Non-perturbative studies of Polyakov-loop effective theories

C. Winterowd
in collaboration with A. Chabane, C. Konrad, O. Philipsen, and J. Scheunert

Outline

1. Motivation

2. Polyakov loop effective theories
3. Addition of heavy quarks
4. Mean-field theories
5. Determination of couplings
6. Finite-cluster method
7. Conclusion

Motivation

- Want to understand the phase-diagram of QCD
- The sign problem inhibits progress with direct simulations at nonzero μ
- Thimbles, Langevin, etc

Alternatively...

- 3D effective theories derived in strong-coupling

- Milder sign problem at nonzero baryon chemical potential (many d.o.f. integrated out)
- Amenable to both analytical as well as numerical approaches i.e. MFT and series expansions
- BUT: Addition of light quarks hard and large number of effective couplings!

Effective theory for heavy quarks

- Historical roots: $\mathrm{Z}(\mathrm{N})$ symmetry + Yang-Mills
- Step 1: split the integration of the temporal and spatial link integrations

$$
Z_{\mathrm{QCD}}=\int \mathcal{D} U_{0} \mathcal{D} U_{i} e^{-S_{\mathrm{QCD}}}=\int \mathcal{D} U_{0} e^{-S_{\mathrm{eff}\left[U_{0}\right]}}=\int d L e^{-S_{\mathrm{eff}}[L]}
$$

Integration over spatial links after a dual expansion in $\beta=\frac{1}{g^{2}}$ and $\kappa=\frac{1}{2 m+8}$; has finite radius of convergence R !

- Step 2: evaluate effective theory; mild sign problem \rightarrow MC simulation
- Step 3: analytically evaluate theory using series expansion methods (weak coupling)

Proof of Principle: Z(3) Spin Model

$$
S=-\sum_{x}\left[\tau \sum_{k}\left(L_{x} L_{x+\hat{i}}^{*}+L_{x}^{*} L_{x+\hat{i}}\right)+\eta L_{x}+\bar{\eta} L_{x}^{*}\right]
$$

$$
\eta(\mu)=\bar{\eta}(-\mu)=\kappa e^{\mu}
$$

- Studied using variety of methods: flux rep, complex Langevin
- Linked cluster expansion for perturbative series up to $O\left(\tau^{14}, \kappa^{30}\right) \quad$ Kim et al, JHEP (2020)

$$
\begin{array}{cc}
\text { Free energy } & \text { "Interaction Measure" } \rightarrow \text { EOS } \\
f=-\frac{\log Z}{V}=\sum_{n} a_{n}(\kappa, \mu) \tau^{n} & \Delta S=-\frac{\partial f}{\partial \tau}-\frac{\partial f}{\partial \eta}
\end{array}
$$

first-order surface terminating in $\mathbf{Z (2)}$ boundary

Z(3) Spin Model (continued)

- Results compatible with numerical "solutions"

Pade approximants needed for phase transition

phase transition computed with susceptibilities

Background

- Direct application of strong-coupling expansion for free energy

$$
S_{W}=\frac{\beta}{2} \sum_{\mathrm{p}} \Re \operatorname{Tr} U_{p}
$$

$$
Z=\int[d U][d \psi d \bar{\psi}] e^{-\left(S_{G}+S_{F}\right)}=\int\left[d U_{0}\right]\left[d U_{i}\right] \operatorname{det} Q e^{-S_{G}}
$$

$$
S_{F}=\sum_{n}\left\{\overline{\mathcal{W}}(n) \psi(n)-\sum_{\mu}\left(\bar{\psi}(n) \kappa\left(1-\gamma_{\mu}\right) U_{\mu}(n) \psi(n+\hat{\mu})+\bar{\psi}(n)\left(1+\gamma_{\mu}\right) U_{\mu}(n) \psi(n)\right)\right\}
$$

- Resummation of gauge action accomplished by character expansion of gauge action

$$
e^{-S_{G}}=c_{0}^{N_{p}} \prod_{p}\left(1+\sum_{\mathbf{r}} d_{\mathbf{r}} a_{\mathbf{r}}(\beta) \chi_{\mathbf{r}}\left(U_{p}\right)\right)
$$

$$
\begin{gathered}
c_{\mathbf{r}}=\int d U \chi_{\mathbf{r}}^{*}(U) e^{-S_{G}(U)} \\
\text { expansion coefficients }
\end{gathered}
$$

- Subtraction of zero-temperature $\left(N_{\tau} \rightarrow \infty\right)$ graphs
${ }^{\bullet}$ Accurate determination of deconfinement transition in $S U(2)$ and $S U(3)$ theory

