

**Owe Philipsen** 

Based on: Glozman, O.P., Pisarski, arXiv:2204.05083 Darmstadt, 10.04.14 Lowdon, O.P., arXiv:2207.14718 Istadt, 10.04.14 NIC at GU and GSI: La

# QCD





**Owe Philipsen** 







## Chiral spin symmetry

 $\begin{array}{ll} \mbox{Trafo:} & \mbox{Generators:} \\ \mbox{Dirac:} & \psi \to \psi' = \exp\left(i\frac{\varepsilon^n \Sigma^n}{2}\right)\psi & \Sigma^n = \{\gamma_k, -i\gamma_5\gamma_k, \gamma_5\} & k = 1, 2, 3, 4 \\ \mbox{Weyl:} & {\binom{R}{L}} \to {\binom{R'}{L'}} = \exp\left(i\frac{\varepsilon^n \sigma^n}{2}\right){\binom{R}{L}} & [\Sigma^a, \Sigma^b] = 2\mathrm{i}\epsilon^{abc}\Sigma^c & su(2) \end{array}$ 

Obviously:  $SU(2)_{CS} \supset U(1)_A$ 

Not so obvious  $SU(2)_{CS} \otimes SU(2)_F$ :  $\{(\vec{\tau} \otimes \mathbb{1}_D), (\mathbb{1}_F \otimes \vec{\Sigma}_k), (\vec{\tau} \otimes \vec{\Sigma}_k)\}$  15 generators  $\bigcup_{SU(4) \supset SU(2)_L \times SU(2)_R \times U(1)_A}$ 

## **Relations in multiplets**



#### chiral symmetry

#### CS symmetry

Rohrhofer et al., Phys. Lett. B802 (2020)

## Emergent CS symmetry: where does it come from?

The classical QCD action in the chiral limit is **not** CS symmetric!

The free quark action in the chiral limit is **not** CS symmetric!

Quark gluon interactions:

colour-electric  
$$\bar{\psi}\gamma_0 T^a \psi A_0^a$$
  
CS invariant

colour-magnetic  $\bar{\psi}\gamma_i T^a \psi \; A^a_i$ breaks CS

Necessary condition for approximate CS symmetry:

Quantum effective action  $\Gamma_k$  dominated by colour-electric interactions!

#### Spatial and temporal correlators at finite T

Chiral symmetry restoration at finite T

$$C_{\Gamma}(\tau, \boldsymbol{x}) = \langle O_{\Gamma}(\tau, \boldsymbol{x}) O_{\Gamma}(0, \boldsymbol{0}) \rangle \qquad C_{\Gamma}(\tau, \boldsymbol{p}) = \int_{0}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho_{\Gamma}(\omega, \boldsymbol{p}) ,$$
$$K(\tau, \omega) = \frac{\cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)} .$$

$$C_{\Gamma}^{s}(z) = \sum_{x,y,\tau} C_{\Gamma}(\tau, \boldsymbol{x})$$
$$C_{\Gamma}^{\tau}(\tau) = \sum_{x,y,z} C_{\Gamma}(\tau, \boldsymbol{x})$$

Spectral function contains all information about degrees of freedom

 $r \propto 1$ 

Inversion from discrete data ill-posed problem

Finite T has preferred reference frame: colour-electric and colour magnetic distinguishable! Symmetry in spatial and temporal correlators sufficient for symmetry of spectral function



#### Temporal correlators at finite T

#### JLQCD domain wall fermion configurations

Rohrhofer et al., Phys. Lett. B802 (2020)



 $48^3 \times 12$   $T = 220 \text{MeV} (1.2T_c)$  (a = 0.075 fm)

### Three temperature regimes of QCD



Rohrhofer et al., Phys. Rev. D100 (2019)

## How to classify effective degrees of freedom?

No universal, or generally accepted, definition of "confinement"

Vacuum QCD: Quark Hadron Duality [e.g

[e.g. M. Shifman, hep-ph/0009131]

Experimental observables are always hadronic. Quark hadron duality holds, when these follow perturbative predictions for partonic (sub-)processes



#### Check well-studied observables: screening masses

$$C_{\Gamma}^{s}(z) = \sum_{x,y,\tau} C_{\Gamma}(\tau, \boldsymbol{x}) \xrightarrow{z \to \infty} \text{const. } e^{-m_{scr} z}$$

Directly related to the partition function and equation of state

by transfer matrices:  $T = e^{-aH}, T_z = e^{-aH_z}$ 

$$e^{pV/T} = Z = \operatorname{Tr}(e^{-aHN_{\tau}})$$
$$= \operatorname{Tr}(e^{-aH_zN_z}) = \sum_{n_z} e^{-E_{n_z}N_z}$$

Screening masses: eigenvalues of  $H_z$ 

For T=0 equivalent to eigenvalues of H, for  $T \neq 0$  "finite size effect"

### Colour-electric vs. colour magnetic fields

Scales at finite T:Matsubara  $\sim \pi T$ , hard modes, fermionsQCDDebye/electric  $\sim gT$ ,  $A_0$ EQCDmagnetic  $\sim g^2T$ ,  $A_i$ MQCD



Colour-electric fields dynamically dominant, perturbative ordering reversed!

