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The ‚holy grail‘ of heavy-ion physics:

•Equation-of-State of hot and 

dense matter?

•Study of the phase transition

from hadronic to partonic matter –

Quark-Gluon-Plasma

• Search for a critical point

• Study of the in-medium properties of hadrons 

at high baryon density and temperature

• Search for signatures of 

chiral symmetry restoration
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The phase diagram of QCD  thermal properties of QCD in the (T, mB) plain



Dynamical description of heavy-ion collisions

The goal:

to study the properties of strongly interacting matter under 

extreme conditions from a microscopic point of view

Realization: 

to develop a dynamical microscopic transport approach

1) applicable for strongly interacting systems,

which includes:

2) phase transition from hadronic matter to QGP

3) chiral symmetry restoration
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Development fo the microscopic transport 

theory:

from BUU to Kadanoff-Baym dynamics 
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History: semi-classical BUU equation
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Boltzmann-Uehling-Uhlenbeck equation (non-relativistic formulation)

- propagation of particles in the self-generated Hartree-Fock mean-field 

potential U(r,t) with an on-shell collision term:
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is the single particle phase-space distribution function 

- probability to find the particle at position r with momentum p at time t

 self-generated Hartree-Fock mean-field potential:

Ludwig Boltzmann

collision term: 

elastic and 

inelastic reactions
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Gain term: 3+41+2 Loss term: 1+23+4

 Collision term for 1+23+4 (let‘s consider fermions) :
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History: developments of relativistic transport models
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‘Relativistic Vlasov-Uehling-Uhlenbeck model for heavy-ion collisions’

Che-Ming Ko, Qi Li,  Phys.Rev. C37 (1988) 2270

‘Covariant Boltzmann-Uehling-Uhlenbeck approach for heavy-ion collisions’

Bernhard Blaettel, Volker Koch, Wolfgang Cassing, Ulrich Mosel, Phys.Rev. C38 (1988) 1767;

‘Relativistic BUU approach with momentum dependent mean fields’

T. Maruyama, B. Blaettel, W. Cassing, A. Lang, U. Mosel, K. Weber, Phys.Lett. B297 (1992) 228

‘The Relativistic Landau-Vlasov method in heavy ion collisions’

C. Fuchs, H.H. Wolter,  Nucl.Phys. A589 (1995) 732

. . .
Alternative: QMD (cf. talks by Marcus Bleicher (UrQMD) and Gabriele Coci (PHQMD))

Low energy HIC High energy HIC 

Non-relativistic semi-classical BUU 

Relativistic transport models

‘Numerical simulation of medium energy heavy ion reactions’, 

J. Aichelin and G. Bertsch,  Phys.Rev.C 31 (1985) 1730-1738
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Covariant transport equation

),( rt

x 


mwhere

 Covariant relativistic on-shell BUU equation :

from many-body theory by connected Green functions in phase-space + 

mean-field limit for the propagation part (VUU)
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W. Ehehalt, W. Cassing, Nucl. Phys. A 602 (1996) 449

- effective mass

- effective momentum

m*(x,p) = m + Us (x,p)

m (x,p) = pm – Um (x,p)

Us (x,p), Um (x,p) are scalar and vector part of particle self-energies

m  m  m*2) – mass-shell constraint



Dynamical transport model: collision terms

 BUU eq. for different particles of type i=1,…n
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Elementary hadronic interactions

Low energy collisions:

 binary 22 and

23(4)  reactions 

 12 : formation and 

decay of baryonic and 

mesonic resonances  

BB  B´B´

BB  B´B´m

mB  m´B´

mB  B´

mm  m´m´

mm  m´ . . .

Baryons: 

B = p, n, 1232, 

N(1440), N(1535), ...

Mesons: 

M = , , , , , ...

+p

pp

High energy collisions:

(above s1/2~2.5 GeV)

Inclusive particle 

production:

BBX , mBX, mmX

X =many particles

described by 

string formation and decay

(string = excited color 

singlet states q-qq, q-qbar)

using LUND string model

Consider all possible interactions – eleastic and inelastic collisions - for the sytem 

of (N,R,m), where N-nucleons, R- resonances, m-mesons, and resonance decays

48



• very good description of particle production in pp, pA, pA, AA reactions

• unique description of nuclear dynamics from low (~100 MeV) to 

ultrarelativistic (>20 TeV) energies

Hadron-String-Dynamics – a microscopic 

transport model for heavy-ion reactions
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From weakly to strongly interacting systems

Many-body theory:

Strong interaction  large width = short life-time

 broad spectral function  quantum object

 How to describe the dynamics of broad 

strongly interacting quantum states in 

transport theory?

