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Main objectives for a ML framework in theory

• Consistent framework (based on popular TensorFlow) for 

(on) off-shell model - simultaneously evaluate the EoS and 

transport coefficients of QGP to reduce model assumptions

• Create a faster framework to tune quasi-particle particle 

model parameters – can be easily adjusted for other models

• Check how strangeness is described within the quasi-

particle models and its influence on transport coefficients

• Where can we gain knowledge from ML techniques 

(Unsupervised learning)  for QGP phenomenology by the 

use of  regression task not only classification?
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Unsupervised learning to explore the QGP
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Popular types of NN used for phenomenology:

• Unsupervised Learning is most promising/suitable for phenomenology / theory of nuclear 
physics

• Can we use Unsupervised Learning to learn about the dynamical properties of the 

QGP?
• Exploring QCD matter in extreme conditions with Machine Learning (recent review: 

https://arxiv.org/abs/2303.15136)

Classification: Regression/classification:

Fast simulations:
CNN, new - GAN



Machine Learning: Basic concepts

• Forward propagation: Transmission of input data resulting in an unsettled verdict
• Loss estimation: loss/cost function = discrepancy between predicted and actual values
• Back propagation: weights are iteratively refined to reduce the error
• Optimization: gradient descent (Adam) for correcting the weights

Objection: to minimize the loss of prediction on new data not used for trainings  - we want to 
have some smooth loss function for optimization 

• NN is a new tool for multidimensional optimization function which are more flexible and 
can encompass more features itself, and can be constructed in a more flexible manner 
then conventional optimization techniques 3



Can ML be useful for theory of the QGP?
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?

EoS(ε,n)

𝝈 𝒔, 𝒎𝒒 , 𝒎𝒒 , 𝑻, 𝝁𝑩  

m 𝑻, 𝝁𝑩

On practice: effective models
for QGP

! QPM enables to  estimate  simultaneously of the EoS and transport 

coefficients also including jet and charm coefficients (talk by I Grishmanovskii )

ML facilitated QGP description –  by 
minimizing the loss function (can be 
chosen in various forms)
Output: spectral function, coupling 
constant – which later can be used for the 
extraction of transport coefficients

Phenomenological models 
are  based on lattice QCD 
thermodynamics



Regression task

O.S., A. Palermo, E. Bratkovskaya in preparation

For training we use: T, EoS(from lQCD as true value):
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Goal: Extract microscopic quantities using thermodynamic quantities from 1st 
principle calculation (here lQCD)

Output: masses, widths, coupling constant – which later can be used for the 
tuning quasiparticle models used for QGP phase in transport simulations 
and  extraction of transport coefficients of the  QGP phase



Flowchart of DNN model

O.S., A. Palermo, E. Bratkovskaya in preparation

To train the DNN we generate tables with masses, widths and EoS using
Off-shell quasi-particle description w/o any assumptions on masses and width
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Main DNN

2 Surrogate DNN

• Loss function 
to minimize

• Loss function can contain 
several terms: (y – ytrue ) 
with [ytrue  = EoS(lattice)] and 
regularization terms

[ytrue  = masses/widths (HTL) at high T]

To improve physical 
meaning of the output :



with 

Framework: off-shell Quasi-Particle Model

➢ Input: entropy density as a f(T , 𝝁𝑩 = 𝟎)

➢ Scaling hypothesis for the crossover region at finite 𝝁𝑩

EoS from Ф - functional approach - entropy and quark density and 
susceptibilities expressed in dressed propagators in the quasiparticle 
limit (G. Baym 1998, Blaizot et al. 2001):
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original DQPM model - QGP in the PHSD(Elena's talk) -  coupling 
constant is fixed using entropy density

fit S from QP to S from lQCD

fix the model parameters

• We need to estimate during 
training to estimate Loss



O. S., P. Moreau and E. Bratkovskaya, 

PRC 101 (2020), 045203

+ Full diffusion coefficient matrix

J. A. Fotakis, O. S., C. Greiner, O. Kaczmarek and E. 

Bratkovskaya PRD 104 (2021) , 034014
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DQPM: EoS and transport coefficientst
• DQPM: off-shell Quasi-Particle Model - can provide 

simulaniously Transport coefficients  +  EoS

• Main thermodynamic quantites are
within the errorbars in agreement with
lQCD EoS at moderate

