The 2nd Workshop of the Network NA7-HF-QGP of the European program "STRONG-2020"_and the HFHF Theory Retreat 2023

Nuclei and hypernuclei production in pion induced reactions around threshold energies

Outline:

- Hypernuclei
- Small system size
- Cluster formation models
- Results

Apiwit Kittiratpattana

Institut für Theoretische Physik Goethe-Universität Frankfurt Germany

28th Sep – 4th Oct 2023

Hypernuclei

\rightarrow *YN*-Interactions?

- Neutron stars and EoS
 - The presence of hyperon/hypernuclei
 → Soften the EoS
 - Less attractive \rightarrow Stiffer EoS
 - 3-body repulsive potential

Lonardoni, D., Lovato, A., Gandolfi, S., & Pederiva, F. (2015). Physical Review Letters, 114(9).

Hypernuclei

Hypertriton $^{3}_{\Lambda}$ H

- Strong attractive → Soft EoS (The hypernuclei are deeply bound)
- More repulsive → Stiffer EoS (The hypernuclei are less bound)

 Hypernuclei with coalescence from difference phase-space volume?

Hypernuclei

Hypertriton $^{3}_{\Lambda}$ H

- What if the coalescence parameter is larger than the source volume?
- At small system, Δr and ΔP are less correlated
- Strong suppression at small system
- System size dependence

 → Can study the size in diff. system
 → Pin-down the mechanism?
 → Small system data is needed

Reichert, Tom, et al. Physical Review C 107.1 (2023): 014912.

NOTE: The coalescence parameter may not directly connect to the wavefunction size

Small system size

New particle production in p + A:

Lambda is produced with a large forward momentum

- \rightarrow Less favorable for hypernuclei production
- \rightarrow Hypernuclei will be produced outside of the nucleus

Small system size

New particle production in p + A:

Lambda is produced with a large forward momentum → Less favorable for hypernuclei production

 \rightarrow Hypernuclei will be produced outside of the nucleus

New particle production in $\pi^- + A$:

Larger stopping power

→ Hypernuclei will be formed with the target! (Allow for large hypernuclei $A \gg 3$)

Hyperon production

- $\pi^- + N \rightarrow N^*$ (up to 4 GeV)
- $N^* \rightarrow \Lambda K$ (or even $\Xi K K$)

Small system size

New particle production in p + A:

Lambda is produced with a large forward momentum → Less favorable for hypernuclei production → Hypernuclei will be produced outside of the nucleus

New particle production in $\pi^- + A$:

Larger stopping power

→ Hypernuclei will be formed with the target! (Allow for large hypernuclei $A \gg 3$)

Hyperon production

- $\pi^- + N \rightarrow N^*$ (up to 4 GeV)
- $N^* \rightarrow \Lambda K$ (or even $\Xi K K$)

Coalescence $^{3}_{\Lambda}H$ π^{-} ragmenting

Our aim: Study the yield of cluster formations with coalescence and multifragmentation

STRONG-HFHF-2023, Sicily, Italy

Apiwit Kittiratpattana

5/16

UrQMD

Ultra-relativistic Molecular Dynamics (UrQMD)

Based on the relativistic Boltzmann transport:

- $p^{\mu} \cdot \partial_{\mu} f_i(x^{\nu}, p^{\nu}) = C_i$
- Binary interactions + Re-scattering are treated
- Cross sections are taken from data or models
- Resonances/decays are implemented

nucleon	Δ		Λ	Σ	Ξ	Ω
$\begin{array}{c} N_{938} \\ N_{1440} \\ N_{1520} \\ N_{1535} \\ N_{1650} \\ N_{1675} \\ N_{1675} \\ N_{1680} \\ N_{1700} \\ N_{1700} \\ N_{1710} \\ N_{1700} \\ N_{1900} \\ N_{1990} \\ N_{2080} \\ N_{2190} \\ N_{2200} \\ N_{2250} \end{array}$	$\begin{array}{c} \Delta_{1232} \\ \Delta_{1600} \\ \Delta_{1620} \\ \Delta_{1700} \\ \Delta_{1900} \\ \Delta_{1905} \\ \Delta_{1910} \\ \Delta_{1920} \\ \Delta_{1930} \\ \Delta_{1950} \end{array}$	$egin{array}{c} \Lambda_{11} \ \Lambda_{14} \ \Lambda_{15} \ \Lambda_{16} \ \Lambda_{16} \ \Lambda_{16} \ \Lambda_{16} \ \Lambda_{18} \ \Lambda_{21} \ \Lambda_{21} \end{array}$	16 05 20 00 70 90 00 10 20 30 90 00 10	$ \sum_{1192} \\ \Sigma_{1385} \\ \Sigma_{1660} \\ \Sigma_{1670} \\ \Sigma_{1775} \\ \Sigma_{1790} \\ \Sigma_{1915} \\ \Sigma_{1940} \\ \Sigma_{2030} $	Ξ_{1317} Ξ_{1530} Ξ_{1690} Ξ_{1820} Ξ_{1950} Ξ_{2025}	Ω ₁₆₇₂
0^{-+}	1	-		0^{++}		1++
πK	$\begin{array}{c c} \rho \\ K^{*} \end{array}$	*		a_0 K^*_0		$a_1 \\ K_1^*$
**				0		- <u>-</u> 1