Barcelona / Valencia group

(1783)N-1

and 

(1830)N-1

exitations
 semi-classical BUU

 generalized transport equations based 

on Kadanoff-Baym dynamics

first order gradient expansion 

of quantum Kadanoff-Baym

equations

Properties of matter (on hadronic and partonic levels) in heavy-ion collisions:

QGP – strongly interacting system! Degrees of freedom – dressed partons

Hadronic matter   – in-medium effects – modification of hadron properties 

at finite T,mB (vector mesons, strange mesons)
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Dynamical description of strongly interacting systems

 Quantum field theory 

Kadanoff-Baym dynamics for resummed single-particle Green functions S<

(1962)

Leo Kadanoff Gordon Baym
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Integration over the intermediate spacetime

1st application for spacially homodeneous system with deformed Fermi sphere:

P. Danielewicz, Ann. Phys. 152, 305 (1984); … H.S. Köhler, Phys. Rev. 51, 3232 (1995); … 



Wigner transformation of the Kadanoff-Baym equation

 do Wigner transformation of the Kadanoff-Baym equation

Convolution integrals convert under Wigner transformation as

Operator     is a 4-dimentional 

generalizaton of the Poisson-bracket:
an infinite series in the differential operator

For any function FXY with X=(x+y)/2 – space-time coordinate, P – 4-momentum

 consider only contribution up to first order in the gradients   

= a standard approximation of kinetic theory which is justified if the gradients in 

the mean spacial coordinate X are small

13
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From Kadanoff-Baym equations to 

generalized transport equations

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym 

equations and separation into the real and imaginary parts one gets:

Backflow term incorporates the off-shell behavior in the particle propagation

! vanishes in the quasiparticle limit AXP (p2-M2) 

 Spectral function:

– ‚width‘ of spectral function

= reaction rate of particle (at space-time position X)

4-dimentional generalizaton of the Poisson-bracket:

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

 GTE: Propagation of the Green‘s function iS<
XP=AXPNXP , which carries 

information not only on the number of particles (NXP), but also on their properties,

interactions and correlations (via AXP)

 0

ret

XPXP p2Im 

drift term Vlasov term collision term = ‚gain‘ - ‚loss‘ termbackflow term

Generalized transport equations (GTE):




c


 Life time

Botermans-Malfliet (1990)
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General testparticle off-shell equations of motion

 Employ testparticle Ansatz for the real valued quantity i S<
XP  

insert in generalized transport equations and determine equations of motion !

 Generalized testparticle Cassing-Juchem off-shell equations of motion 

for the time-like particles:

with

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

Note: the common factor 1/(1-C(i)) can be absorbed in an ‚eigentime‘ of particle (i) !
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Collision term in off-shell transport models

Collision term for reaction 1+2->3+4:

with

The trace over particles 2,3,4 reads explicitly

for fermions for bosons

The transport approach and the particle spectral functions are 

fully determined once the in-medium transition amplitudes G

are known in their off-shell dependence!

additional integration

‚loss‘ term‚gain‘ term



In-medium transition rates: G-matrix approach

Need to know in-medium transition amplitudes G and their off-shell

dependence

Coupled channel G-matrix approach

Transition probability :

with G(p,,T)  - G-matrix from the solution of coupled-channel equations:

G

•Baryons: Pauli blocking 

and potential dressing

• Meson selfenergy and 

spectral function



For strangeness: 

D. Cabrera, L. Tolos, J. Aichelin, E.B., PRC C90 (2014) 055207;  W. Cassing, L. Tolos, E.B., A. Ramos, NPA727 (2003) 59; 

T. Song et al., PRC 103, 044901 (2021) 17

1405



Off-shell dynamics for antikaons at SIS energies
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Time evolution of 

the K- masses 

T. Song et al., PRC 103, 044901 (2021) 

Spectral function of K- within 

the G-matrix approach: 

In-medium cross sections 

for K- production and 

absorption are strongly 

modified in the medium:

In-medium effects are 

mandatory for the description 

of  experimental K- spectra 

D. Cabrera et al., Phys.Rev.C 90 (2014) 055207



Off-shell vs. on-shell transport dynamics
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The off-shell spectral function 

becomes on-shell in the vacuum 

dynamically by propagation 

through the medium!

