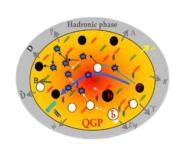


Charm dynamics in heavy-ion collisions


Elena Bratkovskaya

(GSI, Darmstadt & Uni. Frankfurt)

In collaboration with Taesoo Song, Pierre Moreau, Wolfgang Cassing, Hamza Berrehrah, Olga Soloveva, Laura Tolos, Juan Torres-Rincon, Jörg Aichelin, Pol-Bernard Gossiaux

2nd Workshop of the Network NA7-HF-QGP of the European program "STRONG-2020" and the 'HFHF Theory Retreat 2023'
28 September – 4 October 2023
Giardini Naxos, Sicily, Italy

Motivation

The goal: study of the properties of hot and dense nuclear and partonic matter by

Time

Chemical freeze-out

Pre-equilibrium

 $\tau \sim 10~fm/c$

Mixed Phase

Thermal freeze-out

Quark-Gluon

Plasma

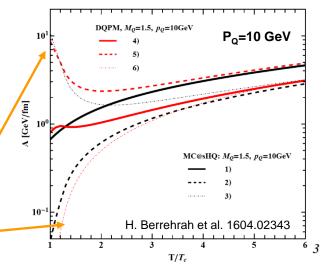
Hadrons

,charm probes' (or heavy quark probes)

The advantages of the 'charm probes':

- □ dominantly produced in the very early stages of the reactions in initial binary collisions with large energy-momentum transfer
- □ initial charm production is well described by pQCD FONLL
- □ heavy quark scattering cross sections are small
 (compared to the light quarks) → not in an equilibrium with the surrounding matter
- □ sensitive to the properties of the QGP during the expansion (and not only to its final state)

→ Hope to use 'charm probes' for an early tomography of the QGP


Dynamical description of hard probes

Modeling of time evolution of the ,medium' = system:

- □ expanding fireball models ← assumption of global equilibrium
- □ ideal or viscous hydrodynamical models ← assumption of local equilibrium
- □ microscopic transport models ← full non-equilibrium dynamics!
- II. Modeling of the interaction of the hard probes with the ,medium':
- □ Fokker-Planck model, Langevin model ← transport coefficients
 - $A = dp_{\rm I}/dt$, $\hat{q} = dp_{\rm T}^2/dt$

- □ linear Boltzmann models ← cross sections
- □ microscopic collision integral ← cross sections

	coupling	mass in gluon propagator	mass in external legs
1)	$\alpha(Q^2)$	$\kappa = 0.2, m_D$	$m_{q,g}=0$
2)	$\alpha(Q^2)$	$\kappa = 0.2, m_D$	$m_{q,g} = m_{q,g}^{DQPM}$
3)	$\alpha(T)$	$\kappa = 0.2, m_D$	$m_{\alpha\beta}=0$
4)	$\alpha(T)$	m_g^{DQPM}	$m_{q,g} = m_{q,g}^{DQPM}$
5)	$\alpha(T)$	m_g^{DQPM}	$m_{q,g} = 0$
6)	$\alpha(Q^2)$	m_g^{DQPM}	$m_{q,g} = m_{q,g}^{DQPM}$

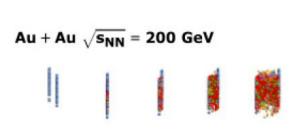
Dynamical Models > PHSD

The goal:

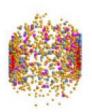
to describe the dynamics of charm quarks/mesons in all phases of HICs on a microscopic basis

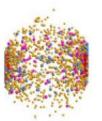
Realization:

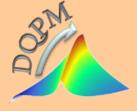
- a dynamical non-equilibrium transport approach
- □ applicable for strongly interacting systems,
- which includes a phase transition from hadronic matter to QGP

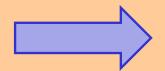

The tool: PHSD approach

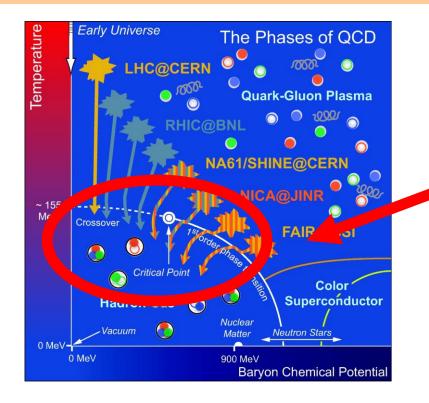
b = 2.2 fm - Section view




Hadronic phase






Modeling of sQGP →

DQPM (T, μ_q)

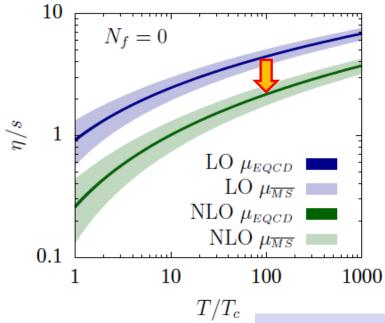
finite T,μ_q

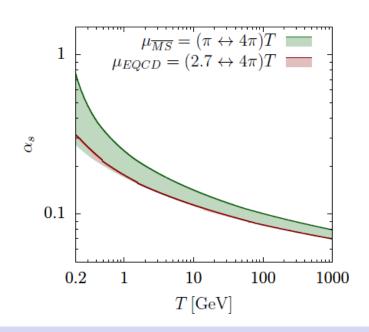
pQCD: shear viscosity η

QCD: Pure Yang-Mills (only gluons)

LO (Leading order) perturbative QCD calculations:

 $\eta/s > 0.5$ at T near T_C


'AMY': P.B. Arnold, G.D. Moore and L.G. Yaffe,, JHEP 11 (2000) 001)


NLO (Next-to-leading order):

J. Ghiglieri, G.D. Moore, D. Teaney, JHEP 1803 (2018) 179:

"The next-to-leading order corrections are large and bring η /s down by more than a factor of 3 at physically relevant couplings.

The perturbative expansion is problematic even at T ~100 GeV"

→ from pQCD to effective models of QCD!

