Strangeness fluctuations in heavy-ion collisions

Marcus Bluhm

with Marlene Nahrgang, Grégoire Pihan, Taklit Sami and Masakiyo Kitazawa

see also <u>2111.13977</u> and <u>1806.04499</u>

2nd Workshop of the Network NA7-HF-QGP, Giardini Naxos, Italy, 2 October 2023

Significance of fluctuation observables

experimentally multiplicity fluctuations determined from event-by-event distributions

- cumulant analysis:
 - mean: $M = \langle N \rangle = \chi_1 = C_1$
 - variance:

$$\sigma^2 = \langle (\Delta N)^2 \rangle = \chi_2 = C_2$$

- skewness S, kurtosis κ , ...
- net-distributions N₊ N₋ often studied!
- fluctuations in conserved charges of QCD (B, S, Q) sensitive to matter composition
- requires limited phase-space acceptance!

Significance of fluctuation observables

\Rightarrow theoretically fluctuations related to susceptibilities

- allows us to study the phase-structure of QCD matter!
- for a given pressure P susceptibilities follow from

$$\chi_n = VT^3 \frac{\partial^n (P/T^4)}{\partial (\mu/T)^n}$$

- volume cancels in ratios

Connecting theory with experimental data

Medium created in a heavy-ion collision is

- extremely short-lived
- spatially extremely small
- inhomogeneous
- highly dynamical

yet still the success of statistical models and fluid dynamical simulations points toward equilibrated matter (at least locally)!

Originate fluctuations from an equilibrated source?

2 approaches: statistical and dynamical modeling...

madai.us

Significance of the chemical freeze-out

simplified picture:

- after QGP phase and confinement transition, phase with hadronic interactions
- chemical freeze-out when inelastic scatterings stop
 → hadro-chemistry fixed!
- kinetic freeze-out when elastic scatterings cease
 → spectra fixed!
- \Rightarrow methods to determine chemical freeze-out conditions:
 - traditionally via yields (multiplicities) and yield ratios
 - alternatively via event-by-event multiplicity fluctuations

Chemical freeze-out conditions via yields

 \Rightarrow determine thermal conditions (*T*, μ_X) from yield ratios, volume *V* additionally needed for yields, via statistical hadronization model (SHM) fits

example from ALICE:

Chemical freeze-out conditions via yields

 \Rightarrow determine thermal conditions (*T*, μ_X) from yield ratios, volume *V* additionally needed for yields, via statistical hadronization model (SHM) fits

world-data analysis:

• analysis at various beam energies $\sqrt{s_{NN}}$ allows us to draw a chemical freeze-out curve

- trend: decreasing $\sqrt{s_{NN}}
ightarrow$ increasing μ_B and decreasing ${\cal T}$

Theoretical framework

⇒ employ a Hadron Resonance Gas (HRG) model in grand-canonical ensemble formulation

$$P = \sum_{i} (-1)^{B_{i}+1} \frac{d_{i}T}{(2\pi)^{3}} \int d^{3}k \ln \left[1 + (-1)^{B_{i}+1} z_{i} e^{-\epsilon_{i}/T}\right]$$

• particle energy $\epsilon_i = \sqrt{k^2 + m_i^2}$, mass m_i , degeneracy d_i

- fugacity $z_i = e^{\mu_i/T}$ with particle chemical potential $\mu_i = B_i \mu_B + S_i \mu_S + Q_i \mu_Q$ and $X_i = B_i$, S_i , Q_i quantum numbers
- can impose physical conditions met in experiments:
 - net-strangeness neutrality $\langle n_S \rangle = 0$ and initial isospin distribution $\langle n_Q \rangle = a \langle n_B \rangle$ (Au+Au and Pb+Pb at mid-rapidity $a \simeq 0.4$) with $n_X = \sum_i X_i (\partial P / \partial \mu_i)_T$
 - phase-space acceptance limitations in k_T , y and ϕ via $\int d^3k$ and

$$\epsilon_i = \cosh(y) \sqrt{k_T^2 + m_i^2}$$

• sum over all included PDG particles 319 confirmed (2012) or 738 species (2016)

⇒ analyzed experimental data from STAR at RHIC!

