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Introduction

I the binding energies of light nuclei are much smaller then
temperature of the environment (snowballs in hell)

I how fast do they form and how broad are they

I a quantum mechanical description of creation and decay of bound
states (the nuclei) in an open thermal system (fireball) is needed

I use the framework of Kadanoff-Baym equations to analyse the
time evolution of occupation numbers and spectral functions

I These are obtained via non-equilibrium Greensfunctions



Schwinger-Keldysh-Contour

I The one-particle Greensfunction is defined as a corrolation
function i.e. an expectation value of two (Heisenberg) operators

G(1,1′) =−i
〈
Tc
[
ψ̂(r , t)ψ̂(r ′, t ′)†]〉

I Where Tc is the time ordering operator:

Tc =

{
ψ̂(r , t)ψ̂(r ′, t ′)† if t > t ′

±ψ̂(r ′, t ′)†ψ̂(r , t) if t ≤ t ′

I the ± corresponds to bosons/fermions. The operators are
defined as:

ψ̂(r , t) = eiĤt
∑
k

φk (r)ĉk︸ ︷︷ ︸
=ψ̂(r)

e−iĤt



Schwinger-Keldysh-Contour

I To ”see” the contour, we switch to the interaction representation:

ψ̂(r , t) = ÛI(−∞, t)ψ̂I(r , t)ÛI(t,−∞)

I Where ÛI(t, t1) is the time evolution operator in this
representation:

ÛI(t, t1) = Tc
[
exp(−i

∫ t

t1
dt ′Ĥint(t ′))

]
I substituting these expressions in the definition of the

Greensfunction with Heienberg operators will lead us to the
Schwinger-Keldysh-Contour! Assume t > t ′



Schwinger-Keldysh-Contour

G>(1,1′) =
−i
Z

Tr
{

e−β Ĥ
ψ̂(r , t)ψ̂(r ′, t ′)†}

=
−i
Z

Tr
{

ÛI(−∞,∞)e−β ĤÛI(∞,−∞)ÛI(−∞, t)ψ̂I(r , t)ÛI(t,−∞)

ÛI(−∞, t ′)ψ̂I(r ′, t ′)†ÛI(t ′,−∞)
}

=
−i
Z

Tr
{

ÛI(−∞,∞)e−β ĤÛI(∞, t)ψ̂I(r , t)

ÛI(t, t ′)ψ̂I(r ′, t ′)†ÛI(t ′,−∞)
}

=
−i
Z

Tr
{

e−β ĤTc
[
ÛCψ̂I(r , t)ψ̂I(r ′, t ′)†]}

I in the last line the time-ordering operator was inserted to place
the field operators at the right time point

I because of the time-ordering operator this works also for t < t ′ ,
so it works for the whole Greensfunction!



Schwinger-Keldysh-Contour

Figure: Taken from ”Advanced Statistical Physics: Many-Body out of
equilibrium” by Oleksandr Tsyplyatyev

I the upper contour is going from −∞ to ∞ representing the time
ordering of the field operators

I the lower part going the reverse way outside of the time ordering
operator

I in general there are three other Greensfunction (upper-lower,
lower-upper and lower-lower)



Kadanoff-Baym equations

I The Kadanoff-Baym equations are equation of motion for the
Greensfunction, obtained from the Dyson equation by multiplying
with the invers propagator

G(1̄,1′) = G0(1̄,1′) +
∫

C
d2
∫

C
d3G0(1̄,2)Σ(2,3)G(3,1′)

G−1
0 (1, 1̄)G(1̄,1′) = G−1

0 (1, 1̄)G0(1̄,1′)︸ ︷︷ ︸
δc(1,1′)=δc(t−t ′)δ(x1−x1′ )

+
∫

C
d3Σ(1,3)G(3,1′)

I Where G−1
0 (1, 1̄) is:

G−1
0 (1, 1̄) =

(
i

∂

∂ t1
+

∆1

2mf
−V (r)

)
δc(1, 1̄)



Kadanoff-Baym equations

I the equation for t ′ can be obtained similar:

G(1, 1̄)G†
0
−1(1̄,1′) = δc(1,1′) +

∫
C

d3G(1,3)Σ(3,1′)

I Σ denotes the self-energy, an irreducible part of the
Greensfunction, which is often introduced variationally

I the general form contains also singular (in time) contributions on
the contour: (P. Danielewicz, Ann. Phys. (N.Y.) 152, 239 (1984))

Σ(1,1′) = Σδ (1,1′)︸ ︷︷ ︸
∝δc(t1−t1′ )

+Θc(t1, t1′)Σ>(1,1′) + Θc(t1′ , t1)Σ<(1,1′)

I To solve a system completly, we need to propagate G> and G<

for t and t ′



1+1 dim Testmodel

I The Hamiltonian should describe a system of (heavier) fermions
scattering with free ”heatbath” bosons

Ĥ(t) =
∫

drψ̂(r , t)†
(
− ∆

2mf
+ V (r)︸ ︷︷ ︸

=h0

)
ψ̂(r , t)

︸ ︷︷ ︸
=Ĥ0(t)

+ λ

∫
drψ̂(r , t)†

φ̂(r , t)†
ψ̂(r , t)φ̂(r , t)︸ ︷︷ ︸

=Ĥint(t)

I ”heatbath” means, that the bosons are kept always in equilibrium
and therefore do not need to be evolved in time by
Kadanoff-Baym equ.