Dynamical QuasiParticle Model (DQPM)

DQPM – effective model for the description of non-perturbative (strongly interacting) QCD based on IQCD EoS

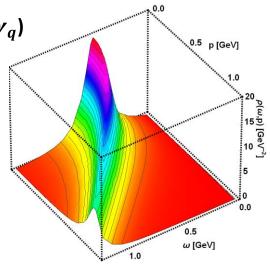
Degrees-of-freedom: strongly interacting dynamical quasiparticles - quarks and gluons

Theoretical basis

□ ,resummed' single-particle Green's functions → quark (gluon) propagator (2PI) :

gluon propagator: $\Delta^{-1} = P^2 - \Pi$ & quark propagator $S_a^{-1} = P^2 - \Sigma_a$

gluon self-energy: $\Pi = M_q^2 - i2\gamma_a\omega$ & quark self-energy: $\Sigma_q = M_q^2 - i2\gamma_a\omega$


Properties of the quasiparticles are specified by scalar complex self-energies:

 $Re\Sigma_q$: thermal masses (M_g, M_q) ; $Im\Sigma_q$: interaction widths (γ_g, γ_q)

 \rightarrow spectral functions $\rho_q = -2ImS_q \rightarrow$ Lorentzian form:

$$\rho_{j}(\omega, \mathbf{p}) = \frac{\gamma_{j}}{\tilde{E}_{j}} \left(\frac{1}{(\omega - \tilde{E}_{j})^{2} + \gamma_{j}^{2}} - \frac{1}{(\omega + \tilde{E}_{j})^{2} + \gamma_{j}^{2}} \right)$$

$$\equiv \frac{4\omega\gamma_{j}}{\left(\omega^{2} - \mathbf{p}^{2} - M_{j}^{2}\right)^{2} + 4\gamma_{j}^{2}\omega^{2}} \qquad \tilde{E}_{j}^{2}(\mathbf{p}) = \mathbf{p}^{2} + M_{j}^{2} - \gamma_{j}^{2}$$

Parton properties

Modeling of the quark/gluon masses and widths (ansatz inspired by HTL calculations)

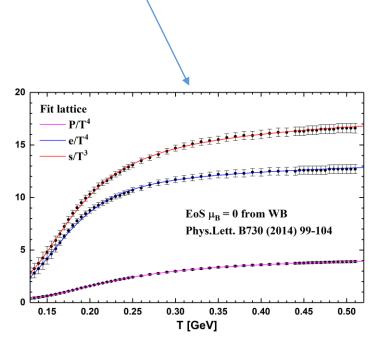
Masses:

$$M_{q(\bar{q})}^{2}(T, \mu_{B}) = \frac{N_{c}^{2} - 1}{8N_{c}} g^{2}(T, \mu_{B}) \left(T^{2} + \frac{\mu_{q}^{2}}{\pi^{2}}\right)$$

$$M_{g}^{2}(T, \mu_{B}) = \frac{g^{2}(T, \mu_{B})}{6} \left(\left(N_{c} + \frac{1}{2}N_{f}\right)T^{2} + \frac{N_{c}}{2}\sum_{q}\frac{\mu_{q}^{2}}{\pi^{2}}\right)$$

Widths:

$$\gamma_{q(\bar{q})}(T, \mu_B) = \frac{1}{3} \frac{N_c^2 - 1}{2N_c} \frac{g^2(T, \mu_B)T}{8\pi} \ln\left(\frac{2c}{g^2(T, \mu_B)} + 1\right)$$
$$\gamma_g(T, \mu_B) = \frac{1}{3} N_c \frac{g^2(T, \mu_B)T}{8\pi} \ln\left(\frac{2c}{g^2(T, \mu_B)} + 1\right)$$


 \Box Coupling g: $\frac{\partial}{\partial T}\left(\frac{S_{DQPM}}{T^3}\right)=0$

IQCD entropy density s function of T at μ_B =0

$$g^{2}(s/s_{SB}) = d((s/s_{SB})^{e} - 1)^{f}$$
$$s_{SB}^{QCD} = 19/9\pi^{2}T^{3}$$

→ DQPM:

only one parameter (c = 14.4) + (T, μ_B) - dependent coupling constant has to be determined from lattice results

DQPM thermodynamics at finite (T, μ_q)

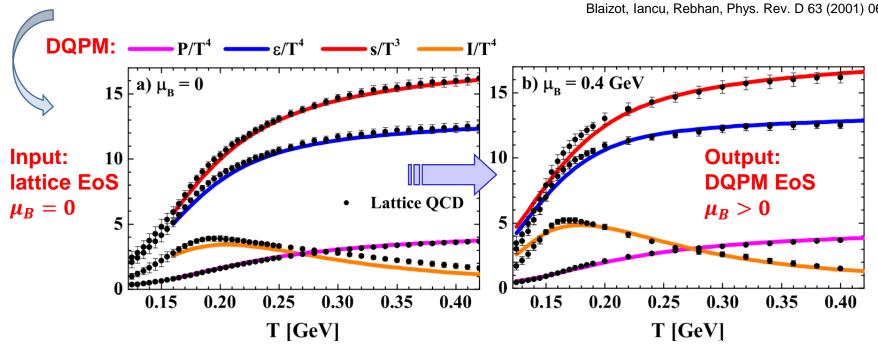
Entropy and baryon density in the quasiparticle limit (G. Baym 1998):

$$s^{dqp} =$$

$$-\int \frac{d\omega}{2\pi} \frac{d^{3}p}{(2\pi)^{3}} \left[d_{g} \frac{\partial n_{B}}{\partial T} \left(\operatorname{Im}(\ln -\Delta^{-1}) + \operatorname{Im} \underline{\Pi} \operatorname{Re} \underline{\Delta} \right) \right]$$

$$+ \sum_{q=u,d,s} d_{q} \frac{\partial n_{F}(\omega - \mu_{q})}{\partial T} \left(\operatorname{Im}(\ln -\underline{S_{q}^{-1}}) + \operatorname{Im} \underline{\Sigma_{q}} \operatorname{Re} \underline{S_{q}} \right)$$

$$+ \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_{F}(\omega + \mu_{q})}{\partial T} \left(\operatorname{Im}(\ln -\underline{S_{\bar{q}}^{-1}}) + \operatorname{Im} \underline{\Sigma_{\bar{q}}} \operatorname{Re} \underline{S_{\bar{q}}} \right)$$

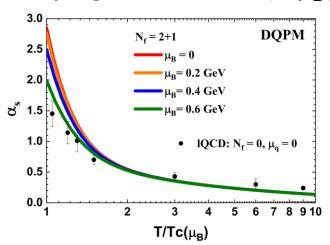

$$n^{dqp} = -\int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3}$$

$$\left[\sum_{q=u,d,s} d_q \frac{\partial n_F(\omega - \mu_q)}{\partial \mu_q} \left(\operatorname{Im} \left(\ln - \underline{S_q^{-1}} \right) + \operatorname{Im} \underline{\Sigma_q} \operatorname{Re} \underline{S_q} \right) \right]$$

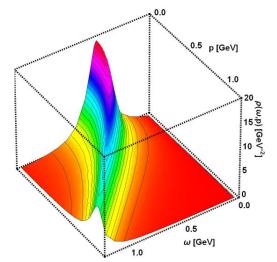
$$\frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im} \left(\ln - \underline{S_q^{-1}} \right) + \operatorname{Im} \underline{\Sigma_q} \operatorname{Re} \underline{S_q} \right) \right]$$