Sensitivity - fluctuations vs. yields

⇒ higher-order cumulants of particle multiplicity distributions more sensitive to thermal conditions than particle yield ratios for certain final state hadrons 1504.03262

- net-kaon σ_K^2 / M_K sensitivity resolves experimentally achievable accuracy! \rightarrow reliable determination of freeze-out conditions!
- motivates the use of net-kaon fluctuations!
- (anti-)hyperon sensitivity indifferent!

Data analysis - yield ratios

from CPOD 2013, 036 (2013)

- anti-hyperon-hyperon ratio \overline{B}/B for Λ , Ξ^- and Ω^- from ϕ and k_T -integrated yields for given Δy -window
- significant contributions from strong resonance decays
- for Λ electromagnetic decay contributions from Σ^0
- preliminary data on \overline{B}/B confirmed recently 1906.03732
- \Rightarrow heavier (anti-)hyperons add some sensitivity to the determination of *T*, lighter (anti-)hyperons influence stronger μ_B

Data analysis - net-Kaon fluctuations

- lowest-order net-kaon fluctuations σ_K^2 / M_K
- data corrected for detector efficiency and centrality bin width
- systematic errors taken into account in the analysis
- acceptance limitations: $0.2 \le k_T / (\text{GeV/c}) \le 1.6$ and $|y| \le 0.5$ with full azimuthal coverage
- \Rightarrow significant correlations between K^+ and K^- arise from strong resonance decays
- ⇒ determination of chemical freeze-out temperature sensitively influenced by net-kaon fluctuation data

Chemical freeze-out conditions

 \Rightarrow conditions for *T* and μ_X determined from a combined analysis (optimal fits) of \bar{B}/B -ratios and net-kaon fluctuations σ_K^2/M_K

 T and µ_B from strangeness observables

 $\sqrt{s_{NN}}$ / GeV= 200, 62.4, 39, 27, 19.6, 11.5 left to right

- error bars from bands in fits
- T and µ_B from net-p and net-Q fluctuations
- significant difference in *T* for large $\sqrt{s_{NN}}$, approaching each other with decreasing $\sqrt{s_{NN}}$

Chemical freeze-out conditions

 \Rightarrow conditions for *T* and μ_X determined from a combined analysis (optimal fits) of \bar{B}/B -ratios and net-kaon fluctuations σ_K^2/M_K

- $\mu_Q/\mu_B \lesssim 0$
- strangeness neutrality requires sizeable μ_S/μ_B
- μ_S/μ_B from strangeness observables
- μ_S/μ_B from lattice QCD (Taylor expansion)
- agreement shows impact of unconfirmed strange sector particles in HRG model

Limitations of the approach

- shown error bars base entirely on systematic errors in the analyzed data!
- theoretical uncertainties may stem from:
 - ⇒ regeneration and subsequent decay of K* resonances not taken into account - isospin randomization effect on net-kaon fluctuations requires large pion density and long hadronic stage!
 - ⇒ exact global charge conservation on an event-by-event basis not taken into account

makes canonical ensemble formulation necessary!

⇒ fluctuations in the number of participants for a given centrality class not taken into account

stronger for higher-order fluctuations and smaller beam energies!

⇒ resonance decays and elastic scatterings in and out of acceptance window not taken into account

earlier estimates indicate rather small impact!

Dynamical evolution of the system completely ignored!

Dynamical evolution of fluctuations

Temporal evolution of conserved charges happens via diffusion:

$$\partial_{\tau} n_X = rac{\kappa}{\tau} \partial_y^2 \left(rac{\mu_X}{T}
ight)_{(in Milne coordinates)}$$

strangeness does not evolve independently from other conserved charges X → conserved charges are coupled!