Polyakov Loop Effective Theories

- Originally both spatial and temporal gauge links integrated out

$$
Z=c_{0}^{N_{p}} \sum_{G} \Phi(G) \quad \text { where }
$$

$$
\begin{aligned}
\Phi(G)=\int[d U] \prod_{p \in G} d_{\mathbf{r}_{p}} a_{\mathbf{r}_{p}} \chi_{\mathbf{r}_{p}}(U)=\prod_{i} \Phi\left(X_{i}\right) \\
\text { disjoint "polymers" }
\end{aligned}
$$

- Apply moment-cumulant formalism when computing the free energy: $f=-\frac{1}{V} \log Z$
- Integrate over just spatial links and obtain a dimensionally-reduced effective theory solely in terms of Polyakov loops

$$
-S_{\mathrm{eff}}=\ln \int\left[d U_{i}\right] \prod_{p}\left[1+\sum_{r \neq 0} d_{r} a_{r}(\beta) \chi_{r}\left(U_{p}\right)\right]
$$

$$
\lambda_{1} S_{1}+\lambda_{2} S_{2}+\ldots
$$

Polyakov Loop Effective Theories

- Effective couplings λ_{i} represent couplings between Polyakov loops in the effective theory
$S_{1}=\lambda_{1} \sum_{\langle\mathbf{x}, \mathbf{y}\rangle}\left(L_{f, \mathbf{x}} L_{f, \mathbf{y}}^{*}+\right.$ c.c. $)$
nearest-neighbors coupling
next-nearest-neighbors coupling

$$
S_{1} \rightarrow \sum_{\langle\mathbf{x}, \mathbf{y}\rangle} \log \left(1+\lambda_{1}\left(L_{f, \mathbf{x}} L_{f, \mathbf{y}}^{*}+\text { c.c. }\right)\right)
$$

resummation!
log-action

- Simulations of two-coupling model give good agreement with YM simulations

Including heavy quarks

- Terms generated by gauge action invariant under global $Z(3)$ center symmetry

$$
S_{\mathrm{symm}}=\sum_{\mathbf{x}, \mathbf{r}} \sum_{n} \sum_{\left\{\mathbf{x}_{i}, \mathbf{r}_{i}\right\}}^{\prime} c_{\left\{\mathbf{x}_{i}, \mathbf{r}_{i}\right\}}^{\mathbf{r}} \chi_{\mathbf{r}}(W(\mathbf{x})) \prod_{i}^{n} \chi_{\mathbf{r}_{i}}\left(W\left(\mathbf{x}+\mathbf{x}_{i}\right)\right)
$$

terms $Z(3)$ and cubic symmetry

- Introduction of quarks explicitly breaks this symmetry
- Hopping parameter expansion of quark determinant
$\operatorname{det} Q=\operatorname{det} Q_{\text {stat }} \operatorname{det} Q_{\text {kin }}$

explicit breaking terms

$$
S^{\prime}=\sum_{f=1}^{N_{f}} \sum_{i} S_{i}^{\prime}\left[W, W^{\dagger}\right]
$$

expanded as series in κ^{2}

- One hopes that low-orders are sufficient

Mean-Field Theory (General)

Kogut et al., Nucl. Phys. B (1982) Greensite and Splittorf, PRD (2012)
${ }^{-}$Applied to $Z(3)$ spin-model and lattice chiral models (T, μ) phase diagram

- Express field by its average plus fluctuations: $L_{x} \rightarrow \bar{L}+\delta L_{x}, L_{x}^{*}=\bar{L}^{*}+\delta L_{x}^{*}$
- Expand the action around vanishing fluctuations
- Neglect higher-order non-local fluctuations: $O\left(\delta L_{x} \delta L_{y}\right)$
- Expectation values factorize as everything is local

$$
\left\langle L_{x} L_{y}\right\rangle_{\mathrm{mf}}=\left\langle L_{x}\right\rangle_{\mathrm{mf}}\left\langle L_{y}\right\rangle_{\mathrm{mf}}
$$

- Modification for log-action: each power of the field receives its own mean-field
- Resummation: keep all local fluctuations: $\delta L_{x}^{n} \delta L_{x}^{*} m-S_{\text {eff }}=6 \sum_{x} \log \left[1+\lambda_{1}\left(L_{x} \bar{L}^{*}+L_{x}^{*} \bar{L}\right)\right]+\ldots$
- Why would this work? Mild sign problem, early studies had success with deconfinement transition

Mean-Field Theory in PET

- Exponentially increasing number of terms describing interactions between Polyakov-loops
- Distance between interaction terms grows with increasing order in κ^{2}

Glessan, 2016

- HOWEVER: coordination number effectively increases as corrections are included
- Mean-field theory exact at infinite coordination number

Mean-Field Theory (Results) Korrad,2022

- Pure gauge mean-field results compared with high-order series expansion

Probe for deconfinement transition by varying the effective pure gauge coupling

- Resummation works and gives good agreement (~3\%)
- Self-consistency vs. variational approach

