Deep learning for flow observables in ultrarelativistic heavy-ion collisions

Henry Hirvonen with Harri Niemi, Kari J. Eskola Phys. Rev. C 108, 034905 (2023)

Department of Physics, University of Jyväskylä Helsinki Institute of Physics

> CoE in Quark Matter YoctoLHC

STRONG-HFHF-2023 Workshop

Henry Hirvonen (JYU)

Deep learning for flow observables

Motivation

- Heavy ion collisions provide a way to probe matter properties of QGP
- Shear and bulk viscosities of QGP can be constrained from the measured data by the means of Bayesian analysis
- Measured multi-particle correlations require millions of simulated collision events to obtain enough statistics for reliable comparison with the data
- \bullet One event \sim 0.5 CPU hours $\implies \sim 10^{6}$ CPU hours per viscosity parametrization
- Problem: to perform Bayesian analysis one needs observables for $\sim 10^2$ parametrizations, i.e. total of $\sim 10^8$ CPU hours!
- Solution: Use machine learning to speed up the process

The theory framework

- Initial state from pQCD+saturation EKRT-framework
- 2nd-order viscous fluid dynamics with shear and bulk viscosities
 - Earlier EbyE EKRT works: $\eta/s=$ 0.2 and $\eta/s=$ param1 with $T_{dec}=$ 100 MeV
- Here we add ζ/s(T) and convert fluid into particle spectrum by calculating Cooper-Frye integral at the decoupling surface determined by dynamical freeze-out conditions
 - Purely hydrodynamic description \implies Continuous parametrization of transport coefficients across all phases of strongly interacting matter

Dynamical freeze-out

• Fluid dynamics applicable when expansion rate $(\theta) \lesssim$ scattering rate $(1/\tau_{\pi})$ and mean free path $(\tau_{\pi}) \lesssim$ size of the system (R) \implies Dynamical decoupling conditions:

Knudsen numberGlo $\operatorname{Kn} \equiv \frac{\operatorname{exp. rate}}{\operatorname{scat. rate}} = \tau_{\pi}\theta = \mathcal{C}_{\operatorname{Kn}}$ Glo

Global size of the system
$$rac{\gamma au_{\pi}}{R} = C_R, \ R = \sqrt{A/\pi}$$

- C_{Kn} and C_R are free parameters, fitted from data
- \bullet A is the area in which ${\rm Kn} < {\it C_{Kn}}$ and T < 150 MeV
- Allow multiple separate areas with different R
- H. Hirvonen et al. Phys.Rev.C 106, 044913 (2022)

Flow coefficients

• Dynamical freeze-out decreases amount of flow in peripheral collisions and improves agreement with the measurements

• In total of $\approx 5.4M$ trainable

parameters

Workflow

- Separate network trained for each p_T -integrated observable: $v_2, v_3, v_4, v_5, v_6, [p_T], dN_{ch}/d\eta$
- Each network trained with multiple different p_T ranges for an observable
- In total of 20000 training events: 5000 from each collision system
 - 200 GeV Au+Au
 - 2.76 TeV Pb+Pb
 - 5.023 TeV Pb+Pb
 - 5.44 TeV Xe+Xe (deformed nuclei)
- Training data augmented using random flips, rotations and translations
- ullet Training one network takes ≈ 1 GPU hour with NVIDIA V100 32GB GPU
- \bullet After training, NN can generate $\sim 10^6$ events/hour with GPU
 - Factor of 10^5 faster than doing full simulations using CPU!

Validation tests: Errors with 90k validation events

H. Hirvonen et al. Phys. Rev. C 108, 034905 (2023)

Henry Hirvonen (JYU)

Validation tests: Flow coefficients

Validation tests: Four-particle flow correlations

Validation tests: Six- and eight-particle flow correlations

NN predictions: Four-particle flow correlations

NN predictions: Six- and eight-particle flow correlations

Model parameters as an input (NN_p)

- Neural network can be extended to take model parameters as additional input:
 - 6 parameters describing $\eta/s(T)$
 - 4 parameters describing $\zeta/s(T)$
 - 3 parameters describing chemical and kinetic decoupling
- Training data consist of 160000 events
 - 2000 different parameter points sampled from Latin hypercube
 - 4 collision systems
 - \implies Very efficient: only 80 training events for each parameter point

Validation: Flow coefficients

Work in progress!

Henry Hirvonen (JYU)

Deep learning for flow observables

STRONG-HFHF-2023

Validation: Normalized symmetric cumulants

Work in progress!

- \bullet Dynamical decoupling \implies Clear improvement in centrality dependence of flow coefficients
- Using neural network to predict flow observables from initial energy density reduces computation time by many orders of magnitude
 - Speedup achieved while maintaining good accuracy, even for multi-particle correlations
 - Can be extended to take model parameters as additional input
- In future: use neural networks in Bayesian analysis

Backup:

Validation: Flow-transverse-momentum correlations

H. Hirvonen et al. Phys. Rev. C 108, 034905 (2023)

NN predictions: Flow-transverse-momentum correlations

Validation: flow coefficients, low viscosity

Henry Hirvonen (JYU)

Deep learning for flow observables

Validation: flow coefficients, high viscosity

Henry Hirvonen (JYU)

Work in progress!

Work in progress!