# The absence of symmetry breaking in the (1+1)-dimensional Gross-Neveu model with bosonic fluctuations at non-zero T and $\mu$

#### Niklas Zorbach

work in collaboration with: J. Braun, A. Koenigstein, D. H. Rischke, M. J. Steil, J. Stoll

Institut für Kernphysik, Technische Universität Darmstadt Technische Universität Darmstadt

HFHF Theory Retreat 2022 September 13, 2022, Castiglione della Pescaia, Italy









The Gross-Neveu model:

- It shares some properties with the QCD like asymptotic freedom (without being a gauge theory) and chiral symmetry.
- It's low dimensional and is well studied.
- In the original version, it is formulated in a purely fermionic theory with only one four-fermion interaction term:

$$S_{\rm GN}(\beta,\mu) = \int_{-\infty}^{\infty} \mathrm{d}x \int_{0}^{\beta} \mathrm{d}\tau \Big[ \bar{\psi}_f (\partial \!\!\!/ - \mu \gamma^0) \psi^f - \frac{g^2}{2N} (\bar{\psi}_f \psi^f)^2 \Big] \,,$$

where f = 1, 2, ..., N, N is the number of fermions,  $\mu$  the chemical potential and  $\beta = 1/T$  the inverse temperature.

• Discrete chiral symmetry:  $\psi \mapsto \gamma_{ch}\psi, \ \bar{\psi} \mapsto -\gamma_{ch}\bar{\psi}.$ 

D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).





- This model is analytically solved in the large-*N* approximation where the number of fermions is send to infinity.
- The phase diagram (PD) has three different phases w.r.t. the order parameter  $\langle \bar{\psi}\psi \rangle$ .

- D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
- U. Wolff, Phys. Lett. B 157, 303-308 (1985).
- M. Thies, J. Phys. A: Math. Gen. 39 12707, (2006).

#### Motivation: Finite N Results





• There are some lattice Monte-Carlo simulations which see indications that there is a **non-trivial PD** similar to the large-*N* diagram.

Fig.: J. Lenz, L. Pannullo, M. Wagner, B. Wellegehausen, A. Wipf, Phys. Rev. D 101, 094512 (2020).

F. Karsch, J. B. Kogut, H. W. Wyld, Nucl. Phys. B 280, 289 (1987).

Y. Cohen, S. Elitzur, E. Rabinovici, Phys. Lett. B 104, 289 (1981).



- What about the theorem of Mermin-Wagner? Holds for continuous symmetries...
- What about Landau's argument which forbids phase coexistence in 1 + 1 dimensions? This should be applicable for finite N!
  - $\Rightarrow$  Expectation: The phase diagram should be **trivial** for T > 0!

This talk: Crosscheck via the FRG.

N. D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

L. D. Landau, E. M. Lifshitz, Statistical Physics, Part 1 & 2.



- **Part I**: we will use the FRG to study SSB.
- **Part II**: we artificially put the FRG calculation on a space-time lattice such that we have the same parameters as in lattice MC simulations.

Part I: J. Stoll, N. Z., A. Koenigstein, M. J. Steil, et al. arXiv:2108.10616 (2021).

Part II: J. Braun, L. Pannullo, N. Z., in preparation.



### Part I

#### Theoretical background



- Main idea: There exists a one-parameter family of actions, the so-called scale dependent effective average action  $\bar{\Gamma}_k$ , which interpolates between the bare action  $\bar{\Gamma}_{k=\Lambda} = \mathcal{S}$  (UV) and the full quantum effective action  $\bar{\Gamma}_{k\to 0} = \Gamma$  (IR).
- The scale dependent effective average action is a solution of a initial value problem given by the **Wetterich equation** (WE)

$$\partial_k \bar{\Gamma}_k[\Phi] = \frac{1}{2} \mathrm{STr} \left\{ \partial_k R_k \left( \bar{\Gamma}_k^{(2)}[\Phi] + R_k \right)^{-1} \right\}$$

and the initial condition  $\bar{\Gamma}_{k=\Lambda} = \mathcal{S}$ .

C. Wetterich, Phys. Lett. B 301, 90-94 (1993).

#### Truncation and regulator choice



• Original fermionic model  $\Rightarrow$  Bosonized GN model via a Hubbard-Stratonovich transformation. The action becomes

$$S_{\rm bGN}(\beta,\mu) = \int_{-\infty}^{\infty} \mathrm{d}x \int_{0}^{\beta} \mathrm{d}\tau \Big[ \bar{\psi}_{f}(\partial \!\!\!/ - \mu \gamma^{0} + h\phi) \psi^{f} - N \frac{h^{2}}{2g^{2}} \phi^{2} \Big] \,,$$

where  $\phi$  is an auxiliary (real) scalar field.

