

Quarkonium production in pp and Heavy Ion Collisions

J. Aichelin

J. Zhao, D. Arrebato Villar, P.B. Gossiaux, K. Werner (Subatech, Nantes)

T. Song, E. Bratkovskaya (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt)

work in progress

pp: PRC 96,014907 2305.10750

AA: first results for: PRC107.054913 Strong 2020 - HFHF Taormina, Sept.28 – Oct. 4 2023

Why do we study J/ψ production in heavy-ion collisions?

 J/ψ mesons

- are a hard probe: test quark-gluon plasma from creation to hadronization
- no consistent microscopical theory available yet
- show quite different results for key observables at RHIC and LHC which are not fully understood yet:

J/ψ production in p+p collisions

How to describe a bound state like a c-cbar in QCD? It involves low momenta and needs non perturbative input → assumptions. Our approach: Wigner density formalism (as successful at lower energies)

Wigner Density Formalism

c-cbar interaction depends on relative p and r only, \rightarrow plane wave of CM Starting point: Wave function (w.f.) of the relative motion of state i: $|\Phi_i\rangle$

w.f. \rightarrow density matrix $|\Phi_i > < \Phi_i|$

Wigner density of $|\Phi_i \rangle$: $\Phi_i^W(\mathbf{r}, \mathbf{p}) = \int d^3 y e^{i\mathbf{p}\cdot\mathbf{y}} < \mathbf{r} - \frac{1}{2}\mathbf{y}|\Phi_i\rangle < \Phi_i|\mathbf{r} + \frac{1}{2}\mathbf{y}\rangle$. (close to classical phase space density) $\mathbf{R} = \frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, \quad \mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2,$ $\mathbf{P} = \mathbf{p}_1 + \mathbf{p}_2, \quad \mathbf{p} = \frac{\mathbf{p}_1 - \mathbf{p}_2}{2}.$

$$n_i(\mathbf{R}, \mathbf{P}) = \sum_{\text{all } c\bar{c} \text{ pairs}} \int \frac{d^3 r d^3 p}{((2\pi)^3} \Phi_i^W(\mathbf{r}, \mathbf{p}) \prod_{\text{all other particles}} \int \frac{d^3 r_j d^3 p_j}{(2\pi)^{3(N-2)}} \rho_N^W(\mathbf{r}_1, \mathbf{p}_1 \dots \mathbf{r}_N, \mathbf{p}_N)$$

The results are obtained using a relativ. formulation

pp: In momentum space given by tuned PYTHIA In coordinate space $\sim r^2 \exp\left(-\frac{r^2}{2\delta^2}\right)$ $\delta^2 = \langle r^2 \rangle/3 = 4/(3m_c^2)$

Wigner Density Formalism

The Wigner density of the state $|\Phi_i\rangle$ is different for S and P states. Simplest possible (harmonic oscillator) parametrization:

$$\Phi_{S}^{W}(\mathbf{r}, \mathbf{p}) = 8 \frac{D}{d_{1}d_{2}} exp\left[-\frac{r^{2}}{\sigma^{2}} - \sigma^{2}p^{2}\right] \qquad \Phi_{P}^{W}(\mathbf{r}, \mathbf{p}) = \frac{16}{3} \frac{D}{d_{1}d_{2}} \left(\frac{r^{2}}{\sigma^{2}} - \frac{3}{2} + \sigma^{2}p^{2}\right) exp\left[-\frac{r^{2}}{\sigma^{2}} - \sigma^{2}p^{2}\right] \qquad D: \text{degeneracy of } \Phi$$

Where σ reproduces the rms radius of the vacuum c cbar state

D : degeneracy of Φ d₁ : degeneracy of c d₂ : degeneracy of cbar $\sigma \sim$ radius of Φ