0-+	1	0++	1++
π	ρ	a_0	a_1
K	K^*	K_0^*	K_1^*
η	ω	f_0	f_1
η'	ϕ	f_0^*	f_1'
1+-	2^{++}	$(1^{})^*$	$(1^{})^{**}$
b_1	a_2	$ ho_{1450}$	$ ho_{1700}$
K_1	K_2^*	K^*_{1410}	K_{1680}^{*}
h_1	f_2	ω_{1420}	ω_{1662}
h'_1	f'_2	ϕ_{1680}	ϕ_{1900}

Methods of cluster production

Wigner functions

- Projection on Hulthen wave function
- No free parameters
- No orthogonality of states

M. Kachelriess et al. Eur.Phys.J.A 57 (2021) M. Gyulassi et al. Nucl.Phys.A 402 (1983)

Kinetic production

- Introduce explicit processes, e.g. $np\pi \rightarrow d\pi$
- Dynamical treatment
- · 'Fake' 3-body interactions

J. Staudenmaier et al. Phys.Rev.C 104 (2021) 3, 034908 D. Oliinychenko et al. Phys.Rev.C 99 (2019) 4, 044907

Potential

- Hamiltonian which binds cluster
- Might involve complicated forces
- Difficult for small systems

J. Aichelin, et al. Phys.Rev.C 101 (2020) 4, 044905 S. Gläßel, et al. Phys.Rev.C 105 (2022) 1, 014908

Coalescence

- Employ cut-off parameters
- Event-by-event possible
- 2 free, energy-independent parameters

S. Butler, C. Pearson. Phys.Rev. 129 (1963) 836-842 S. Sombun et al. Phys.Rev.C 99 (2019) 1, 014901

Thermal emission

- Clusters in partition sum
- No free parameter
- P. Braun-Munzinger, et al. Phys.Lett.B 344 (1995) 43-48 A. Andronic, et al. Nature 561 (2018) 7723, 321-330 V. Vovchenko, et al. Phys.Lett. B (2020) 135746

Multifragmentation

- Break up of thermal nuclear system
- Microcanonical ensembles
- Deexcitation via Fermi break up

Bondorf et al. Phys.Rept. 257 (1995) 133-221 Steinheimer et al. Phys.Lett.B 714 (2012) 85-91

Cluster Formation Models

Coalescence Mechanism

- Phase-space correlations
 - $\Delta \vec{P} \leq \Delta \vec{P}_{max}, \ \Delta \vec{R} \leq \Delta \vec{R}_{max}$

	ΔP [GeV]	ΔR [fm]
d	0.285	3.575
<i>t/</i> ³ He	0.32	3.5
⁴ He	0.41	3.5
$^{3}_{\Lambda}$ H	0.135	9.5
$^3_{\Lambda}$ H	0.25	4.0

Statistical Multifragmentation (SMM)

 Assume a larger excited nuclear system which subsequently fragments into small clusters

 All participants (and spectators) from UrQMD (at 20 fm) are given into the SMM

p_T spectra of protons and Λ hyperons

Protons:

- The slope parameters agree well.
- Observe the residue free protons at $p_T \le 0.4$ GeV ($y \le 0.1$)
 - More apparent in larger system

Λ hyperons:

• Agree well.

 π^- + C: 0 < b < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb π^- + W: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^-+W}$ = 1327.32 mb

Kittiratpattana, Apiwit, et al. arXiv:2305.09208 (2023).

$$\sim C(y)p_T \sqrt{p_T^2 + m_0^2} \exp\left[-\sqrt{p_T^2 + m_0^2}/T(y)\right]$$

 p_T spectra of protons and Λ hyperons

 $\pi^- + \mathbf{C}: \quad 0 < b < 2.5 \text{ fm}, \quad \sigma_{tot}^{\pi^- + \mathbf{C}} = 196.35 \text{ mb}$ $\pi^- + \mathbf{W}: \quad 0 < b < 6.5 \text{ fm}, \quad \sigma_{tot}^{\pi^- + \mathbf{W}} = 1327.32 \text{ mb}$

Kittiratpattana, Apiwit, et al. arXiv:2305.09208 (2023).