• Baryon and strange susceptibilities are

lower than LQCD data– improve!
• Improve strange quark description

(B, Q, S) diffusion 
coefficients

Cassing, NPA 791 (2007) 365; H. Berrehrah, E. Bratkovskaya, T. Steinert, W. Cassing, 

Int. J. Mod. Phys. E 25 (2016), 164200; P. Moreau, O. S, L. Oliva, T. Song, W. Cassing, 

E. Bratkovskaya, PRC 100 (2019) , 014911;



DNN with Dynamical Quasi-Particle Model

Output: coupling 
constant
masses and widths falls 
from the DQPM Anzatz – 
in HTL form

Re 𝚷𝒊: thermal mass (𝑴𝒈 , 𝑴𝒒)                                                Im 𝚷𝒊  : interaction width (𝜸𝒈, 𝜸𝒒)

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365; H. Berrehrah, E. Bratkovskaya, T. Steinert, W. Cassing, Int. J. Mod. 

Phys. E 25 (2016), 164200; P. Moreau, O. Soloveva , L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, PRC 100 (2019) , 014911;

Strange quark:
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NN: 
3layers, 24x12x12x1 and 
swish/sigmoid



EoS from DNN with DQPM Ansatz

• Loss function to minimize

• Impossible to fit all 3 and get not huge masses
• Simple consideration of different  contribution – results in different 

estimations of effective coupling constant
• DNN: in which direction we can improve the model?
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Proof of principle: DQPM Ansatz

Masses

Possible improvements - 
• change the form of Ansatz in that 

way to keep masses/widths in a 
physical range.

• change width/mass for strange quark

Output:
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Transport coefficients : Kubo formalism

• Kubo formalism allows the evaluation of transport coefficients 
without involving estimations of cross-sections

R. Lang and W. Weise, EPJ. A 50, 63 (2014) (NJL model)

A. Harutyunyan et al,PRD 95, 114021, (2017)

Contain all degrees of freedom
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Conductivity: improve strange quark

• Conductivity shows how good we describe quark sector –  we 

can compare to the strange quark conductivity

• Check how strangeness is described within the quasi-particle 

models and its influence on conductivity

Only quark sector
– separate strange sector
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Generalization of QP Ansatz - Ag DNN Model

• 6 outputs (before just g)
• Modified loss function

• No strict parametrization for widths
• Coupling constant extracted from the masses 

employing non perturbative corrections :

• Modification of strangeness

Main ingredients
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Improved EoS from AgDNN

• Improved susceptibililties
• Microscopic quantities have changed – but close to the original 

QDPM at 3Tc
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Microscopic properties from AgDNN

• Massive gluon shows – almost no T –dependence at small T<3Tc
• Smaller masses – but close to the original QDPM at 3Tc
• No constraints on widths at small T – only asymptotics

• Strangeness – simple shift
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Microscopic properties from AgDNN
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• Set A – higher susceptibilities     heavy gluons:



Transport coefficients from AgDNN

• Cross-check how good we describe the QGP: shear viscosity in a 
physical range

• Increase in gluon/light quark masses and widths affect the shear
viscosity

heavy gluons:
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Tweak the strangeness – improve conductivity
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• Masses and widths of strange quark should differ from light 
sector

• DNN suggests higher widths and smaller masses compare to 
original parametrization

• Strangeness – higher widths



Tweak the strangeness – improve conductivity
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• DNN suggests higher widths and smaller masses compare to 
original parametrization, simple shift also works!

• 2 scenarios looks similar – we need more input from theory

• Strangeness – simple shift



Summary

• We have created framework with small size NN to adjust  model 
parameter (here quasi-particle description) microscopic 
properties of QGP phase using 3 thermodynamic quantities 
and  transport coefficients (Kubo formalism)

• We found that effective masses/widths of strange quark should 
differ from the light quark to describe strange conductivity and 
susceptibility

• DNN can be useful for phenomenology only when regularization 
terms are provided

• Future application for other models – unsupervised learning 
can provide hints for the improvements of a model description

Thank you for your attention!