Mean-Field Theory (Results) Konrad, 2022 Chabane, 2022

- Include terms from the hopping interaction to $O\left(\kappa^{4}\right)$
${ }^{-}$Extend to nonzero baryon μ_{B} and isospin chemical potential: $\mu_{I}=\mu_{u}=-\mu_{d}$

Determining couplings non-perturbatively

- Effective action can be expanded and powers of characters at given site can be reexpressed
- as linear combination of characters
in practice, number of terms truncated

$$
e^{-S_{\mathrm{symm}}}=\tilde{\mathcal{N}}\left(1+\sum_{\mathbf{x}, \mathbf{r}} \sum_{n} \sum_{\left\{\mathbf{x}_{i}, \mathbf{r}_{i}\right\}}^{1} \tilde{\lambda}_{\left\{\mathbf{x}_{i}, \mathbf{r}_{i}\right\}}^{\mathrm{r}} \chi_{\mathbf{r}}(W(\mathbf{x})) \prod_{i}^{n} \chi_{\mathbf{r}_{i}}\left(W\left(\mathbf{x}+\mathbf{x}_{i}\right)\right)\right) \quad \mathbf{l} \mathbf{z}
$$

no correlation at distances
terms in effective action

- Better representation which includes long-range correlations is log action

$$
e^{-S_{\mathrm{symm}}}=\mathcal{N}_{0} \prod_{\mathbf{x}, \mathbf{r}, n} \prod_{\left\{\mathbf{r}_{i}, \mathbf{x}_{i}\right\}}^{\prime}\left[1+\lambda_{\left\{\mathbf{x}_{i}, \mathbf{r}_{i}\right\}}^{\mathbf{r}}\left(\chi_{\mathbf{r}}(W(\mathbf{x})) \prod_{i}^{n} \chi_{\mathbf{r}_{i}}\left(W\left(\mathbf{x}+\mathbf{x}_{i}\right)\right)+\text { c.c. }\right)\right]
$$

Bergner et al., JHEP 2015

- Observable calculated in full effective theory (no truncation) should match full QCD

$$
\tilde{\lambda}_{\left\{\mathbf{x}_{i}, \mathbf{r}_{i}\right\}}^{\mathbf{r}} \propto\left\langle\chi_{\mathbf{r}}(W(\mathbf{x})) \prod_{i}^{n} \chi_{\mathbf{r}_{i}}\left(W\left(\mathbf{x}+\mathbf{x}_{i}\right)\right)\right\rangle_{\mathrm{eff}}=\left\langle\chi_{\mathbf{r}}(W(\mathbf{x})) \prod_{i}^{n} \chi_{\mathbf{r}_{i}}\left(W\left(\mathbf{x}+\mathbf{x}_{i}\right)\right)\right\rangle_{\mathrm{QCD}}
$$

- Express correlators in QCD as a perturbative series in couplings of log-action

Determining couplings non-perturbatively

- Expansion guided by knowledge of couplings from strong-coupling

- Expressions for correlators can be inverted to obtain $\lambda_{i}\left(\beta, \kappa, N_{\tau}\right), h_{i}\left(\beta, \kappa, N_{\tau}\right)$

$$
\lambda_{4} \equiv \lambda_{(1,1,1), \bar{f}}^{f} \propto u^{3 N_{\tau}+4}
$$

$$
\tilde{\lambda}_{a}=\sum_{\left\{n_{i}\right\}} \sum_{\left\{m_{i}, \bar{m}_{i}\right\}} c_{n_{1}, \ldots, n_{N} ; m_{1}, \bar{m}_{1}, \ldots, m_{M}, \bar{m}_{M}}^{(a)} \prod_{i=1}^{N} \lambda_{i}^{n_{i}} \prod_{i=1}^{M} h_{i}^{m_{i}} \bar{h}_{i}^{\bar{m}_{i}} \mid \quad \tilde{h}_{a}=\sum_{\left\{n_{i}\right\}} \sum_{\left\{m_{i}, \bar{m}_{i}\right\}} d_{n_{1}, \ldots, n_{N} ; m_{1}, \bar{m}_{1}, \ldots, m_{M}, \bar{m}_{M}}^{(a)} \prod_{i=1}^{N} \lambda_{i}^{n_{i}} \prod_{i=1}^{M} h_{i}^{m_{i}} \bar{h}_{i}^{\bar{m}_{i}}
$$

$$
\lambda_{\mathrm{adj}}=\lambda_{(1,0,0),(1,1)}^{(1,1)} \propto v^{N_{\tau}} \propto u^{2 N_{\tau}}
$$

$$
\lambda_{\text {sextet }}=\lambda_{(1,0,0),(0,2)}^{(2,0)} \propto w^{N_{\tau}} \propto u^{2 N_{\tau}}
$$