 $\sim C(y)p_T \sqrt{p_T^2 + m_0^2} \exp\left[-\sqrt{p_T^2 + m_0^2}/T(y)\right]$

This leads to slightly difference in the extrapolated rapidity densities at $y \approx 0$ (target)

STRONG-HFHF-2023, Sicily, Italy

 π^- + C: 0 < b < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb π^- + W: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^-+W}$ = 1327.32 mb

Kittiratpattana, Apiwit, et al. arXiv:2305.09208 (2023).

Rapidity distribution of protons and Λ hyperons

Protons:

- The extrapolated densities and HADES <u>data</u> does not see <u>the free proton</u> at $y \approx 0$ (Acceptance $p_T < 0.4$ GeV)
- Larger effects in W system

Λ hyperons:

- Agree well in general
- Ξ^- hyperons:
 - Might be able to measure
 - $\Xi NN \rightarrow \Lambda \Lambda N$?

Results p_T distribution of light nuclei

 π^- + C: 0 < b < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb π^- + W: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^-+W}$ = 1327.32 mb

Kittiratpattana, Apiwit, et al. arXiv:2305.09208 (2023).

Similar to the residue protons, the light cluster yields also has a bump at y pprox 0

STRONG-HFHF-2023, Sicily, Italy

Apiwit Kittiratpattana

12/16

Rapidity distribution of light nuclei

Most cluster are centered around target rapidity where (residue) nucleons are located/fragmented.

- $ightarrow A \leq 4 \sim \mathcal{O}(10)$ per event
- Deceleration:
 - Deuterons are much more pronounce at forward rapidity
 - π^- is more likely to knock 1-2 nucleons from the target
 - Larger nucleus decelerates stronger

 π^- + C: 0 < b < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb π^- + W: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^-+W}$ = 1327.32 mb

Kittiratpattana, Apiwit, et al. arXiv:2305.09208 (2023).

STRONG-HFHF-2023, Sicily, Italy

Rapidity distribution of hypernuclei

 $\pi^- + \mathbf{C}: \quad 0 < b < 2.5 \text{ fm}, \quad \sigma_{tot}^{\pi^- + \mathbf{C}} = 196.35 \text{ mb}$ $\pi^- + \mathbf{W}: \quad 0 < b < 6.5 \text{ fm}, \quad \sigma_{tot}^{\pi^- + \mathbf{W}} = 1327.32 \text{ mb}$

Kittiratpattana, Apiwit, et al. arXiv:2305.09208 (2023).

 More clusters formation at y ≈ 0

- $\mathcal{O}(10^{-3})$ of ${}^{3}_{\Lambda}$ H per events.
- NE signal?
- Deceleration: A > 2
- In small system (πC),
 SMM differs from
 UrQMD by a factor of 10
 - Suppression in small system

Total abundance for larger (hyper)nuclei

Signal extractions by HADES (~10⁹ events)

- Light nuclei $A > 3 \rightarrow 10^{-4} 1$ / event
- Hypernuclei $A > 3 \rightarrow 10^{-6} 10^{-3}$ / event

HADES with $p_{lab} = 2.5 \text{ GeV}$?

- Ξ -hypernuclei might be seen $(N^* \rightarrow \Xi + K + K)$
- Double- Λ ($\Xi + N + N \rightarrow \Lambda + \Lambda + N$)

 π^- + C: 0 < b < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb π^- + W: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^-+W}$ = 1327.32 mb

Kittiratpattana, Apiwit, et al. arXiv:2305.09208 (2023).

Summary

- UrQMD is employed to simulate $\pi^- + C$ and $\pi^- + W$ at $p_{lab} = 1.7 \text{ GeV}$
- We predict clusters with <u>coalescence</u> and <u>SMM</u> for light nuclei and hypernuclei
 - Light nuclei $A > 3 \rightarrow 10^{-4} 1$ / event
 - Hypernuclei $A > 3 \rightarrow 10^{-6} 10^{-3}$ / event
 - $\mathcal{O}(10^{-3})$ of ${}^{3}_{\Lambda}$ H per event
 - Large targets are favorable (more stopping)
- Suppression in small system is similar to LHC
- Ξ and **double-** Λ might be seen at higher beam momenta?