 $+ \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im} \left(\ln - \underline{S_{\bar{q}}^{-1}} \right) + \operatorname{Im} \underline{\Sigma_{\bar{q}}} \operatorname{Re} \underline{S_{\bar{q}}} \right) \right]$

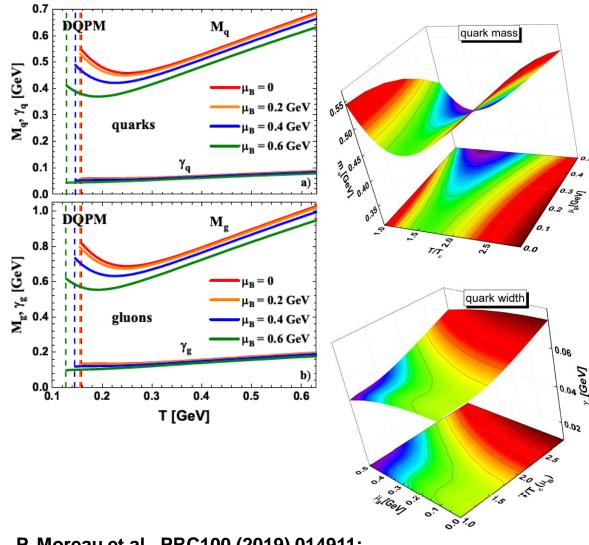
B. Vanderheyden, G. Baym, J. Stat. Phys. 93 (1998) 843Blaizot, Iancu, Rebhan, Phys. Rev. D 63 (2001) 065003



IQCD: Sz. Borsanyi et al., JHEP 1208 (2012) 053



DQPM: parton properties


Coupling as a function of (T, μ_B)

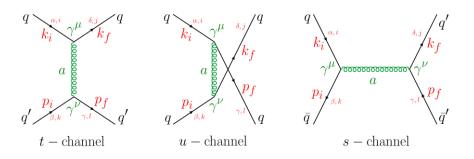
→ Lorentzian spectral function:

Pole masses and widths vs (T, μ_B)

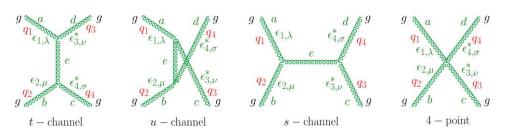
- P. Moreau et al., PRC100 (2019) 014911;
- O. Soloveva et al., PRC110 (2020) 045203

Partonic interactions: matrix elements

t — channel

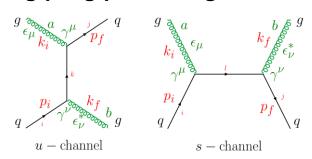

DQPM partonic cross sections → leading order diagrams

□ Propagators for massive bosons and fermions:


$$q^{\mu, a} = -i\delta_{ab} \frac{g^{\mu\nu} - q^{\mu}q^{\nu}/M_g^2}{q^2 - M_g^2 + 2i\gamma_g q_0}$$

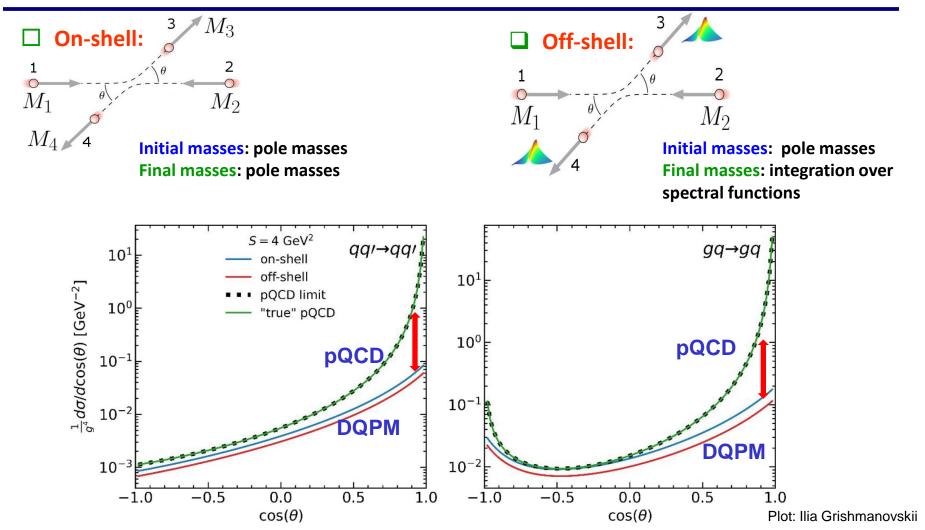
$$\frac{i}{q} = i\delta_{ij} \frac{q + M_q}{q^2 - M_q^2 + 2i\gamma_q q_0}$$

qq' → qq' scattering


gg→ gg scattering

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003.

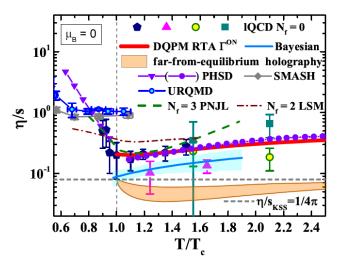
gq → gq scattering

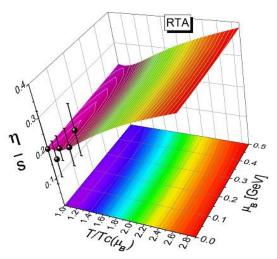


□ Inelastic channels:

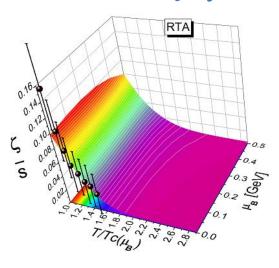
$$\mathbf{q} + \mathbf{\bar{q}} \to \mathbf{g}$$
$$\mathbf{g} \to \mathbf{q} + \mathbf{\bar{q}}$$

Differential cross sections

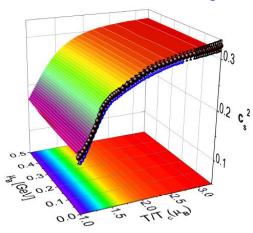

- □ DQPM: M \rightarrow 0, $\gamma \rightarrow$ 0 \rightarrow reproduces pQCD limits
- □ Differences between DQPM and pQCD : less forward peaked angular distribution leads to more efficient momentum transfer

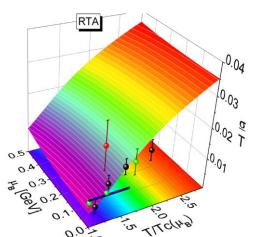


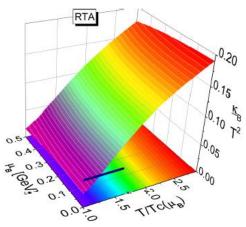
Transport coefficients


Cf. talk by Olga Soloveva

η /s versus (T, μ _B)

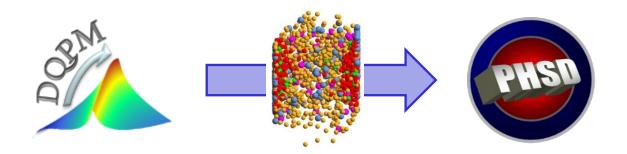



Bulk viscosity ζ/s


Speed of sound c_s²

Electric conductivity σ_e/T

Baryon diffusion coefficient κ_B/T^2


P. Moreau et al., PRC100 (2019) 014911;O. Soloveva et al., PRC110 (2020) 045203

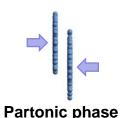
J. A. Fotakis, O. S., C. Greiner, O. Kaczmarek and E. Bratkovskaya PRD 104 (2021), 034014

QGP:

in-equilibrium -> off-equilibrium

Microscopic transport theory!