Time evolution of the mass distribution of  and  mesons for central C+C 

collisions at 2 A GeV for dropping mass + collisional broadening scenario

E.L.B. &W. Cassing, NPA 807 (2008) 214

On-shell BUU:

low mass  and  mesons live  

forever (and shine ‚fake‘ dileptons)!

On-shell Off-shell

19

In-medium
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Advantages of Kadanoff-Baym dynamics vs Boltzmann
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Boltzmann equations

 propagate two-point Green functions 

G<(x,p)A(x,p)*N(x,p)
in 8 dimensions

 propagate phase space 

distribution function f(𝒓,𝒑,t) 
in 6+1 dimensions

 works well for small coupling

=  weakly interacting system,

 on-shell approach

 Applicable for strong coupling = strongly interaction system

 Includes memory effects (time integration) and off-shell transitions in 

collision term

 Dynamically generates a broad spectral function for strong coupling

 KB can be solved exactly for model cases as Ф4 – theory

 KB can be solved in 1st order gradient expansion in terms of generalized 

transport equations (in test particle ansatz) for realistic systems of HICs

Kadanoff-Baym equations:

p=(𝒑𝟎,𝒑)x=(t,𝒓)

 G< carries information not only on the 

occupation number NXP , but also on 

the particle properties, interactions and 

correlations via spectral function AXP

W. Cassing, `Transport Theories for Strongly-Interacting Systems’, 

Springer Nature: Lecture Notes in Physics 989, 2021

DOI: 10.1007/978-3-030-80295-0
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Detailed balance on the level of 2n: 

treatment of multi-particle collisions in transport approaches

W. Cassing,  NPA 700 (2002) 618

Generalized off-shell collision integral for n  m reactions:

is Pauli-blocking or Bose-enhancement factors; 

=1 for bosons and =-1 for fermions

is a transition matrix element squared
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Multi-meson fusion in heavy-ion reactions
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W. Cassing,  NPA 700 (2002) 618

E. Seifert, W. Cassing, PRC 97 (2018) 024913, (2018) 044907Multi-meson fusion reactions

m1+m2+...+mn  B+Bbar

m=,,,..  Bp,,,,,  (>2000 channels)

 important for anti-proton, anti-, 

anti-, anti-  dynamics !
23

 approximate equilibrium of annihilation and recreation
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Modeling of sQGP in

microscopic transport theory



Goal: microscopic transport description of 

the partonic and hadronic phase

Problems:
 How to model a QGP phase in line with lQCD data?

 How to solve the hadronization problem?

Ways to go:

‚Hybrid‘ models:

 QGP phase: hydro with QGP EoS

 hadronic freeze-out: after burner -

hadron-string transport model

 Hybrid-UrQMD

 microscopic transport description of the partonic 

and hadronic phase in terms of strongly interacting 

dynamical quasi-particles and off-shell hadrons

 PHSD

pQCD based  models:

 QGP phase: pQCD cascade

 hadronization: quark coalescence 

 AMPT, HIJING, BAMPS

21



Degrees-of-freedom of QGP 

 lQCD gives QGP EoS at finite mB

pQCD:

 weakly interacting system

 massless quarks and gluons

Thermal QCD

= QCD at high parton densities: 

 strongly interacting system

 massive quarks and gluons   

 quasiparticles 

=   effective degrees-of-freedom

! need to be interpreted in terms 

of degrees-of-freedom
Non-perturbative QCD      pQCD

25

For the microscopic transport description 

of the system one needs to know  all 

degrees of freedom as well as their 

properties and interactions!   