No quark hadron duality; expected for soft scales of EQCD at low T



## Meson screening masses at intermediate temperatures

HotQCD, Phys. Rev. D100 (2019) staggered fermions, physical point, continuum extrapolated



....and the same pattern also for  $\bar{s}s$ 





drastic change: "vertical" - "horizontal"

Remember resummed pert. theory:

$$\frac{m_{PS}}{2\pi T} = 1 + p_2 \,\hat{g}^2(T) + p_3 \,\hat{g}^3(T) + p_4 \,\hat{g}^4(T) ,$$
$$\frac{m_V}{2\pi T} = \frac{m_{PS}}{2\pi T} + s_4 \,\hat{g}^4(T) ,$$

Cannot describe the "bend"

No quark hadron duality for T<0.5 GeV in 12 lightest meson channels! CS symmetry!

Chiral symmetry restoration

Heavy chiral partners "come down" in all flavour combinations



pressure increases

## Finite density

Finite density:  $\mu \bar{\psi} \gamma_0 \psi$  is CS invariant; regime must continue to finite density

Upper "boundary" of CS band: screening mass at "bend" (one possible def.)

$$r_V^{-1} \equiv m_V(\mu_B = 0, T_s) = C_0 T_s$$
  $\longrightarrow$   $T < T_s$  unscreened  
 $T > T_s$  screened

For small 
$$\mu_B$$
  

$$\frac{m_V(\mu_B)}{T} = C_0 + C_2 \left(\frac{\mu_B}{T}\right)^2 + \dots \qquad \longrightarrow \qquad \frac{dT_s}{d\mu_B} = -\frac{2C_2}{C_0} \frac{\mu_B}{T} - \frac{2C_2^2}{C_0^2} \left(\frac{\mu_B}{T}\right)^3 + \dots$$

$$C_2 > 0$$

Lower "boundary" of CS band: (this is a lower bound only)

$$\frac{T_{\rm pc}(\mu_B)}{T_{\rm pc}(0)} = 1 - 0.016(5) \left(\frac{\mu_B}{T_{\rm pc}(0)}\right)^2 + \dots \approx \frac{T_{\rm ch}(\mu_B)}{T_{\rm ch}(0)}$$

Separate order parameters for  $SU(2)_A, U(1)_A, SU(4)$  ?

## Possibilities for the QCD phase diagram



Cold and dense candidate: baryon parity doublet models CS symmetric [Glozman, Catillo PRD 18]

- Quarkyonic matter [McLerran, Pisarski, NPA 07; O.P., Scheunert JHEP 19] Contains regime with chirally symmetric baryon matter Fully consistent with transient intermediate CS regime!
- Can be realized wit or without non-analytic chiral phase transition!



## Effective degrees of freedom...? - Spectral functions

Based on micro-causality of scalar, local quantum fields at finite T:

[Bros, Buchholz., NPB 94, Ann. Inst. Poincare Phys. Theor. 96]

$$\rho_{\rm PS}(p_0, \vec{p}) = \int_0^\infty ds \int \frac{d^3 \vec{u}}{(2\pi)^2} \ \epsilon(p_0) \,\delta\big(p_0^2 - (\vec{p} - \vec{u})^2 - s\big) \,\widetilde{D}_\beta(\vec{u}, s)$$

Exact, goes to Källen-Lehmann representation for T 
ightarrow 0

thermal spectral density

For stable massive particle with gap to continuum states (QCD pions!):

Ansatz 
$$\widetilde{D}_{\beta}(\vec{u},s) = \widetilde{D}_{m,\beta}(\vec{u})\,\delta(s-m^2) + \widetilde{D}_{c,\beta}(\vec{u},s)$$

Analytic structure inherited from vacuum, in absence of phase transition



low energy behaviour influenced (at low T dominated) by vacuum particle states

### Why this is plausible

V,A correlators in the chiral limit using PCAC,  $\epsilon = T^2/(6f_\pi^2)$ [Dey, Eletsky, loffe PLB 90]

$$C_V(p,T) = (1 - \epsilon)C_V(p,0) + \epsilon C_A(p,0)$$
$$C_A(p,T) = (1 - \epsilon)C_A(p,0) + \epsilon C_V(p,0)$$

General spectral decomposition of spatial correlators

$$C_{\Gamma}(\tau, \mathbf{0}, T) = \sum_{m, n} |\langle m | O_{\Gamma}(0, \mathbf{0}) | n \rangle|^2 \ e^{-\tau (E_n - E_0)} e^{-(T - \tau)(E_m - E_0)}$$

Analytic structure of vacuum still dominant for low temperatures



### Conclusions

- QCD has an emergent approximate Chiral Spin symmetry in an intermediate temperature and density range
- Screening masses entirely non-perturbative in that window
- New spectral representation based on old locality principles: spectral functions from spatial lattice correlators
- Effective degrees of freedom in CS-regime consistent with hadron-like states
- CS-regime extends as a band into QCD phase diagram; natural connection to quarkyonic matter, investigate imag. chem. pot.