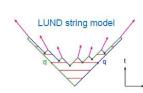
Parton-Hadron-String-Dynamics (PHSD)



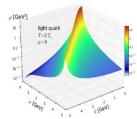
Initial A+A

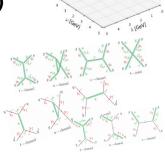
PHSD is a non-equilibrium microscopic transport approach for the description of strongly-interacting hadronic and partonic matter created in heavy-ion collisions

collision

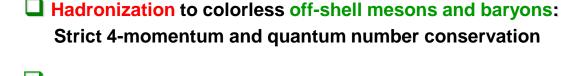

Dynamics: based on the solution of generalized off-shell transport equations derived from Kadanoff-Baym many-body theory

Initial A+A collisions:

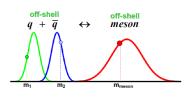

N+N → string formation → decay to pre-hadrons + leading hadrons


Partonic phase - QGP:

QGP is described by the Dynamical QuasiParticle Model (DQPM) matched to reproduce lattice QCD EoS for finite T and μ_B (crossover)

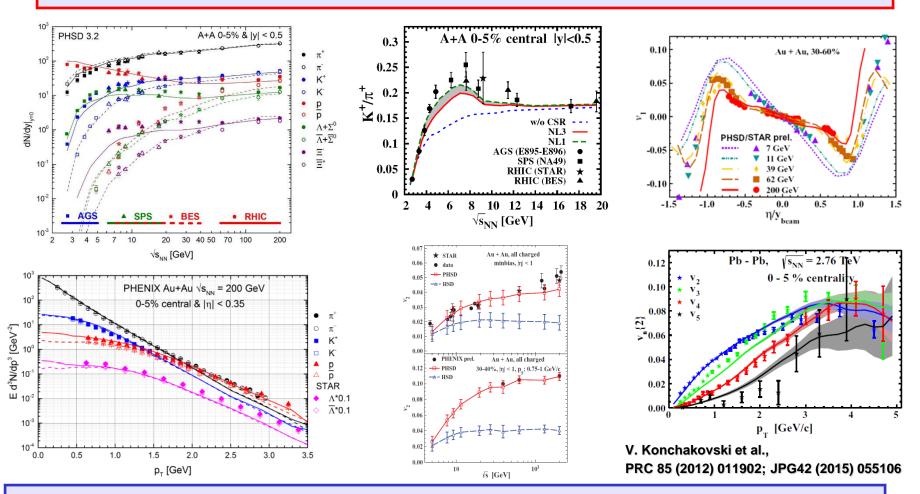

- Degrees-of-freedom: strongly interacting quasiparticles: massive quarks and gluons (g,q,q_{bar}) with sizeable collisional widths in a self-generated mean-field potential

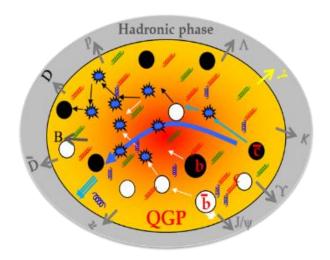
- Interactions: (quasi-)elastic and inelastic collisions of partons



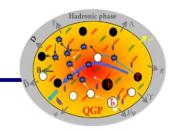
Hadronic phase

Hadronization


Hadronic phase: hadron-hadron interactions - off-shell HSD


Non-equilibrium dynamics: description of A+A with PHSD

■ Important: to be conclusive on charm observables, the light quark dynamics must be well under control!


 \square PHSD provides a good description of ,bulk' observables (y-, p_T-distributions, flow coefficients v_n, ...) from SIS to LHC energies

Dynamics of heavy quarks – open charm and beauty (D/Dbar, B/Bbar) – in heavy-ion collisions

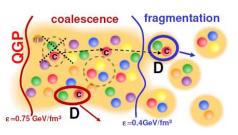
Charm dynamics in PHSD

Dynamics of heavy quarks in A+A:

- 1. Production of heavy (charm and bottom) quarks in initial binary collisions + shadowing and Cronin effects
- 2. Interactions in the non-perturbative QGP according to the DQPM: elastic scattering with off-shell massive partons Q+q→Q+q

 → collisional energy loss
- 3. Hadronization: c/cbar quarks →D(D*)-mesons:

Dynamical hadronization scenario for heavy quarks : coalescence with <r>=0.9 fm & fragmentation


0.4< ε < 0.75 GeV/fm³ ε < 0.4 GeV/fm³

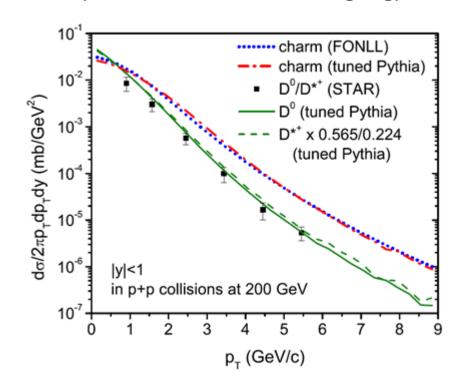
D+baryons; D+mesons based on G-matrix and effective chiral Lagrangian approach with heavy-quark spin symmetry (>200 channels) (Juan Torres-Rincon, Laura Tolos)

^{10&}lt;sup>1</sup> (a) STAR Alice ATLAS Alice ATLAS Alice LHCb Alice Debt 10¹ PHENIX 2017 PHENIX 2017

 $[\]widehat{\underbrace{0}}_{0}^{0} \underbrace{\begin{array}{c} D^{0}+n > D^{0}+n - D^{0}+p > D^{0}+p \\ D^{0}+p > D^{0}+n - D^{0}+p > D^{0}+p \\ D^{0}+p > D^{0}+n - D^{0}+n > D^{0}+n \\ D^{0}+n > D^{0}+n > D^{0}+n > D^{0}+n \\ \end{array}}_{0}$

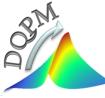
^{*} PHSD references on charm dynamics:

Charm production in NN collisions

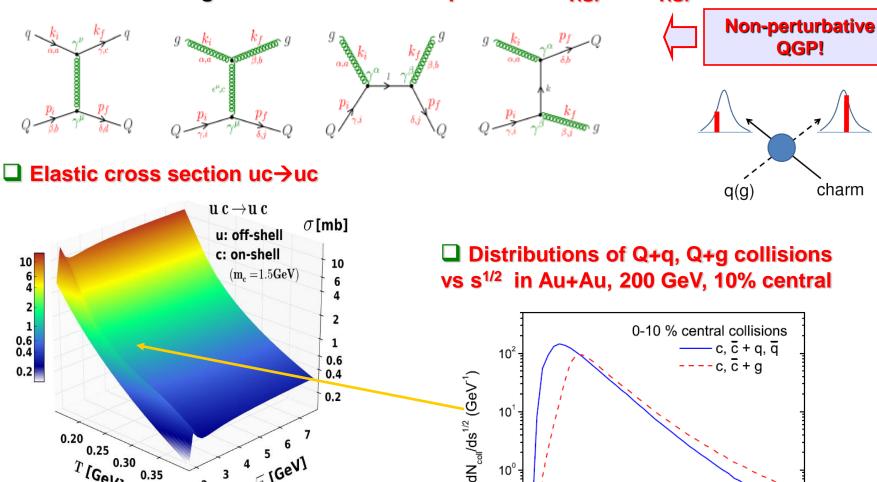

☐ A+A: charm production in initial NN binary collisions: probability

$$P = \frac{\sigma(c\bar{c})}{\sigma_{NN}^{inel}}$$

The total cross section for charm production in p+p collisions $\sigma(cc)$


Alice_ATLAS (a) 10⁴ LHCb STAR Alice 10³ PHENIX 2011 $\sigma_{pp}(c\overline{c})$ (μb) PHENIX 2017 10² E653 (pA) NA16 (pA) 7 E743 (pA) E769 (pA) 10° Experimental data 10⁻¹ **PHSD** 10⁻² -10¹ 10² 10^{3} 10⁴ s^{1/2} (GeV)

Momentum distribution of heavy quarks: use ,tuned' PYTHIA event generator to reproduce FONLL (fixed-order next-to-leading log) results


T. Song, W.Cassing, P.Moreau and E.Bratkovskaya, PRC 97 (2018) 064907

T. Song et al., PRC 92 (2015) 014910, PRC 93 (2016) 034906, PRC 96 (2017) 014905

Heavy quark scattering in the QGP (DQPM)

Elastic scattering with off-shell massive partons $Q+q(g)\rightarrow Q+q(g)$

10°

10⁻¹

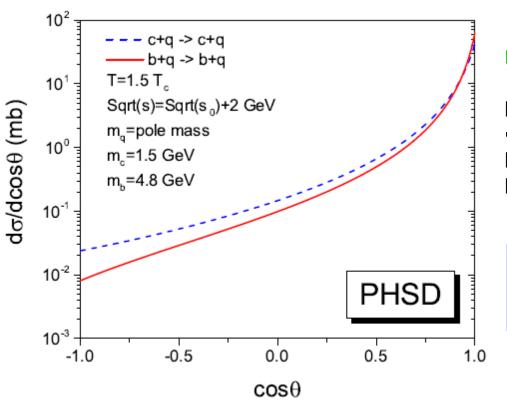
3

s^{1/2} (GeV)

5

H. Berrehrah et al, PRC 89 (2014) 054901; PRC 90 (2014) 051901; PRC90 (2014) 064906

0.35


 T [GeV]

IGeV1

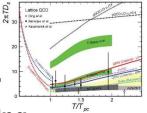
Heavy quark scattering in the QGP

□ Differential elastic cross section for cq→cq, bq→bq for s½=s₀½+2GeV at 1.5Tc

■ DQPM - anisotropic angular distribution

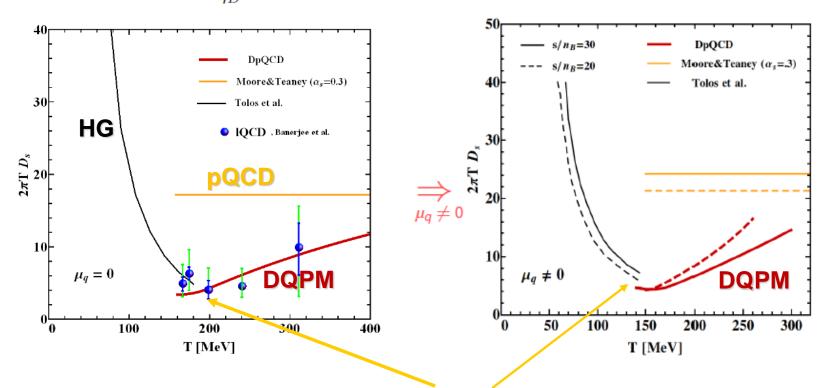

Note: pQCD - strongly forward peaked

Differences between DQPM and pQCD:
less forward peaked angular distribution
leads to more efficient momentum transfer


→ Smaller number (compared to pQCD) of elastic scatterings with massive partons leads to a larger energy loss

Cf. talk by Ilia Grishmanovskii

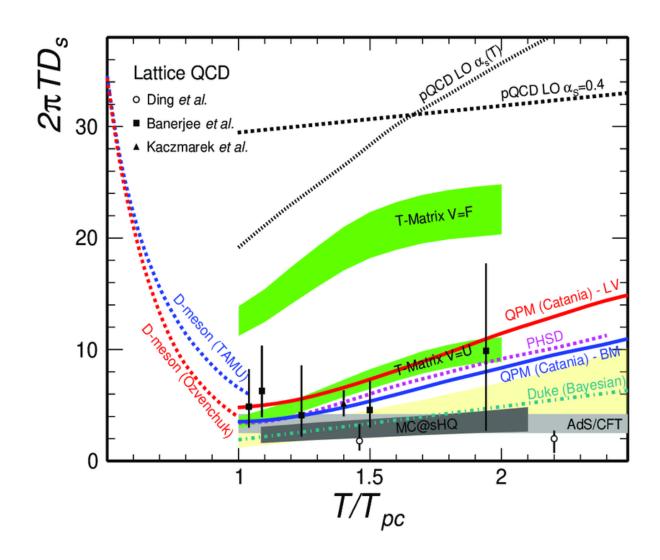
! Note: radiative energy loss is NOT included yet in PHSD, it is expected to be small (at low p_T) due to the large gluon mass in the DQPM



Charm spatial diffusion coefficient D_s

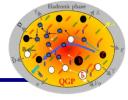
• D_s for heavy quarks as a function of T for $\mu_q=0$ and finite μ_q assuming adiabatic trajectories (constant entropy per net baryon s/n_B) for the expansion

$$D_s = lim(\vec{p} \rightarrow 0) \frac{T}{Mn_{\rm D}}$$
 where $\eta_{\rm D}$ = A/p; A(p,T) = drag coefficient


 \Box T < T_c: hadronic D_s

L. Tolos , J. M. Torres-Rincon, PRD 88 (2013) 074019V. Ozvenchuk et al., PRC90 (2014) 054909

→ Continuous transition at T_c!