Evaluation of log-action

- Given a set of couplings $\left\{\lambda_{i}, h_{i}\right\}$, how to efficiently evaluate Z (and it's derivatives)?

$$
\begin{gathered}
\tilde{Z}(G)=\frac{1}{Z_{0}(G)} \int \prod_{v \in V(G)} d L_{v} \operatorname{det} Q_{\mathrm{stat}, v} \prod_{i=\{\mathrm{NN}, \ldots 5 \mathrm{NN}\}} \\
\prod_{l \in E_{i}(G)} \prod_{\mathbf{r}(l)}\left[1+\lambda_{i^{\prime}}\left(L_{\mathbf{r}(l), v_{1}(l)} L_{\mathbf{r}(l), v_{2}(l)}+\text { c.c. }\right)\right] \prod_{j} \Delta_{i}^{(j)}(l, \kappa)
\end{gathered} \quad \begin{gathered}
\tilde{Z}(G)=1+\sum_{g \in G \backslash \emptyset} \tilde{\phi}(g) \\
\text { cast as sum over subgraphs }
\end{gathered}
$$

${ }^{\bullet}$ Give a subgraph g, weight can be determined by performing site integrals $I_{n, m}=\int d L L^{n}\left(L^{\star}\right)^{m}$
terms generated by hopping expansion

- Brute-force evaluation on thermodynamically large system difficult (disconnected graphs)

Finite-cluster method

- Each graph weight $\tilde{\phi}(g)$ depends only on the topology of g and NOT the underlying lattice
- Derivation of effective action or evaluation of $\log Z$ could have worked on arbitrary
- embedding graph

$$
\xi(G)=\log \tilde{Z}(G)-\sum_{g \in \mathcal{G}_{c}(G) \backslash G} \xi(g)
$$

Scheunert, 2021

- Avoids embedding of disconnected graphs and preserves log-structure
- Ideal for evaluation of series expansion for correlators in the effective theory

Finite-cluster method

- Direct application to $\log Z$ for effective theory

$$
\frac{\log \tilde{Z}}{V}=\sum_{l=1}^{N_{\max , \mathrm{MD}}} \sum_{g \in\left\{\mathcal{G}_{c}(l)\right\}} \sum_{p \in \mathcal{P}} \frac{W(G ; p)}{S(G)} \xi\left(G_{\Lambda_{s}}^{(p)}\right)
$$

- Completely generalizable to arb. reps and n-point correlation functions

$$
\left\langle L_{\mathbf{r}}(\mathbf{x}) \ldots L_{\mathbf{r}_{n-1}}\left(\mathbf{x}_{n-1}\right)\right\rangle=\sum_{l=1}^{N_{\max , \mathrm{MD}}} \sum_{g \in\left\{\mathcal{G}_{c, n}(l)\right\}} \sum_{p \in \mathcal{P}} \frac{W^{(n)}(G ; p)}{S(G)} \xi^{(n)}\left(G_{\Lambda_{s}}^{(p, n)}\right)
$$

- Main cost in computing generalized weak embedding numbers of colored graphs
- Publically available software for graph isomorphism (canoncalization) problem: Nauty
- Incorporation of higher-order in κ^{2} terms relatively straightforward

Conclusion and Outlook

- Matching between correlators in QCD and PEFT
- Mean-field studies at non-zero μ_{B}, μ_{I}
- Can in principle do better then strong-couplings expressions for couplings
- Efficient method for calculating series expression for arbitrary correlators in PEFT
- $N_{f}=2$ dynamical Wilson simulations in order to obtain both gauge and fermion couplings
- Perform determination of couplings at imaginary μ and use analytic continuation
- Ultimate goal: exploring chiral region with PEFT

GOETHE

Backup

$O\left(\kappa^{2}\right)$ contribution to log-action

$$
\prod_{\langle\mathbf{n}, \mathbf{m}\rangle}\left(1+2 \frac{\kappa^{2} N_{\tau}}{N_{c}}\left(W_{1100}(\mathbf{n})-W_{0011}(\mathbf{n})\right)\left(W_{1100}(\mathbf{n})-W_{0011}(\mathbf{n})\right)\right)
$$

$$
W_{n_{1} m_{1} n_{2} m_{2}}^{(f)}(\mathbf{n}):=\operatorname{tr}\left(\frac{\left(h_{1}^{(f)} W(\mathbf{n})\right)^{m_{1}}}{\left(1+h_{1}^{(f)} W(\mathbf{n})\right)^{n_{1}}} \frac{\left(\bar{h}_{1}^{(f)} W(\mathbf{n})^{\dagger}\right)^{m_{2}}}{\left(1+\bar{h}_{1}^{(f)} W(\mathbf{n})^{\dagger}\right)^{n_{2}}}\right) .
$$