for fluctuation studies include stochastic forcing with amplitude $\sim \kappa$ coupled stochastic diffusion equations:

$$\partial_{\tau} n_X(\tau, y) = \frac{\kappa_{XY}}{\tau} \partial_y^2 \left(\frac{\mu_Y}{T}\right) - \partial_y \xi_X \quad \text{(sum over repeated index Y)}$$

noise-noise correlation function:

$$\langle \xi_X(\tau, y)\xi_Y(\tau', y')\rangle = 2\frac{\kappa_{XY}}{\tau}\delta(\tau - \tau')\delta(y - y')$$

→ diffusion matrix κ_{XY}

Diffusion matrix and coupled evolution

M. Greif et al. 1711.08680 (see also J.A. Fotakis et al. 2102.08140)

considered a hadronic gas composed of the 19 lightest hadron species → microscopic calculation of κ_{XY} as function of T and μ_B

→ self-contained study: EoS of hadron gas with 19 lightest $\pi^{+,-,0}$ $K^{+,-,0}$ \bar{K}^0 species $p \bar{p} - n \bar{n} - \Lambda_0 \bar{\Lambda}_0$

$$n_X = \frac{1}{2\pi^2} \sum_{\text{hadronic species } j} X_j d_j \int_0^\infty \frac{p^2 \mathrm{d}p}{(-1)^{B_j + 1 + e^{(\sqrt{p^2 + m_j^2 - B_j \mu_B - Q_j \mu_Q - S_j \mu_S)/T}}}$$

 $\begin{array}{cccc} n & \overline{n} & \overline{n} & \overline{\Lambda_0} \overline{\Lambda_0} \\ p & \overline{p} & n \overline{n} & \Lambda_0 \overline{\Lambda_0} \\ \Sigma_0 & \overline{\Sigma_0} & \Sigma^{+,-} & \overline{\Sigma}^{+,-} \end{array}$

temporal evolution of net-strangeness number coupled to net-baryon number and electric charge non-linearly via:

- deterministic currents
- fluctuation dissipation balance
- EoS

Diffusion matrix and Cholesky decomposition

noise-noise correlator $\sim \kappa$

→ stochastic noise components

$$\xi_X \propto C_{XY} Z_Y$$

Cholesky decomposition

C is such that $CC^T = \kappa$ for semipositive diffusion matrix

expectations: net-strangeness diffusion can best keep up with the expansion, net-strangeness and net-baryon number are anti-correlated, net-electric charge diffusion more effective at small T

Linear approximation to the coupled evolution

expansion of the net-densities to leading order in the chemical potentials:

$$n_X = \chi_{XY} \mu_Y + \mathcal{O}(\mu^2)$$

results in coupled diffusion equations
 that are linear in the net-charge densities

$$\partial_{\tau} n_X = \frac{D_{XY}(T, \mu_B, \mu_Q, \mu_S)}{\tau} \partial_y^2 n_Y - \sqrt{\frac{2}{\tau}} C_{XY}(T, \mu_B, \mu_Q, \mu_S) \partial_y Z_Y$$
$$D_{XY} = \frac{1}{T} \kappa_{XZ} (\chi^{-1})_{ZY}$$

(huge computational advantage)

expectations: fluctuations decrease in equilibrium as a function of T, net-electric charge and net-strangeness fluctuations will be large

Decoupled n_B - dynamics: Equilibration

starting from arbitrary initial conditions in fixed size box at fixed T:

$$\kappa = \begin{pmatrix} \kappa_{BB} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- variance of the net-baryon density equilibrates rather quickly
- equilibrium values decrease with T

Decoupled n_B - dynamics: Expanding medium

start from the equilibrated system at T=160 MeV and follow trajectory for LHC conditions:

- → Bjorken expansion
- → Hubble-like temperature cooling

- variance of the net-baryon density goes slightly out of equilibrium rather quickly and remains there
- 100 times stronger diffusion needed to maintain equilibrium

Coupled charge dynamics: Expanding medium

as before but now including charge coupling:

- coupling slightly increases equilibrium values for the variance
- net-baryon number and net-strangeness are anti-correlated (negative co-variance)
- net-electric charge and net-strangeness variances are largest (longest "lifetimes")
- net-electric charge sector driven out of equilibrium quickly and strongly (maybe approaches equilibrium at later times)
- net-baryon number and net-strangeness remain closer to equilibrium