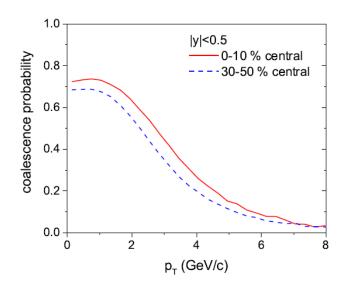


Charm spatial diffusion coefficient D_s

Hadronization of heavy quarks in A+A

PHSD: if the local energy density $\varepsilon \rightarrow \varepsilon_{\rm C}$ \rightarrow hadronization of heavy quarks to hadrons

T. Song et al., PRC 93 (2016) 034906


Dynamical hadronization scenario for heavy quarks:

coalescence with <r>=0.9 fm & $0.4 < \epsilon < 0.75 \text{ GeV/fm}^3$

fragmentation ε < 0.4 GeV/fm³

coalescence fragmentation $\varepsilon = 0.75 \text{ GeV/fm}^3$ $\varepsilon = 0.4 \text{GeV/fm}^3$

Coalescence probability in Au+Au at LHC

Coalescence probability

for
$$c + \overline{q} \rightarrow D$$

pability
$$f(\boldsymbol{\rho},\mathbf{k}_{\rho}) = \frac{8g_M}{6^2} \exp\left[-\frac{\boldsymbol{\rho}^2}{\delta^2} - \mathbf{k}_{\rho}^2 \delta^2\right]$$

$$\boldsymbol{\rho} = \frac{1}{\sqrt{2}}(\mathbf{r}_1 - \mathbf{r}_2),$$

where
$$ho = rac{1}{\sqrt{2}}(\mathbf{r}_1 - \mathbf{r}_2), \quad \mathbf{k}_{
ho} = \sqrt{2} \; rac{m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2}{m_1 + m_2}$$

Width $\delta \leftarrow$ from root-mean-square radius of meson <r>:

$$\langle r^2 \rangle = \frac{3}{2} \frac{m_1^2 + m_2^2}{(m_1 + m_2)^2} \delta^2$$

D-meson scattering in the hadronic phase

1. <u>D-meson scattering with mesons</u>

L. M. Abreu, D. Cabrera, F. J. Llanes-Estrada, J. M. Torres-Rincon, Annals Phys. 326, 2737 (2011)

Model: effective chiral Lagrangian approach with heavy-quark spin symmetry

Interaction of D=(D⁰,D⁺,D⁺_s) and D*=(D*⁰,D*⁺,D*⁺_s) with octet (π ,K,Kbar, η)

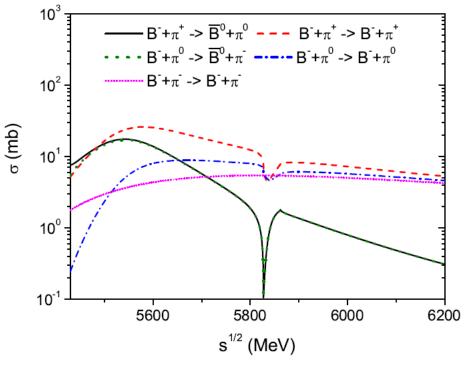
2. <u>D-meson scattering with baryons</u>

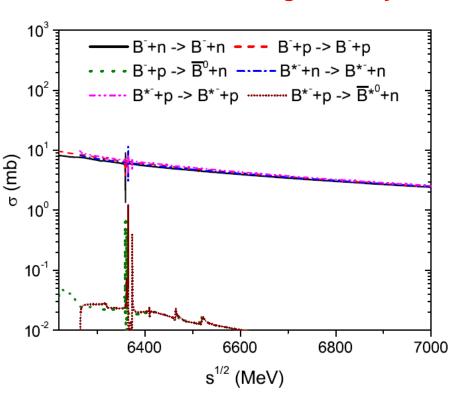
C. Garcia-Recio, J. Nieves, O. Romanets, L. L. Salcedo, L. Tolos, Phys. Rev. D 87, 074034 (2013)

Model: G-matrix approach: interactions of $D=(D^0,D^+,D^+_s)$ and $D^*=(D^{*0},D^{*+},D^{*+}_s)$ with nucleon octet $J^P=1/2^+$ and Delta decuplet $J^P=3/2^+$

Unitarized scattering amplitude → solution of coupled-channel Bethe-Salpeter equations:

$$T = T + VGT$$

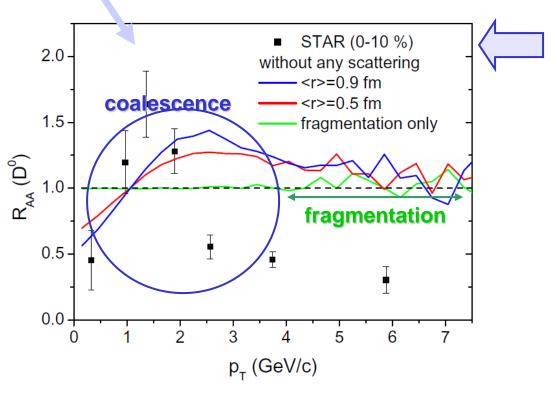

→ Strong isospin dependence and complicated structure (due to the resonance coupling) of D+m, D+B cross sections!

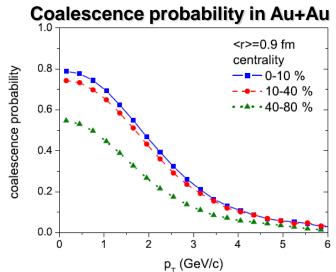

B-meson scattering in the hadron gas

- L. Tolos and J. M. Torres-Rincon, Phys. Rev. D 88, 074019 (2013)
- J. M. Torres-Rincon, L. Tolos and O. Romanets, Phys. Rev. D 89, 074042 (2014)

1. B-meson scattering with mesons

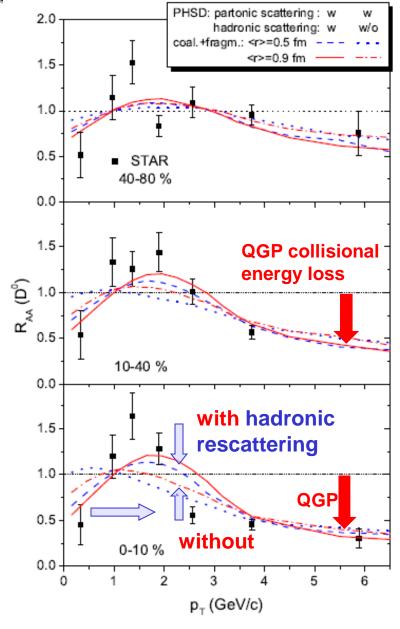
2. B-meson scattering with baryons


> >200 hadronic channels -> implemented in the PHSD (by Taesoo Song)


