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Motivation
The Gross-Neveu model:
• It shares some properties with the QCD like asymptotic freedom (without being

a gauge theory) and chiral symmetry.

• It’s low dimensional and is well studied.

• In the original version, it is formulated in a purely fermionic theory with only
one four-fermion interaction term:

SGN(β, µ) =

∫ ∞

−∞
dx

∫ β

0
dτ

[
ψ̄f (/∂ − µγ0)ψf − g2

2N
(ψ̄fψ

f )2
]
,

where f = 1, 2, . . . , N , N is the number of fermions, µ the chemical potential and
β = 1/T the inverse temperature.

• Discrete chiral symmetry: ψ 7→ γchψ, ψ̄ 7→ −γchψ̄.

D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.10.3235


Motivation: The large-N approximation
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• This model is analytically
solved in the large-N
approximation where the
number of fermions is send to
infinity.

• The phase diagram (PD) has
three different phases w.r.t.
the order parameter 〈ψ̄ψ〉.

D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
U. Wolff, Phys. Lett. B 157, 303-308 (1985).
M. Thies, J. Phys. A: Math. Gen. 39 12707, (2006).
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.10.3235
https://www.sciencedirect.com/science/article/abs/pii/0370269385906719
https://iopscience.iop.org/article/10.1088/0305-4470/39/41/S04


Motivation: Finite N Results

• There are some lattice
Monte-Carlo simulations
which see indications that
there is a non-trivial PD
similar to the large-N
diagram.

Fig.: J. Lenz, L. Pannullo, M. Wagner, B. Wellegehausen, A. Wipf, Phys. Rev. D 101, 094512 (2020).
F. Karsch, J. B. Kogut, H. W. Wyld, Nucl. Phys. B 280, 289 (1987).
Y. Cohen, S. Elitzur, E. Rabinovici, Phys. Lett. B 104, 289 (1981).
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.094512
https://doi.org/10.1016/0550-3213(87)90149-0
https://doi.org/10.1016/0370-2693(81)90128-3


How does the PD look like for finite N?

• What about the theorem of Mermin-Wagner?
Holds for continuous symmetries...

• What about Landau’s argument which forbids phase coexistence in 1 + 1
dimensions? This should be applicable for finite N !

⇒ Expectation: The phase diagram should be trivial for T > 0!

This talk: Crosscheck via the FRG.

N. D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
L. D. Landau, E. M. Lifshitz, Statistical Physics, Part 1 & 2.

5 / 25

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.17.1133


In this talk ...

• Part I: we will use the FRG to study SSB.

• Part II: we artificially put the FRG calculation on a space-time lattice such that
we have the same parameters as in lattice MC simulations.

Part I: J. Stoll, N. Z., A. Koenigstein, M. J. Steil, et al. arXiv:2108.10616 (2021).
Part II: J. Braun, L. Pannullo, N. Z., in preparation.
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https://arxiv.org/pdf/2108.10616.pdf


Part I
Theoretical background
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Functional Renormalization Group

• Main idea: There exists a one-parameter family of actions, the so-called scale
dependent effective average action Γ̄k, which interpolates between the bare
action Γ̄k=Λ = S (UV) and the full quantum effective action Γ̄k→0 = Γ (IR).

• The scale dependent effective average action is a solution of a initial value
problem given by the Wetterich equation (WE)

∂kΓ̄k[Φ] =
1
2STr

{
∂kRk

(
Γ̄
(2)
k [Φ] +Rk

)−1
}

and the initial condition Γ̄k=Λ = S.

C. Wetterich, Phys. Lett. B 301, 90-94 (1993).
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https://www.sciencedirect.com/science/article/abs/pii/037026939390726X?via%3Dihub


Truncation and regulator choice
• Original fermionic model ⇒ Bosonized GN model via a

Hubbard-Stratonovich transformation. The action becomes

SbGN(β, µ) =

∫ ∞

−∞
dx

∫ β

0
dτ

[
ψ̄f (/∂ − µγ0 + hφ)ψf −N h2

2g2
φ2

]
,

where φ is an auxiliary (real) scalar field.
• Since WE is to complicated, we have to truncate Γ̄k[Φ]. We choose the local

potential approximation (LPA):

Γ̄k[Φ] =

∫ ∞

−∞
dx

∫ β

0
dτ

[
ψ̄f (/∂ − µγ0 + hφ)ψf +NUk(φ)− 1

2Nφ�φ
]

• Uk(φ) is the only flowing term.
• LPA enforces an artificial kinetic boson term in the UV action.

• Litim regulators: those are optimized within the LPA.
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Scale dependent effective potential Uk(σ)

• Inserting the ansatz into the WE and evaluating it at Φ = [φ = σ, ψ̄ = 0, ψ = 0],
we obtain the flow equation for Uk(σ):

−k∂kUk(σ) = bosonic(k, ∂2σUk) + fermionic(k, σ)

• It is a PDE in two variables: σ and k!

Comment on the symmetry:
• The discrete chiral symmetry of the original model is now inherited into the

mirror symmetry of Uk(σ):

Uk(−σ) = Uk(σ) .

• This symmetry is broken if Uk(σ) has non-trivial minima for k → 0.

9 / 25



LPA flow eq. as a continuity equation

... this PDE can be reformulated into a continuity equation by applying d
dσ :

−k∂kuk(σ) =
d

dσ
Q(k, ∂σu) + S(k, σ),

where u ≡ ∂σU .

• Q(k, ∂σu) is a highly non-linear diffusion term (bosonic) and
• S(k, σ) is the source term (fermionic).

This gives us the opportunity to use finite volume methods.