Bonus: ML for HEP

Theory:

• Classify phases of matter - phase transitions in QCD

• Exploring QCD matter in extreme conditions with Machine Learning (recent review: 
https://arxiv.org/abs/2303.15136)

Jet flavour identification:
› https://arxiv.org/abs/1407.5675 - CNN, Josh Cogan et al;
› https://arxiv.org/abs/1603.09349 - DNN for jets, Pierre Baldi et al;
› https://arxiv.org/abs/1701.05927 - GAN for jets, Luke de Oliveira et al;
› https://arxiv.org/abs/1702.00748 - RNN for jets, Gilles Louppe et al;

And much more in 

Living Review of ML for Particle Physics -> 
https://github.com/iml-wg/HEPML-LivingReview

Thank you for your attention!

https://arxiv.org/abs/1407.5675
https://arxiv.org/abs/1603.09349
https://arxiv.org/abs/1701.05927
https://arxiv.org/abs/1702.00748


Comparison: on-shell results

F.P.Li, H.L.Lu, L.G. Pang and G.Y.Qin, arXiv:2211.07994 Phys Let B (2023)

• 3 outputs – only masses – strong dependence on EoS 



Microscopic properties from AgDNN

• No constraints on strange quark mass/widths
• Original mass difference is preferable

• Strangeness – free parameter 



Framework: off-shell Quasi-Particle Model



How to evaluate transport coefficient?

• Kubo formalism: transport coefficients are expressed through correlation 
functions of stress-energy tensor

used in  lattice QCD, transport approaches(hadrons), effective models

Kinetic theory:

• Relaxation time approximation(RTA) : consider relaxation time

• Chapman-Enskog : expand the distribution in terms of the Knudsen number

And more!

Holographic models: AdS/CFT correspondence

R. Lang and W. Weise, EPJ. A 50, 63 (2014) (NJL model)

A. Harutyunyan et al,PRD 95, 114021, (2017) 

D. T. Son and A. O. Starinets, JHEP 0603, 052 (2006)

M. Attems et al , JHEP 10 (2016), 155.
J. Grefa, M. Hippert, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti and R. Rougemont,

PRD 106 (2022) no.3, 034024 <- near CEP and across the first-order line

P. Chakraborty and J. I. Kapusta, PRC 83,014906 (2011)

G.S. Rocha, M. N. Ferreira, G. S. Denicol and J. Noronha, PRD 106 (2022) no.3, 036022

J. A. Fotakis et al, PRD 101 (2020) 7, 076007 (HRG)

4



Properties of QGP: transport coefficients
! One has to specify transport and microscopic properties as well as EoS 
for  theoretical simulations of HICs (hydro / transport approaches)

1

AMPT – PNJL EoS (Mean field potentials)
K.J. Sun, C. M. Ko, and Z.-W. Lin, PRC 103(2021)

PHSD – off-shell transport approach derived from Kadanoff-Baym 
many-body theory (Quantumm Boltzmann) with hadronic and QGP 
phase – 2PI Dynamical QuasiParticle Model

Transport simulations with QGP phase:

Catania transport – QuasiParticle Model
F. Scardina, S. K. Das, V. Minissale, S. Plumari, and V. Greco,

PRC 96, 044905 (2017).

Hybrid simulations:
vHLLE/Music+UrQMD/SMASH
Iu.A. Karpenko, P. Huovinen, H. Petersen and M. Bleicher

PRC 91 (2015), 064901.

CORE-CORONA – EPOS (K. Werner), DCCI(Y. Kanakuba)

MUFFIN

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919

P. Moreau, O. S , L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, PRC 100 (2019) , 014911;

O. S, P. Moreau, L. Oliva, V. Voronyuk, V. Kireyeu, T. Song, E. Bratkovskaya, Particles 3 (2020)

Evolution of QCD medium



Machine Learning: Basic concepts
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Alternatives: choose wisely!



Uncertanties in viscosities of QGP

! Effective models of QGP using the same EoS predict completely 

different transport coefficients 

Model predictions: from first principles to effective models – quest for consistency
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Machine Learning: Unsupervised

• Unsupervised Learning is most promsing/suitable for phenomenology and physics
2



Strange conductivity: reconsider strange quark

• Kubo formalism allows to evaluate transport coefficients without 

involving cross-sections

• Conductivity shows how good we describe quark sector – in 

particular  we can compare to the strange quark conductivity

• Check how strangeness is described within the quasi-particle 

models and its influence on conductivity

Contain all degrees of freedom
Only quark sector 
– separate strange sector
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