The tuned PYTHIA reproduces FONLL charm quark calculations but J/Ψ multiplicity depends in addition on the ccbar correlation (not known in FONLL)

pp: comparison with PHENIX and ALICE data

Wigner density based model reproduced pp J/ Ψ data

pp: comparison of Y(nS) with CMS/ALICE data

Wigner density approach works also for Y(nS)

2305.10750 [nucl-th]

7

AA collisions

Primary production of J/Ψ in AA

Without the formation of a QGP we expect a (large) enhancement of the J/ψ production because c and cbar from different NN vertices can form a J/ψ .

but experiments show suppression

Reason: J/ψ production in HI collisions is a very complex process

The different processes which influence the J/ ψ yield

- Creation of heavy quarks (shadowing)
- J/ψ are first unstable in the quark gluon plasma and are created later
- c and cbar interact with the QGP
- c and cbar interact among themselves (← lattice QCD)
- If QGP arrives at the dissociation temperature T_{diss} , stable J/ ψ are possible
- J/ψ creation ends when the QGP hadronizes
- J/ψ can be further suppressed or created by hadronic interaction (task for the future → Torres-Rincon)
- There are in addition J/ψ from the corona (do not pass the QGP)

Our model follows the time evolution of all c and cbar quarks,

is based, as our pp calculation, on the Wigner density formalism assumes that

all c and cbar interact with QGP as those observed finally as D-mesons

all c and cbar interact among themselves

uses EPOS2 to describe the expanding QGP

HQ interactions with QGP verified by D meson results

D mesons test the energy loss and v_2 of heavy quarks in a QGP energy loss tests the initial phase v_2 the late stage of the expansion Two mechanisms : collisional energy loss: PRC78 (2008) 014904 radiative energy loss: PRD89 (2014) 074018

EPOS4HQ reproduces dN/dp_T , R_{AA} and v_2 quite well \rightarrow Heavy quark dynamics in QGP medium under control

J/ψ dynamics in heavy ion collisions

Starting point: von Neumann equation for the density matrix of all particles $\partial \rho_N / \partial t = -i[H, \rho_N]$ with $H = \sum_i K_i + \sum_{i>j} V_{ij}$ $P^{\Phi}(t) = \operatorname{Tr}[\rho^{\Phi} \rho_N(t)]$ with $\rho^{\Phi} = |\Psi^{\Phi} \rangle \langle \Psi_{\Phi}|$ gives the multiplicity of Φ at time t

This is the solution if we would know the quantal $\rho_N(t)$ $\rho_N(t)$ is unknown so we follow BUU,QMD ...

 $\rho_N = < W_N^{c(classical)} >$

and replace $P^{\Phi}(t)$ by the integration over the rate:

$$\Gamma^{\Phi}(t) = \frac{dP^{\Phi}}{dt} = \frac{d}{dt} \operatorname{Tr}[\rho^{\Phi}\rho_{N}(t)] \qquad P^{\Phi}(T) = \int_{0}^{T} \Gamma^{\Phi}(t) dt$$

We assume that heavy quarks and QGP partons interact by collisions only:

$$\Gamma^{\Phi} = Tr(\rho^{\Phi} d\rho^{N}(t)/dt) = -iTr(\rho^{\Phi}[H, \rho^{N}(t)]) = -iTr(\rho^{\Phi}[U_{12}, \rho^{N}])$$
$$U_{12} = \sum_{j \leq 3} (V_{1j} + V_{2j})$$

elastic HQ interactions with the QGP

 \frown

The interaction between HQ and q and g is described by Born type diagrams

$$\frac{d\sigma_F}{dt} = \frac{\mathbf{g^4}}{\pi (s - M^2)^2} \Big[\frac{(s - M^2)^2}{(t - \kappa \mathbf{m_D^2})^2} + \frac{s}{t - \kappa \mathbf{m_D^2}} + \frac{1}{2} \Big] \quad \bigoplus_{\Theta \Theta \Theta}^{\Theta \Theta} \mathcal{F}^{\mathsf{V(r)} \sim \frac{\exp(-m_e r)}{r}}$$

q/g is randomly chosen from a Fermi/Bose distribution with the hydro cell temperature

coupling constant and infrared screening are input

Peshier NPA 888, 7 based on universality constraint of Dokshitzer If t is small (<<T) : Born has to be replaced by a hard thermal loop (HTL) approach For t>T Born approximation is (almost) ok