• Since WE is to complicated, we have to truncate  $\overline{\Gamma}_k[\Phi]$ . We choose the **local** potential approximation (LPA):

$$\bar{\Gamma}_k[\Phi] = \int_{-\infty}^{\infty} \mathrm{d}x \int_0^{\beta} \mathrm{d}\tau \Big[ \bar{\psi}_f (\partial \!\!\!/ - \mu \gamma^0 + h\phi) \psi^f + N U_k(\phi) - \frac{1}{2} N \phi \Box \phi \Big]$$

- $U_k(\phi)$  is the only flowing term.
- LPA enforces an artificial kinetic boson term in the UV action.
- Litim regulators: those are optimized within the LPA.

#### Scale dependent effective potential $U_k(\sigma)$

• Inserting the ansatz into the WE and evaluating it at  $\Phi = [\phi = \sigma, \bar{\psi} = 0, \psi = 0]$ , we obtain the flow equation for  $U_k(\sigma)$ :

$$-k\partial_k U_k(\sigma) = \operatorname{bosonic}(k, \partial_\sigma^2 U_k) + \operatorname{fermionic}(k, \sigma)$$

• It is a PDE in **two** variables:  $\sigma$  and k!

Comment on the symmetry:

 The discrete chiral symmetry of the original model is now inherited into the mirror symmetry of U<sub>k</sub>(σ):

$$U_k(-\sigma) = U_k(\sigma) \,.$$

• This symmetry is broken if  $U_k(\sigma)$  has non-trivial minima for  $k \to 0$ .





... this PDE can be reformulated into a continuity equation by applying  $\frac{d}{d\sigma}$ :

$$-k\partial_k u_k(\sigma) = \frac{\mathrm{d}}{\mathrm{d}\sigma}Q(k,\partial_\sigma u) + S(k,\sigma),$$

where  $u \equiv \partial_{\sigma} U$ .

- $Q(k, \partial_{\sigma} u)$  is a highly non-linear **diffusion** term (bosonic) and
- $S(k, \sigma)$  is the **source** term (fermionic).

This gives us the opportunity to use **finite volume methods**.

A. Koenigstein, M. J. Steil, N. Wink, et al. arXiv:2108.02504 (2021)

E. Grossi, N. Wink arXiv:1903.09503 (2019)

Finite volume method: A. Kurganov, E. Tadmor, J. Comput. Phys. 160, 241 - 282 (2000).

#### Initial condition and the early RG flow





- Goal: RG-consistent initial condition, i.e.,  $\partial_{\Lambda} U_{k=0} = 0$ .
- Observation: For very large RG scales k the bosonic term is negligible.
  ⇒ Choose the initial condition via the MF flow:

$$\frac{1}{g^2} = \frac{1}{\pi} \left\{ \operatorname{arsinh}(\frac{\Lambda}{h}) - [1 + \left(\frac{h}{\Lambda}\right)^2]^{-1/2} \right\}, \text{ s.t. } \sigma_{\mathrm{MF,min}} = 1 \text{ for } T = \mu = 0$$

- This makes the IR  $\Lambda\text{-independent.}$
- All dimensionful quantities are given in units of  $h\sigma_{\rm MF,min}$  for  $T = \mu = 0$ .



### Part I

#### Numerical results

#### Sample RG flow





- At high k, the fermionic part dominates and acts like a sink ⇒ The minimum of U<sub>k</sub>(σ) becomes nonzero.
- At low k, the bosonic part dominates and flattens u<sub>k</sub>(σ)
  ⇒ The minimum of U<sub>k</sub>(σ) becomes zero again.

#### Sample RG flow



 $T = 0.1, \ \mu = 0.1, \ N = 2, \ \Lambda = 10^5$ ії в Restoration scale 0 3 2 $m_{\sigma}^2$ 1 0  $10^{-3}$  $10^{-2}$  $10^{-1}$  $10^{0}$  $10^{1}$  $10^{2}$  $10^{3}$  $10^{4}$  $10^{5}$ k

- $\sigma_{\min}$  is the global minimum of  $U_k(\sigma)$  and  $m_{\sigma}^2$  is its curvature at  $\sigma_{\min}$ .
- The restoration scale  $k_{res}$  is the scale where the broken symmetry restores.
- We find a similar behavior for T > 0,  $N < \infty$  and arbitrary  $\mu$ .

#### Phase diagram





- For small RG scales, the **broken phase** shrinks towards lower temperatures and **vanishes** for all our test points with T > 0.
- Indications for SSB at T = 0and small  $\mu$ .

• To be more quantitative, we analyze the T-,  $\mu$ - and N-dependence of the restoration scale and extrapolate it w.r.t. N and T.

#### Restoration scale: T- & $\mu$ -dependence







#### **Restoration scale:** *N*-dependence





• The bosonic part is suppressed by the factor N, hence we have to flow to deeper energies to see restoration.



- Our results suggest that there is no SSB in the IR for finite N and T > 0.
- For T = 0 and small  $\mu$  we see indications for SSB.

This supports Landau's argument and disagrees with the observations from the lattice calculations.