How to learn about  the degrees-of-

freedom of QGP from HIC?   

 microscopic transport approaches 

 comparison to HIC experiments 

mB=0



Dynamical QuasiParticle Model (DQPM)

269Exploring the partonic phase at finite chemical potential within HICPierre MoreauA. Peshier, W. Cassing, PRL 94 (2005) 172301;  W. Cassing,  NPA 791 (2007) 365: NPA 793 (2007), H. Berrehrah et al, Int.J.Mod.Phys. E25 (2016) 1642003; 

P. Moreau et al., PRC100 (2019) 014911; O. Soloveva et al., PRC101 (2020) 045203 

DQPM – effective model for the description of non-perturbative (strongly interacting) QCD 

based on lQCD EoS

Degrees-of-freedom: strongly interacting dynamical quasiparticles - quarks and gluons

Properties of the quasiparticles are specified by scalar complex self-energies:

ReΣq : thermal masses (𝑴𝒈,𝑴𝒒);   ImΣq : interaction widths (𝜸𝒈, 𝜸𝒒)     spectral functions q = -2ImGq

 ‚resummed‘ single-particle Green‘s functions  quark (gluon) propagator (2PI) :  Gq
-1 = P2 - Σq

Σq=Mq
2-i2gqω

 introduce an ansatz (HTL; with few parameters) for the (T, μB) dependence of masses/widths  

 evaluate the QGP thermodynamics in equilibrium using the Kadanoff-Baym theory 

 fix DQPM parameters by comparison to the entropy density s, pressure P, 
energy density e from DQPM to lQCD at μB =0

Theoretical basis :

 Quasi-particle properties at (T, μB) :

lQCD: pure glue

•DQPM provides mean-fields (1PI) for q,g and effective 2-body partonic interactions (2PI); 

gives transition rates for the formation of hadrons  QGP in PHSD
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Parton-Hadron-String-Dynamics (PHSD)

PHSD is a non-equilibrium microscopic transport approach for the description of 

strongly-interacting hadronic and partonic matter created in heavy-ion collisions 

W. Cassing, E. Bratkovskaya,  PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ  ST 168 (2009) 3

Initial A+A 

collision

Hadronic phase

Hadronization

 Initial A+A collisions :

N+N  string formation  decay to pre-hadrons + leading hadrons 

Partonic phase

 Formation of QGP stage if local e > ecritical :

dissolution of pre-hadrons partons

 Partonic phase - QGP:

QGP is described by the Dynamical QuasiParticle Model (DQPM) 

matched to reproduce lattice QCD EoS for finite T and mB (crossover)

- Degrees-of-freedom: strongly interacting quasiparticles: 

massive quarks and gluons (g,q,qbar) with sizeable collisional 

widths in a self-generated mean-field potential 

- Interactions: (quasi-)elastic and inelastic collisions of partons

 Hadronization to colorless off-shell mesons and baryons:

Dynamics: based on the solution of generalized off-shell transport equations derived 

from Kadanoff-Baym many-body theory

 Hadronic phase: hadron-hadron interactions – off-shell HSD

Strict 4-momentum and quantum number conservation
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Stages of a collision in PHSD

Traces of non-equilibrium dynamics in relativistic heavy-ion collisions
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Stages of a collision in PHSD
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Traces of the QGP in observables 

in high energy heavy-ion collisions



Partonic energy fraction in central A+A

 Strong increase of partonic phase with energy from AGS to RHIC

 SPS: Pb+Pb, 160 A GeV: only about 40% of the converted energy goes to 

partons; the rest is contained in the large hadronic corona and leading partons

 RHIC: Au+Au, 21.3 A TeV: up to 90% - QGP

W. Cassing & E. Bratkovskaya,  NPA 831 (2009) 215

V. Konchakovski et al., Phys. Rev. C 85 (2012) 011902 
35

Time evolution of the partonic energy fraction vs energy

Au+Au, midrapidity

T. Steinert  et al.



Transverse mass spectra from SPS to RHIC

Central Pb + Pb at  SPS energies

 PHSD gives harder mT spectra and works better than HSD (wo QGP) at high energies 

– RHIC, SPS (and top FAIR, NICA) 

 however, at low SPS (and low FAIR, NICA) energies the effect of the partonic phase 

decreases due to the decrease of the partonic fraction 

Central Au+Au at RHIC

W. Cassing & E. Bratkovskaya,  NPA 831 (2009) 215

E. Bratkovskaya,  W. Cassing,  V. Konchakovski, O. Linnyk, NPA856 (2011) 162
35



Elliptic flow v2 vs. collision energy for Au+Au
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 v2  in PHSD is larger than in HSD due 

to the repulsive scalar mean-field 

potential Us(ρ) for partons

 v2 grows with bombarding energy due 

to the increase of the parton fraction

V. Konchakovski, E. Bratkovskaya,  W. Cassing,  V.  Toneev, 

V. Voronyuk, Phys. Rev. C 85 (2012) 011902  

with QGP

without 

QGP
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Vn (n=2,3,4,5) of charged particles from PHSD at LHC

