’s theorem is applied. We remind the reader that only those contractions,
where both � and �̄ have the same spatial argument, do not vanish.

I1(·1) = ≠ det(Qstat)Kf1f2Kf3f4(1 ≠ “1)–1–2(1 + “1)–3–4

◊ Q≠1

stat(·1, ·1, n1)f4f1
–4–1,c2c2Q≠1

stat(·1, ·1, n2)f2f3
–2–3,c1c1

(4.91)

= ≠ det(Qstat)Kf1f2Kf3f4(1 ≠ “1)–1–2(1 + “1)–3–4

◊

3
Nc”f4f1”–4–1 + 1

2”–4–1B+(·1, ·1, n1)f4f1
c2,c2 + 1

2(“0)–4–1B≠(·1, ·1, n1)f4f1
c2,c2

4

◊

3
Nc”f2f3”–2–3 + 1

2”–2–3B+(·1, ·1, n2)f2f3
c1,c1 + 1

2(“0)–2–3B≠(·1, ·1, n2)f2f3
c1,c1

4
(4.92)

= ≠
1
4 det(Qstat)Kf1f2Kf3f4 tr((1 ≠ “1)“0(1 + “1)“0)

◊ B≠(·1, ·1, n1)f4f1
c2,c2B≠(·1, ·1, n2)f2f3

c1,c1

(4.93)

= ≠2 det(Qstat)
Nfÿ

f=1

(Ÿ(f))2
1
W (f)

1100
(n1) ≠ W (f)

0011
(n1)

21
W (f)

1100
(n2) ≠ W (f)

0011
(n2)

2
. (4.94)

In the last step we introduced the notation

W (f)

n1m1n2m2(n) := tr

Q

a

1
h(f)

1
W (n)

2m1

1
1 + h(f)

1
W (n)

2n1

1
h̄(f)

1
W (n)†

2m2

1
1 + h̄(f)

1
W (n)†

2n2

R

b. (4.95)
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