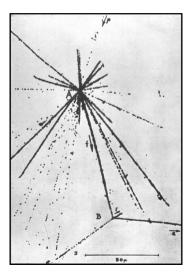
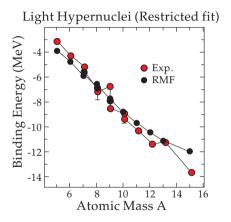
Hypernuclei in Heavy Ion Collisions

Tom Reichert thanks to: Jan Steinheimer-Froschauer, V. Vovchenko, B. Dönigus and M. Bleicher

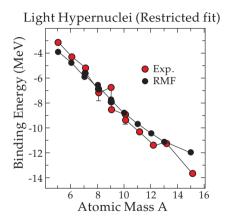

Institut für Theoretische Physik, Goethe-Universität Frankfurt

13.09.2022

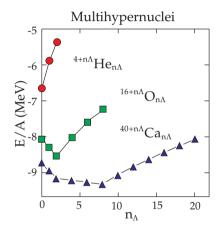
HFHF Theory Retreat, Castiglione della Pescaia, Italy, 12-17th September


First hypernuclear event

- Hypernuclei are nuclei with at least one bound hyperon.
- The first hypernuclear measurement by Danysz and Pniewski from a cosmic ray emulsion event (1952).



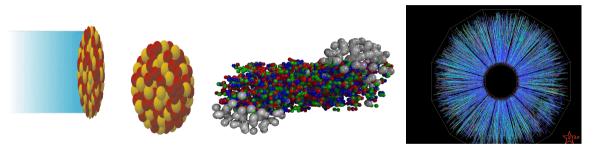
(Multi-)Lambda binding energies


- Emulsion data exists up to mass number A = 15
- $\bullet~\Lambda$ binding energies increase linearly with mass number
 - J. Schaffner-Bielich, February 18, 2010, Nantes

(Multi-)Lambda binding energies

- Emulsion data exists up to mass number ${\cal A}=15$
- $\bullet~\Lambda$ binding energies increase linearly with mass number

J. Schaffner-Bielich, February 18, 2010, Nantes



 Binding energy increases for heavy systems, some magic numbers.
J. Schaffner-Bielich, February 18, 2010, Nantes

- First bound Ξ hypernucleus seen in 1959 (Wilkinson, Lorant, Robinson, Lokanathan, PRL 3 (1959) 397)
- Two hypernuclei emitted: $\Xi + N \rightarrow \Lambda + \Lambda$
- ${}^8_{\Xi}\mathsf{B}$ with $B_{\Xi} = 8.1 \pm 1.2$

Hypernucleus	$B_{\Xi^{-}}$ [MeV]	B_{Ξ^0} [MeV]
⁸ ≘He	8.1 ± 1.2	14.2 ± 1.8
$^{11}_{\Xi}B$	9.2 ± 2.2	0.4 ± 2.8
$^{13}_{\Xi}C$	18.1 ± 3.2	-4.3 ± 3.8
${}^{15}_{\Xi}C$	16.0 ± 4.7	11.1 ± 5.3
$^{17}_{\Xi}O$	16.0 ± 5.5	-4.5 ± 6.1
${}^{28}_{\Xi}AI$	23.2 ± 6.8	13.3 ± 7.4

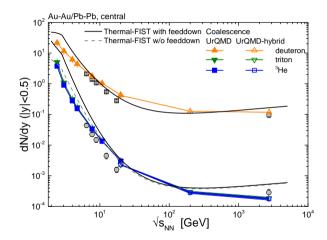
Hypernuclear production mechanisms in HIC

- Fireball in a HI-collision is an abundant source of strangeness
- Clusters are formed at or after the hadronic freeze-out
- Big discovery potential but short lifetime, fast expansion and finite size emission make things complicated.

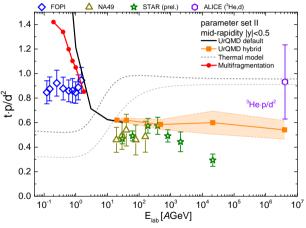
- Nuclei are weakly bound, compared to the momentum transfer of last scatterings before freeze out.
- The observed final state must be formed after the last scattering of their constituents.
- Take transport model of choice and calculate phase space distributions of baryons.
- A cluster is formed whenever the correct combination of baryons occupies a certain phase space volume defined by ρ_{AB}

$$dN/d\vec{P} = g \int f_A(\vec{x}_1, \vec{p}_1) f_B(\vec{x}_2, \vec{p}_2) \rho_{AB}(\Delta \vec{x}, \Delta \vec{p}) \delta(\vec{P} - \vec{p}_1 - \vec{p}_2) d^3x_1 \ d^3x_2 \ d^3p_1 \ d^3p_2$$