R_{AA} at RHIC - coalescence vs fragmentation

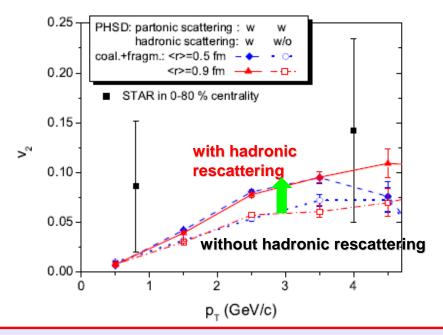
Influence of hadronization scenarios: coalescence vs fragmentation

! Model study: without any rescattering (partonic and hadronic)


$$R_{AA}(p_T) \equiv \frac{dN_D^{Au+Au}/dp_T}{N_{binary}^{Au+Au} \times dN_D^{p+p}/dp_T}$$

- Expect: no scattering: R_{AA}=1
- \square Hadronization by fragmentation only (as in pp) \rightarrow R_{AA}=1
- \square Coalescence (not in pp!) shifts R_{AA} to larger $p_T \rightarrow$, nuclear matter effect
- ☐ The hight of the R_{AA} peak depends on the balance: coalescence vs. fragmentation

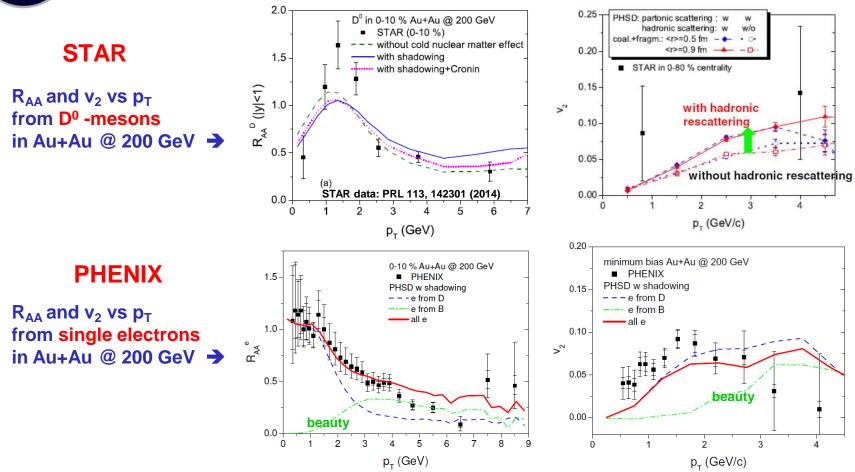
R_{AA} at RHIC: hadronic rescattering



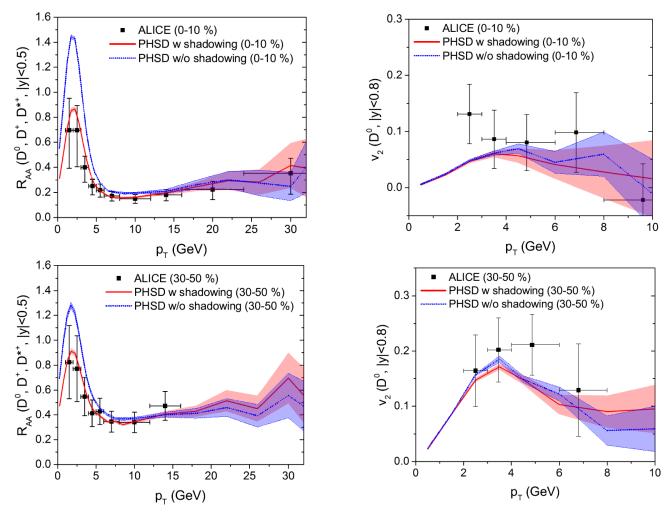
Influence of hadronic rescattering:

Central Au+Au at $s^{1/2}$ =200 GeV : N(D,D*) ~30 N(D,D*+m) ~56 collisions

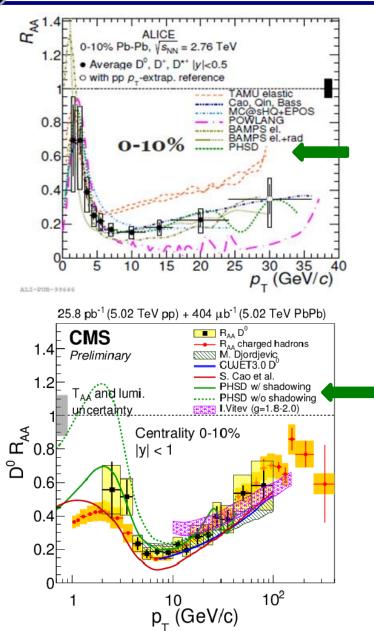
N(D,D*+B,Bbar) ~10 collisions

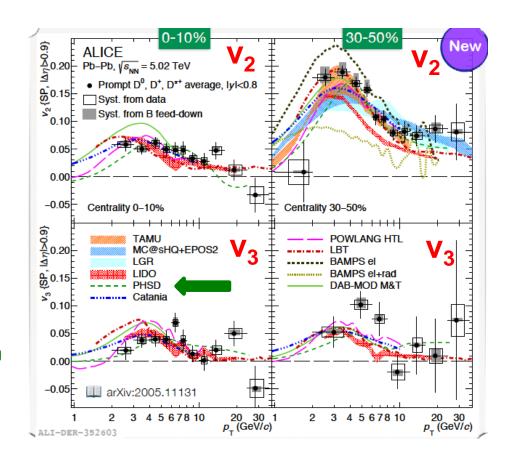

→ each D,D* makes ~ 2 scatterings with hadrons

- \square Hadronic rescattering moves R_{AA} peak to higher p_T !
- substantially increases v₂ at larger p_T


PHSD vs charm observables at RHIC

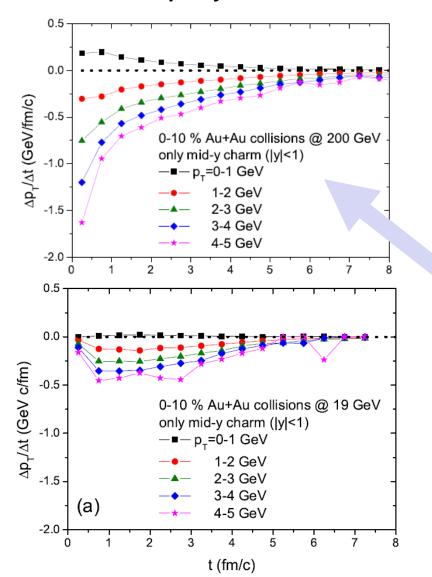
- \Box The exp. data for the R_{AA} and v₂ are described in the PHSD by QGP collisional energy loss due to elastic scattering of charm guarks with massive guarks and gluons in the QGP
- + by the dynamical hadronization scenario "coalescence & fragmentation"
- + by strong hadronic interactions due to resonant elastic scattering of D,D* with mesons and baryons
- Feed back from beauty contribution becomes dominant for single electrons R_{AA} and v_2 at $p_T > 3$ GeV