I The lowest contributions to the Selfenergy are given by the
Hartree- and the (direct) Born-diagram



1+1 dim Testmodel
I we do not assume homogeneity in our model, so the

Greensfunction does not only depend on relative differences!
I this is different to the state of the art in the past, where these

equations were transformed in momentum space and solved via
FFT (H. S. Koehler, N. H. Kwong, and H. A. Yousif, Comput.
Phys. Commun. 123, 123 1999)

I the fermionic Greensfunctions are expanded in a set of
eigenfunctions of the Hamiltonian, e.g DFT-orbitals in
atomic-theory (Stan et al,Time propagation of the KadanoffBaym
equations for inhomogeneous systems, The Journal of Chemical
Physics, AIP Publishing, 2009, 130, 224101) or as in this test
case free particles

S>(1,1′) =−i ∑
n,m=1

〈ĉn(t)ĉm(t ′)†〉φn(r)φm(r ′)∗

S<(1,1′) = i ∑
n,m=1

〈ĉm(t ′)†ĉn(t)〉φn(r)φm(r ′)∗

h0φn(r) = Enφn(r)



1+1 dim Testmodel

I obtain (ordinary) integro-differential equ. for the time dependent
matrix-valued coefficients of S> in t direction and neglect the
Hartree-Term for simplicity

(
i

∂

∂ t
+

∆1

2mf
−V (1)

)
S>(1,1′) =

∫ t

t0
d 1̄

[
Σ>(1, 1̄)−Σ<(1, 1̄)

]
S>(1̄,1′)

−
∫ t ′

t0
d 1̄Σ>(1, 1̄)

[
S>(1̄,1′)−S<(1̄,1′)

]

Σ>(1,1′) = (iλ )2S>(1,1′)D>
0 (1,1′)D<

0 (1′,1)

Σ<(1,1′) = (iλ )2S<(1,1′)D<
0 (1,1′)D>

0 (1′,1)

I Here D0 represents the Greensfunction of the ”heatbath” bosons



1+1 dim Testmodel

I As mentioned, we assume, that these bosons stay in equilibrium
(even after scattering)

I for the 1+1 dim case in a testbox:

D>
0 (1,1′) =−i ∑

n=1
exp(−iεn(t− t′))(1 + nB(εn))sin(knr)sin(knr′)

D<
0 (1,1′) =−i ∑

n=1
exp(−iεn(t− t′))nB(εn)sin(knr)sin(knr′)

I were kn = πn
Lbath

, εn = k2
n

2mb
−µ and nB(εn) = 1

exp(εn/T)−1



1+1 dim Testmodel

I now we insert this Ansatz in the Kadanoff-Baym equations and
use the eigenvalue equation on the lhs

I in the next step the orthogonality of the eigenfunction is used to
integrate out the position dependency which yields the lhs:

∂

∂ t
c>b,a(t, t ′) + iEbc>b,a(t, t ′)

I the rhs looks a bit more complicated after this manipulations. only
for the first term:

−λ
2
∫ t

t0
dt̄

f

∑
m,n,i

( b

∑
j,k

exp
(
−i(εj− εk)(t− t̄)

)
(1 + nB(εj))nB(εk)∫

drφb(r)∗φn(r)sin(kjr)sin(kkr)︸ ︷︷ ︸
=Vb,n,j,k

c>n,m(t, t̄)Vm,i,k ,j c>i,a(̄t, t ′)
)



1+1 dim Testmodel

I The Algorithm used to solve these highly coupled system of
equations is a Predictor-Corrector tandem of explicit and implicit
linear multistep methods (Adams-Bashforth-Moulten)

I explicit methods are faster, but become very fast unstable

I implicit methods are highly stable and accurate, but become very
slow because of the need to solve a huge system of nonlinear
equations

I the method used here is also more practical than standard
Runge-Kutta Methods, because you need less function evaluation
there



1+1 dim Testmodel

Figure: Stan et al,Time propagation of the KadanoffBaym equations for
inhomogeneous systems, The Journal of Chemical Physics, 2009

I the corresponding values of the functions on the other triangle
are obtained by symmetry relations: −S

>
<(1,1′)† = S

>
<(1′,1)

I on the time diagonal only the ”lesser” function is propagated and
the equal-time commutation relation is used for the ”greater” part



Results
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Figure: Equilibration of the 2. state with E1 ≈ 2.04MeV and the 6. state with
E6 ≈ 18.4MeV in a Box with L//Lbath = 20//200fm, Temperature
T = 20MeV and a coupling λ = 0.4
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Figure: ”Final states” for different number of states fited to Fermi-Dirac
distribution. Left T ≈ 52MeV, µ ≈−134MeV and right T ≈ 71MeV,
µ ≈−117MeV.



Results

Figure: Real part of the (0,0) coefficient left and of the spectral function of this
coefficient defined as: A0,0(t1, t2) =

〈
[ĉ0(t1), ĉ0(t2)†]+

〉



Conclusions and Outlook

Conclusion:

I short introduction to non-relativistic, non-equilibrium
Greensfunctions

I presentation of the used method to solve the coupled
integro-differential equations for a simple testbox

I some preliminary results for equilibration of the sytem and
problem of thermalisation

Outlook:

I compute spectral function in energy domain, to have an idea of
the width (lifetime) of the states

I include potential to observe bound-state formation and decays

I extend it to 3+1 dimensions→ OMP to MPI is necessary
because of runtime
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