Numerical procedure: 'Box-coalescence'


We look in the two-particle-rest-frame of each possible two-nucleon pair with the correct isospin combination. If their relative distance $\Delta r = |\vec{r_1} - \vec{r_2}| < \Delta r_{max,nn} = 3.575$ fm and momentum distance $\Delta p = |\vec{p_1} - \vec{p_2}| < \Delta p_{max,nn} = 0.285$ GeV, a two nucleon state is potentially formed with the combined momenta at position $\vec{r_{nn}} = (\vec{r_1} + \vec{r_2})/2$.

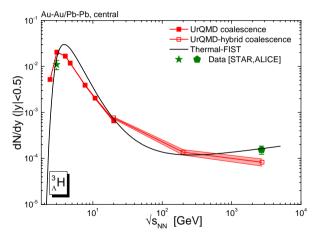
2 As second step we boost into the local rest-frame of this two nucleon state and any other possible third nucleon. If the conditions of their relative distance $\Delta r = |\vec{r}_{nn} - \vec{r}_3| < \Delta r_{max,nnn}$ and momentum distance $\Delta p = |\vec{p}_{nn} - \vec{p}_3| < \Delta p_{max,nnn}$ are fulfilled, a triton (Z = 1) or helium-3 (Z = 2) is formed with the probability of (1/12).


Light nuclei multiplicities

- Deuteron, triton and ³He are well reproduced.
- Differences between triton and ³He at low beam energies due to isospin asymmetry.
- Slightly too much stopping at intermediate energies.
- ALICE: Deuteron well described, ³He seems underestimated.

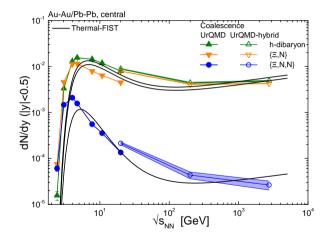
Probabilities		d	t, ³ He	
spin-isospin factor		3/8	1/12	
Parameters	NN		NNN	
Δr_{max} [fm]	3	8.575	4.3	
Δp_{max} [GeV]	0).285	0.35	

- Double ratio shows more sensitivity than log plot.
- Proposed as measure for fluctuations K. J. Sun, L. W. Chen, C. M. Ko, J. Pu and Z. Xu, Phys. Lett. B 781 (2018), 499-504
- Double ratio is flat, except increase at low energies.
- This is due to too many free protons (larger clusters are missing).
- Multifragmentation of fireball picture more reasonable here?



P. Hillmann, K. Käfer, J. Steinheimer, V. Vovchenko and M. Bleicher, J. Phys. G **49**, no.5, 055107 (2022)

Moving on to hypernuclei

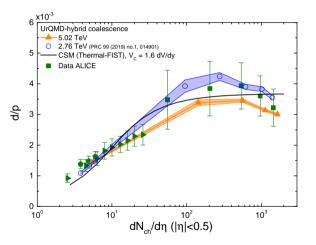

- Data on hypertriton multiplicities is scarce.
- We fixed the parameters mainly from previous calculations.
 J. Steinheimer, K. Gudima, A. Botvina, I. Mishustin, M. Bleicher and H. Stöcker, Phys. Lett. B 714 (2012), 85-91
- Strangeness at very low energies is overestimated (potential effects)
- Strangeness at intermediate energies is underestimated (the horn)
- Similar to the ${}^{3}\text{He}$, ${}^{3}_{\Lambda}\text{H}$ seems underestimated compared to ALICE data.

Parameters	$^{3}_{\Lambda}$ H	
Δr_{max} [fm]	9.5	
Δp_{max} [GeV]	0.135	

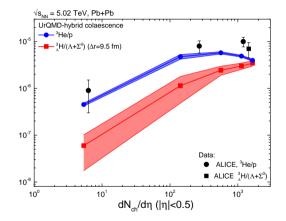


Multiplicities for multistrange objects

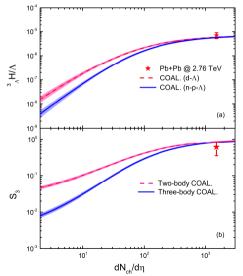
- Using the same parameters as for hypertriton we can predict multihypernuclear objects.
- Most are unlikely to be bound?
- Note: shown is sum over all possible isospin combinations.
- Multistrange particle production slightly increased in hybrid model due to thermalization.
- Huge discovery potential.