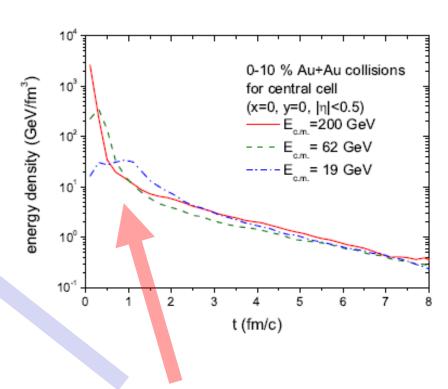

Charm R_{AA} at LHC: PHSD vs ALICE



- ☐ in PHSD the energy loss of D-mesons at high p_T can be dominantly attributed to partonic scattering
- □ Shadowing effect suppresses the low p_T and slightly enhances the high p_T part of R_{AA}
- \square Hadronic rescattering moves R_{AA} peak to higher p_{T_i} increases v_2

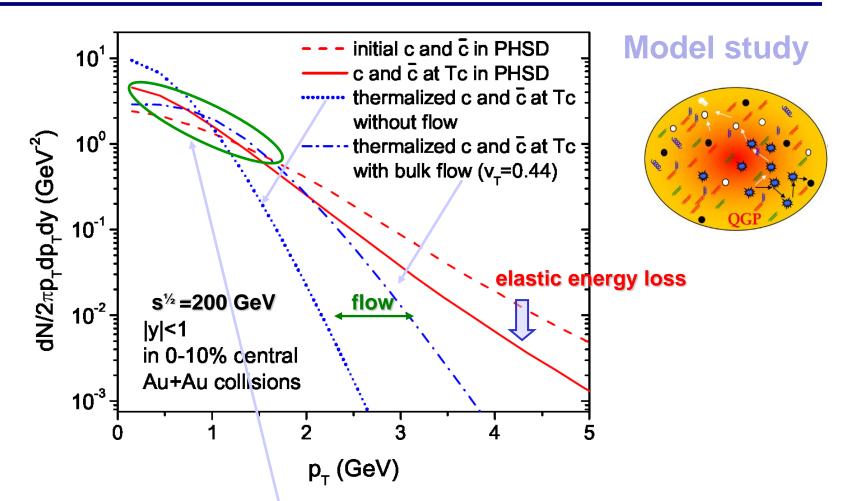
PHSD vs charm observables at LHC (predictions)





Energy gain/loss at RHIC

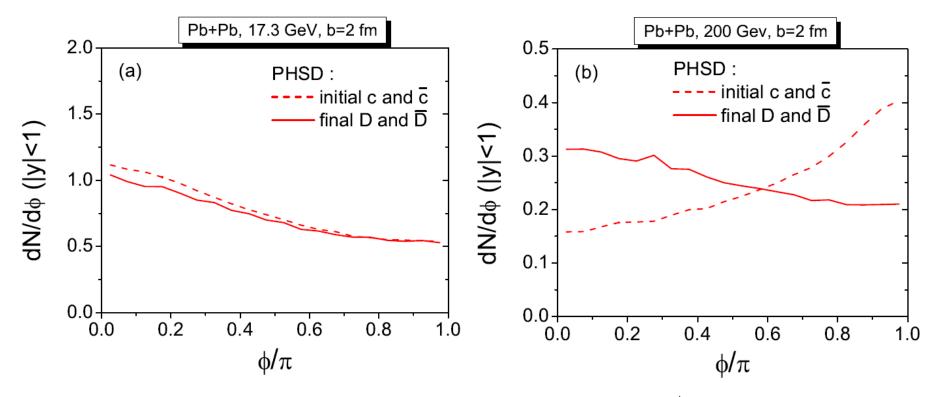
☐ Transverse momentum gain or loss of charm quarks per unit time at mid-rapidity in 0-10 % central Au+Au collisions at s¹/2= 200 and 19 GeV



A considerable energy and transverse momentum loss happens in the initial stage of heavy-ion collisions during the QGP phase, because the energy density is extremely large

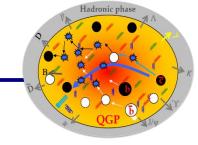
T. Song et al., PRC 96 (2017) 014905

Thermalization of charm quarks in A+A?



- □ Scattering of charm quarks with massive partons softens the p_T spectra
 - → elastic energy loss
- \Box Charm quarks are close to thermal equilibrium at low p_T < 2 GeV/c

Angular correlation between D-Dbar


Azimuthal angular distribution between the transverse momentum of D-Dbar at midrapidity (|y| < 1) before (dashed lines) and after the interactions with the medium (solid lines) in central Pb+Pb collisions at $s^{1/2} = 17.3$ and 200 GeV

- □ Initial correlations from PYTHIA : peaks around ϕ = 0 for \sqrt{s} = 17.3 GeV, while around ϕ = π for \sqrt{s} = 200 GeV
- □ Final correlations: smeared at √s= 200 GeV due to the interaction of charm quarks in QGP

PHSD

Summary

- □ PHSD provides a microscopic description of non-equilibrium charm dynamics in the partonic and hadronic phases
- \square Partonic rescattering suppresses the high p_T part of R_{AA}, generates v₂
- □ Hadronic rescattering moves R_{AA} peak to higher p_T, increases v₂
- \Box The structure of R_{AA} at low p_T is sensitive to the hadronization scenario, i.e. to the balance between coalescence and fragmentation
- Shadowing effects suppress R_{AA} at LHC at low transverse momenta, Cronin effect slightly increases R_{AA} above $p_T > 1$ GeV
- □ The exp. data for the R_{AA} and v₂ at RHIC and LHC are described in the PHSD by QGP collisional energy loss due to the elastic scattering of charm quarks with massive quarks and gluons in the QGP phase
 - + by the dynamical hadronization scenario "coalescence & fragmentation"
 - + by strong hadronic interactions due to resonant elastic scattering of D,D* with mesons and baryons
- □ Feed back from beauty contribution for R_{AA}^e and v_2^e from single electrons for Au+Au at 200 GeV becomes dominant for $p_T > 3$ GeV
- ☐ Initial azimuthal angular correlation of QQbar pairs is washed out during the evolution dominantly due to the transverse flow