(Braaten and Thoma PRD44 1298,2625) for QED: Energy loss indep. of the artificial scale t* which separates the regimes Extension to QCD (PRC78:014904)

к ≈ 0.2

Inelastic Qq \rightarrow Qqg collisions

M^{SQMD} in light cone gauge

In the limit $\sqrt{s} \rightarrow \infty$ the radiation matrix elements factorize in

$$M_{tot}^2 = M_{elast}^2 \cdot P_{rad}$$

 k_t , ω = transv mom/ energy of gluon E = energy of the heavy quark

Open heavy flavor results in pp and AA from EPOS4

J/ψ creation in heavy ion collisions

 $\Gamma^{\Phi}(t)$ expressed in Wigner and classical phase space density:

$$\Gamma^{\Phi}(t) = \frac{dP^{\Phi}(t)}{dt} = \frac{d}{dt} Tr[\rho^{\Phi}, \rho_N(t)] \approx \frac{d}{dt} \prod \frac{d^3 r_i d^3 p_i}{(2\pi)^{3N}} W^{\Phi}(\mathbf{r}, \mathbf{p}) W^c(\mathbf{r_1}, \mathbf{p_1}, \dots \mathbf{r_N}, \mathbf{p_N})$$

If the collisions are point like in time and if $W^{\Phi}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{p}_1, \mathbf{p}_2)$ is time independent (1,2 are charm quark, n=number of collision of i and j, $t_{ij}(n)$ =time of n-th collision of ij) :

J/ψ creation in heavy ion collisions

Lattice calc: $W^{\Phi}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{p}_1, \mathbf{p}_2)$ depends on the temperature and hence on time

This creates an additional rate, called local rate

$$\Gamma_{loc} = (2\pi\hbar)^3 \int d^3r d^3p \ W_{Q\bar{Q}}(\mathbf{r},\mathbf{p},t) \dot{W}_{\Phi}(\mathbf{r},\mathbf{p},T(t)).$$

Final multiplicity of J/Ψ in heavy-ion coll with a dissociation temperature

$$P(t) = P^{prim}(t_{init}) + \int_{t_{init}}^{t} [\Gamma_{coll}(t') + \Gamma_{loc}(t')]dt' \rightarrow P(t \rightarrow \infty) = \text{asympt. multiplicity}$$

Interaction of c and cbar in the QGP

V(r) = attractive potential between c and cbar (PRD101,056010) We work with

$$\begin{aligned} \mathcal{L} &= -\gamma^{-1}mc^2 - V(r) \quad H = \sqrt{m^2 + p_r^2 + \frac{p_\theta^2}{r^2}} + V(r) \\ p^2 &= p_r^2 + p_\theta^2/r^2 \\ \gamma^{-1} &= \sqrt{1 - v^2/c^2} \end{aligned}$$

Has to be improved to describe high $p_T \; J / \Psi$

Position and momentum of each c-cbar pair evolve according to Hamiltons equations

c-cbar potential keeps the quarks together \rightarrow increases multiplicity

Influence of the Corona

EPOS 2 show two classes of particles of initially produced particles:

- Core particles which become part of QGP
- Corona particles from the surface of the interaction zone (energy density too low, no collision after production → like pp) importent for high pt and for v2

Confirmed by centrality dependence of multiplicity

For elementary particles it is easy to define corona and core particle (2306.10277)

For J/ ψ mesons we use as working description: Corona J/ ψ are those where none of its constituents suffers from a momentum change of q > q_{thres}. Larger q would destroy a J/ ψ .