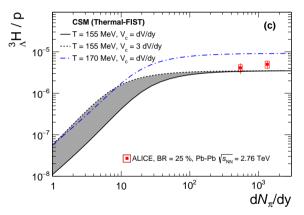
- Another special ratio which was thought to be sensitive on baryon-strangeness correlations: $S_3 = {}^3_{\Lambda} H/{}^3 He \cdot p/\Lambda$
- New results shows small increase at higher beam energies.
- Unfortunately error bars are large and only few data are available.
- UrQMD with $\Delta r=9.5~{\rm fm}$ describes data best


Deuteron to proton ratio

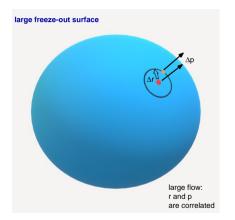
- New results at 5 TeV (orange) compared to old results at 2.7 TeV (blue).
- Slight increase in protons, still both results within uncertainty.
- Centrality dependence well reproduced.
- Small increase due to annihilation then drop-off for smallest systems.


³He vs. Hypertriton ratios

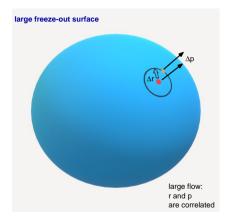
- ³He shows behavior similar to deuteron.
- Hypertriton comes as a surprise: much faster drop-off.

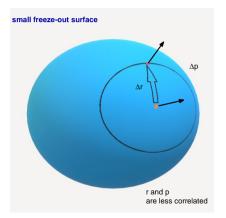

³He vs. Hypertriton ratios

- ³He shows behavior similar to deuteron.
- Hypertriton comes as a surprise: much faster drop-off.
- Can this be explained by the difference in Δr : 9.5 fm vs. 4.3 fm
- The centrality behavior was explained by the relation of source size and system size: K. J. Sun, C. M. Ko and B. Dönigus, Phys. Lett. B **792** (2019), 132-137



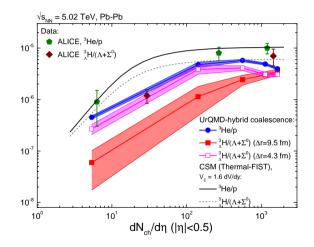
³He vs. Hypertriton ratios


- 3 He shows behavior similar to deuteron.
- Hypertriton comes as a surprise: much faster drop-off.
- Can this be explained by the difference in Δr : 9.5 fm vs. 4.3 fm
- The centrality behavior was explained by the relation of source size and system size: K. J. Sun, C. M. Ko and B. Dönigus, Phys. Lett. B **792** (2019), 132-137
- Also local conservation effects play a role: V. Vovchenko, B. Dönigus and H. Stoecker, Phys. Lett. B 785 (2018), 171-174
- Our approach: Both are taken into account.

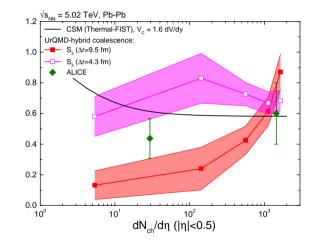


How to understand the source volume

How to understand the source volume



Changing the source size for the hypertriton


- We can change the coalescence size Δr for the ${}^3_{\Lambda}{\rm H}$ to be the same as for ${}^3{\rm He}$.
- Adjusting Δp to get a similar value for central collisions.
- Centrality dependence is changed as expected.

Parameters	³ He	$^{3}_{\Lambda}H$	$^{3}_{\Lambda}$ H
Δr_{max} [fm]	4.3	9.5	4.3
Δp_{max} [GeV]	0.35	0.135	0.25

The double ratios for different system sizes

- Similar behavior is observed for the double ratios.
- Different coalescence size gives different behavior.
- Note that in p+p also canonical effects are naturally included.
- ALICE data (SQM22) in pp at 13 TeV suggests $S_3 = 0.2$ at $dN_{ch}/d\eta = 30$.
- However: ALICE data (SQM22) in pPb at 5.02 TeV suggests $S_3=0.45\pm0.1$ at $\mathrm{d}N_{ch}/\mathrm{d}\eta=30.$

- Light (hyper-)nuclei can be described within the coalescence formalism reasonably well with only 2 parameters.
- Heavy ion collisions can be an abundant source of small as well as large multi-strange hypernuclei.
- The production rate of (hyper)nuclei is influenced by the coalescence volume vs. system size which depends on centrality.