A. Koenigstein, M. J. Steil, N. Wink, et al. arXiv:2108.02504 (2021)
E. Grossi, N. Wink arXiv:1903.09503 (2019)
Finite volume method: A. Kurganov, E. Tadmor, J. Comput. Phys. 160, 241 – 282 (2000).
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https://arxiv.org/pdf/2108.02504.pdf
https://arxiv.org/pdf/1903.09503.pdf
https://www.sciencedirect.com/science/article/pii/S0021999100964593?via%3Dihub


Initial condition and the early RG flow

Uk
UΛ

k � T, µ
∝ MF flow

U0,vac U0(T, µ) U0(T
′, µ′)

• Goal: RG-consistent initial condition, i.e., ∂ΛUk=0 = 0.
• Observation: For very large RG scales k the bosonic term is negligible.
⇒ Choose the initial condition via the MF flow:

1
g2

= 1
π

{
arsinh(Λh )− [1 +

(
h
Λ

)2
]−1/2

}
, s.t. σMF,min = 1 for T = µ = 0

• This makes the IR Λ-independent.
• All dimensionful quantities are given in units of hσMF,min for T = µ = 0.
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Part I
Numerical results
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Sample RG flow
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• At high k, the fermionic
part dominates and acts like
a sink ⇒ The minimum of
Uk(σ) becomes nonzero.

• At low k, the bosonic part
dominates and flattens uk(σ)
⇒ The minimum of Uk(σ)
becomes zero again.
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Sample RG flow
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• σmin is the global minimum
of Uk(σ) and m2

σ is its
curvature at σmin.

• The restoration scale kres
is the scale where the broken
symmetry restores.

• We find a similar behavior
for T > 0, N <∞ and
arbitrary µ.
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Phase diagram
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• For small RG scales, the
broken phase shrinks
towards lower temperatures
and vanishes for all our test
points with T > 0.

• Indications for SSB at T = 0
and small µ.

• To be more quantitative, we analyze the T -, µ- and N -dependence of the
restoration scale and extrapolate it w.r.t. N and T .
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Restoration scale: T - & µ-dependence
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Restoration scale: N-dependence
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• The bosonic part is suppressed by the factor N , hence we have to flow to deeper

energies to see restoration.
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Conclusions of Part I

• Our results suggest that there is no SSB in the IR for finite N and T > 0.

• For T = 0 and small µ we see indications for SSB.

This supports Landau’s argument and disagrees with the observations from the
lattice calculations.

J. Stoll, N. Z., A. Koenigstein, M. J. Steil, et al. arXiv:2108.10616 (2021).
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https://arxiv.org/pdf/2108.10616.pdf


Part II
Continuum to finite lattice
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Momentum spaces

The momentum/reciprocal space Ṽ depends on the position space V and on the
boundary conditions of the fields on it.

• Finite V = Ld corresponds to the discretization of Ṽ = (2πL (Z+ sµ))
d, where sµ

denotes whether we have periodic or antiperiodic boundary conditions in the
µ-th direction.

• Discrete V = (aZ)d corresponds to the restriction to the first Brillouin zone,
Ṽ = (−π

a ,
π
a ]

d.

• Finite lattice, i.e., finite and discrete V , is the combination.
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LPA flow equation

Using the two-dimensional Litim regulator and momenta spaces Ṽb and Ṽf , the flow
equation reads

−k∂kUk(σ) =
1

V

∑
q∈Ṽb

1

N

−εkΘ(1− εbq/εk)

εk + ∂2σUk(σ)
− 1

V

∑
q∈Ṽf

−dγεkΘ(1− εfq/εk)

εk + σ2
,

where εk = ε0k
2.

• In the Heaviside function we compare energies, not the distance of two
momenta.

• We can use the same numerics to solve this flow equation.
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Dispersion relations

For a discrete V we have to choose some discretization for the bosonic and fermionic
fields. In the flow equation this is encoded through the dispersion relations εb/fq :

• NAIVE discretization:

εbq =
∑
µ

[
2

a
sin(

1

2
aq · eµ)

]2

, εfq =
∑
µ

[1
a
sin(aq · eµ)

]2
.

• SLAC discretization:

εbq = εfq =
∑
µ

[
q · eµ

]2
.
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Dispersion relations
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Scales in the system

• In total we have five dimensionful quantities: T , L, a, Λ and kIR.

• How can we remove Λ and kIR?
• The UV-cutoff can be removed by choosing, e.g., Λ = 100π

a .
• For fermions we find a minimal energy minq∈Ṽf

εfq > 0, this means that there exists
a RG scale k? such that for k < k? the fermions give no further contribution to the
flow.

• This argument is not applicable for the boson, since it has a zero energy mode
meaning that we have to take kIR → 0 even if we are on a finite lattice.

• We are now left with only T , L and a as in lattice calculations.
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Part II
Numerical results

22 / 25



Sample RG flows
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1• Conclusion: Still no SSB detected neither in infinite volume nor in finite
volume nor on a finite lattice for our various discretizations.

• However, it is now possible to directly compare both methods: Lattice and FRG
calculations. (This is also possible for other models like NJL-type models, e.g.,
the QM model.)
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Summary & Outlook

Summary:
• Within the LPA, we find a trivial PD for T > 0 and N <∞.
• Our results suggest that there could be SSB for T = 0 and small µ.
• Finite lattice spacing and lattice extent do not alter these results (for µ = 0).

This supports Landau’s argument and disagrees with the lattice MC simulations.

Outlook:
• The reason for this discrepancy is not clear yet.
• But we are currently working on it in a FRG-lattice collaboration.

J. Stoll, N. Z., A. Koenigstein, M. J. Steil, et al. arXiv:2108.10616 (2021).
FRG-lattice collaboration: J. Braun, L. Pannullo, N. Z., in preparation.
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Thank you for your attention!
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Appendix
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Modes count
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Initial condition
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