Comparison with ALICE data

Caution: excited states decay, b decay and hadronic rescattering not in yet

influence of the corona

Comparison with ALICE data

Our approach and open quantum systems

Von Neuman eq.

$$\partial \rho_N / \partial t = -\frac{i}{\hbar} [H, \rho_N] \qquad H = H_{1,2} + H_{N-2} + U_{1,2} \qquad U_{1,2} = \Sigma_j V_{1,j} + \Sigma_j V_{2,j}$$

Prob. to find quarkonium $P^{\Phi}(t) = \operatorname{Tr}[\rho^{\Phi}\rho_{N}(t)]$ with $[\rho^{\Phi}, H_{1,2}] = 0$ $[\rho^{\Phi}, H_{N-2}] = 0$ Quarkonium rate: $\frac{dP^{\Phi}(t)}{dt} = \Gamma^{\Phi}(t) = \frac{-i}{\hbar}Tr[\rho^{\Phi}[U_{1,2}, \rho_{N}(t)]]$

$$\partial \rho_N(t) / \partial t = -\frac{i}{\hbar} \Sigma_j [K_j, \rho_N(t)] - \frac{i}{\hbar} \Sigma_{k>j} [V_{jk}, \rho_N(t)].$$

Interaction: coll. heavy quarks - partons:

$$= -\frac{i}{\hbar} \Sigma_{k>j} [V_{jk}, \rho_N(t)] \equiv \langle \Sigma_{k>j} \Sigma_n \delta(t - t_{jk}(n)) \\ \cdot (W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t + \epsilon) - W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t - \epsilon)) \rangle.$$

yields

$$\frac{dP^{\Phi}(t)}{dt} = \Gamma^{\Phi}(t) = h^3 \frac{d}{dt} \int \prod_j^N d^3r_j d^3p_j W^{\Phi}_{12} W^c_N(t) = h^3 \int \prod_j^N d^3\mathbf{r}_j d^3\mathbf{p}_j \ W^{\Phi}_{12} \frac{\partial}{\partial t} W^c_N(t)$$

Lindblad eq. (open quantum systems) in the quantal Brownian motion regime

$$\frac{d}{dt}\rho(t) = -i\left[\frac{p^2}{M} + \Delta H, \rho\right] + \sum_n \int \frac{d^3k}{(2\pi)^3} \left[C_n(\vec{k})\rho C_n^{\dagger}(\vec{k}) - \frac{1}{2}\left\{C_n^{\dagger}(\vec{k})C_n(\vec{k}), \rho\right\}\right]$$

Miura, Akamatsu , 2205.15551

Summary

We presented a new approach for quarkonia production in pp collision based on the Wigner density matrix It describes the y and p_T dependence of the spectra for J/ Ψ , χ and Y from RHIC to LHC

Based on these results we presented a new microscopic quantal approach for J/ \square production in AA which follows each c and cbar from creation until detection as J/ ψ

based on $\partial \rho_N / \partial t = -i[H, \rho_N]$ (no rate equation, no Fokker Planck eq., no thermal assumptions)

- c and cbar are created in initial hard collisions (controlled by pp data)
- when entering the QGP J/ψ become unstable
- c and cbar interact by potential interaction (lattice potential)
 c and cbar interact by collisions with q,g from QGP
- when T < T_{diss} = 400 MeV J/ ψ can be formed (and later destroyed)
- formation described by Wigner density formalism (as in pp)
- > Including corona J/ \mathbb{R} , preliminary results agree reasonably with ALICE data for R_{AA} as well as for v_2 .
- The later production (over) compensates the expected multiplicity increase (with respect to pp) due to c and cbar from different vertices
- > We observe an enhancement of $R_{AA}(J/\Psi)$ at low p_T at LHC, as seen experimentally

Outlook

a lot remains to be done:

- Follow the color structure, excited states
- Relativistic kinematics,
- J/ψ interaction in the hadronic expansion reduced cross section of preformed J/ψ (r < λ_{gluon}) with QGP partons (dipole cross section)

• • • • •