J. Stoll, N. Z., A. Koenigstein, M. J. Steil, et al. arXiv:2108.10616 (2021).



### Part II

#### Continuum to finite lattice



The momentum/reciprocal space  $\tilde{V}$  depends on the position space V and on the boundary conditions of the fields on it.

- Finite  $V = L^d$  corresponds to the discretization of  $\tilde{V} = (\frac{2\pi}{L}(\mathbb{Z} + s_{\mu}))^d$ , where  $s_{\mu}$  denotes whether we have periodic or antiperiodic boundary conditions in the  $\mu$ -th direction.
- Discrete  $V = (a\mathbb{Z})^d$  corresponds to the restriction to the first Brillouin zone,  $\tilde{V} = (-\frac{\pi}{a}, \frac{\pi}{a}]^d$ .
- Finite lattice, i.e., finite and discrete V, is the combination.



Using the two-dimensional Litim regulator and momenta spaces  $\tilde{V}_{\rm b}$  and  $\tilde{V}_{\rm f}$ , the flow equation reads

$$-k\partial_k U_k(\sigma) = \frac{1}{V} \sum_{\boldsymbol{q} \in \tilde{V}_{\rm b}} \frac{1}{N} \frac{-\epsilon_k \Theta(1 - \epsilon_{\boldsymbol{q}}^{\rm b}/\epsilon_k)}{\epsilon_k + \partial_{\sigma}^2 U_k(\sigma)} - \frac{1}{V} \sum_{\boldsymbol{q} \in \tilde{V}_{\rm f}} \frac{-d_{\gamma} \epsilon_k \Theta(1 - \epsilon_{\boldsymbol{q}}^{\rm f}/\epsilon_k)}{\epsilon_k + \sigma^2} \,,$$

where  $\epsilon_k = \epsilon_0 k^2$ .

- In the Heaviside function we compare **energies**, not the distance of two momenta.
- We can use the same numerics to solve this flow equation.

For a discrete V we have to choose some discretization for the bosonic and fermionic fields. In the flow equation this is encoded through the dispersion relations  $\epsilon_q^{\mathrm{b/f}}$ :

• NAIVE discretization:

$$\epsilon_{\boldsymbol{q}}^{\mathrm{b}} = \sum_{\mu} \left[ \frac{2}{a} \sin(\frac{1}{2}a\boldsymbol{q} \cdot \boldsymbol{e}_{\mu}) \right]^{2}, \quad \epsilon_{\boldsymbol{q}}^{\mathrm{f}} = \sum_{\mu} \left[ \frac{1}{a} \sin(a\boldsymbol{q} \cdot \boldsymbol{e}_{\mu}) \right]^{2}.$$

• SLAC discretization:

$$\epsilon^{\mathrm{b}}_{\boldsymbol{q}} = \epsilon^{\mathrm{f}}_{\boldsymbol{q}} = \sum_{\mu} \left[ \boldsymbol{q} \cdot \boldsymbol{e}_{\mu} \right]^2.$$



#### **Dispersion** relations







- In total we have five dimensionful quantities:  $T, L, a, \Lambda$  and  $k_{\text{IR}}$ .
- How can we **remove**  $\Lambda$  and  $k_{\text{IR}}$ ?
  - The UV-cutoff can be removed by choosing, e.g.,  $\Lambda = 100 \frac{\pi}{a}$ .
  - For fermions we find a minimal energy  $\min_{q \in \tilde{V}_{f}} \epsilon_{q}^{f} > 0$ , this means that there exists a RG scale  $k^{\star}$  such that for  $k < k^{\star}$  the fermions give no further contribution to the flow.
  - This argument is not applicable for the boson, since it has a zero energy mode meaning that we have to take  $k_{\rm IR} \rightarrow 0$  even if we are on a finite lattice.
- We are now left with only T, L and a as in lattice calculations.



### Part II

#### Numerical results

### Sample RG flows





- **Conclusion**: Still no SSB detected neither in infinite volume nor in finite volume nor on a finite lattice for our various discretizations.
- However, it is now possible to directly compare both methods: Lattice and FRG calculations. (This is also possible for other models like NJL-type models, e.g., the QM model.)



#### Summary:

- Within the LPA, we find a trivial PD for T > 0 and  $N < \infty$ .
- Our results suggest that there could be SSB for T = 0 and small  $\mu$ .
- Finite lattice spacing and lattice extent do not alter these results (for  $\mu = 0$ ).

This supports Landau's argument and disagrees with the lattice MC simulations.

#### **Outlook:**

- The reason for this discrepancy is not clear yet.
- But we are currently working on it in a FRG-lattice collaboration.

J. Stoll, N. Z., A. Koenigstein, M. J. Steil, et al. arXiv:2108.10616 (2021).

FRG-lattice collaboration: J. Braun, L. Pannullo, N. Z., in preparation.

### Thank you for your attention!









## Appendix





#### Initial condition