V. Konchakovski,  W. Cassing, V. Toneev, J. Phys. G: Nucl. Part. Phys 42 (2015) 055106

PHSD: increase of vn (n=2,3,4,5) with pT

 v2 increases with decreasing centrality

 vn (n=3,4,5) show weak centrality dependence

symbols – ALICE 

PRL 107 (2011) 032301

lines – PHSD (e-by-e)

vn (n=3,4,5) develops by interaction in the QGP and in the final hadronic phase 
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Modeling of the chiral symmetry 

restoration via Schwinger mechanism for 

string fragmentation in the initial phase of 

HIC



0

T
sl,

qq

qq
~Δ

‚Flavour chemistry‘ of HIC:   K+/+ ‚horn‘ – 2015
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PHSD: even when considering the creation of a QGP phase, the K+/+ ‚horn‘ 

seen experimentally by NA49 and STAR at a bombarding energy ~30 A GeV 

(FAIR/NICA energies) remained unexplained (2015)!

 The origin of the ‘horn’ is not traced back to deconfinement ?!

W. Cassing, A. Palmese, P. Moreau,  E.L. Bratkovskaya, PRC 93, 014902 (2016)

Can it be related to chiral symmetry restoration in the initial hadronic phase?!

?

lQCD BMW collaboration:
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PHSD: 

Ratio of the scalar quark 

condensate 

compared to the vacuum as a 

function of x,z (y=0) at different  

time t for central Au+Au collisions 

at 30 AGeV

W. Cassing, A. Palmese, P. Moreau,  E.L. Bratkovskaya, 

PRC 93, 014902 (2016), arXiv:1510.04120

Scalar quark 

condensate in HIC

 restoration of chiral symmetry:

〈𝒒 𝒒〉/〈𝒒 𝒒〉𝑽  0



Chiral symmetry restoration vs. deconfinement
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 Chiral symmetry restoration via Schwinger mechanism (and non-linear 𝝈 − 𝝎 model) 

changes the „flavour chemistry“ in string fragmentation (1PI):

〈𝒒 𝒒〉/〈𝒒 𝒒〉𝑽  0       ms*  ms
0
 s/u grows

 the strangeness production probability increases with the local energy density 

𝜺 (𝐮𝐩 𝐭𝐨 𝜺C) due to the partial chiral symmetry restoration!

I. Initial stage of HICs: 
Hadronic matter  string formation

QGP

I II

II. QGP              III. Hadronic phase
(time-like partons, 

explicit partonic interactions)

Hadronic 
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Excitation function of hadron ratios and yields 

43

 Influence of EoS: NL1 vs NL3  low sensitivity to the 

nuclear EoS

 Excitation function of the hyperons 0 and  show 

analogous peaks as K+/+, (0)/ ratios due to CSR

A. Palmese et al., PRC94 (2016) 044912 , arXiv:1607.04073

Chiral symmetry restoration leads to the enhancement of strangeness production in 

string fragmentation in the beginning of HICs in the hadronic phase.

The „horn“ structure is due to the interplay between CSR and deconfinement (QGP)



Non-equilibrium dynamics: description of A+A with PHSD
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 PHSD: highlights

 PHSD provides a good description of ‚bulk‘ observables (y-, pT-distributions, flow 

coefficients vn, …) from SIS to LHC

PRC 85 (2012) 011902; JPG42 (2015) 055106
arXiv:1801.07557
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Summary

The developments in the microscopic transport theory in the last 

decades - based on the solution of generalized transport equations 

derived from Kadanoff-Baym dynamics - made it 

applicable for the description of strongly-interaction hadronic and 

partonic matter created in heavy-ion collisions from SIS to LHC 

energies

Note: for the consistent description of HIC the input from lQCD and 

many-body theory is mandatory: 

properties of partonic and hadronic degrees-of-freedom and their 

in-medium interactions