Attention: only local (co-)variances studied here - electric charge related observables survive longer 21

Conclusions

- determination of chemical freeze-out conditions from strangeness
 observables at different beam energies within the HRG model
- in general fluctuations more sensitive than yields and/or their ratios
- freeze-out conditions obtained from strangeness fluctuations compatible with SHM fits to hadron yields
- coupled charge dynamics already impacts density profiles

see J.A. Fotakis et al. 1912.09103, NPA 1005 (2021)

but even more so the fluctuations

- with realistic diffusion coefficients difficult to maintain equilibrium even locally on the level of the (co-)variances
- but if source originally in equilibrium electric charge related sectors preferable as signals decay slower

Role of resonance decays

- net-kaon or net-proton numbers not conserved charges
- resonance decays can significantly modify final particle multiplicity distributions:

 $N_j = N_j^* + \sum_R N_R^* \langle n_j \rangle_R$ with N_j^* directly produced hadrons, $\langle n_j \rangle_R$ associated with branching ratios b_r^R

- event-by-event fluctuations arise from:
 - thermal fluctuations in N_i^* and N_R^*
 - probabilistic character of the decay process (br only means!)

explicit example for net-kaon number $M_{K} = M_{K^+} - M_{K^-}$:

mean:
$$M_j = \langle N_j^* \rangle_T + \sum_R \langle N_R^* \rangle_T \langle n_j \rangle_R$$

variance: $\sigma_K^2 = \langle (\Delta N_{K^+}^*)^2 \rangle_T + \langle (\Delta N_{K^-}^*)^2 \rangle_T + \sum_R \langle (\Delta N_R^*)^2 \rangle_T \left(\langle n_{K^+} \rangle_R^2 + \langle n_{K^-} \rangle_R^2 \right)$
 $- 2 \sum_R \langle (\Delta N_R^*)^2 \rangle_T \langle n_{K^+} \rangle_R \langle n_{K^-} \rangle_R - 2 \sum_R \langle N_R^* \rangle_T \langle \Delta n_{K^+} \Delta n_{K^-} \rangle_R$
 $+ \sum_R \langle N_R^* \rangle_T \left(\langle (\Delta n_{K^+})^2 \rangle_R + \langle (\Delta n_{K^-})^2 \rangle_R \right)$

Role of resonance decays

- net-kaon or net-proton numbers not conserved charges
- resonance decays can significantly modify final particle multiplicity distributions:

 $N_j = N_j^* + \sum_R N_R^* \langle n_j \rangle_R$ with N_j^* directly produced hadrons, $\langle n_j \rangle_R$ associated with branching ratios b_r^R

- event-by-event fluctuations arise from:
 - thermal fluctuations in N_i^* and N_R^*
 - probabilistic character of the decay process (br only means!)

explicit example for net-kaon number $M_{K} = M_{K^{+}} - M_{K^{-}}$:

- resonance decays cause correlation terms
- approach allows for a proper inclusion of N(1650) or $\Xi(1690)^-$ (not just derivatives w.r.t. μ_S !)
- only thermal averages $\langle \cdot \rangle_T$ can be obtained from HRG model via derivatives, i.e. via χ_n

Improper inclusion of resonance decays

 probabilistic character of resonance decays (ZWB) has non-negligible effect on the results!

- means unaffected, only σ_K^2 influenced
- combined analysis of \overline{B}/B and σ_K^2/M_K data yields 5% reduction in T and up to 18% reduction in μ_B when ignoring probabilistic contributions!
- consequence of missing correlations between K⁺ and K⁻

Impact of isospin randomization processes

reactions of the form

$$p(n) + \pi^{0}(\pi^{+}) \rightarrow \Delta^{+} \rightarrow n(p) + \pi^{+}(\pi^{0})$$

modify primordial protons into undetected neutrons

⇒ isospin of nucleons randomized after 2 cycles; depends on pion density and duration of hadronic phase compared to time for resonance regeneration plus decay

- KA-effect can be taken into account 1107.2755, 1205.3292
- can cause up to 5 10% deviations in lowest-order fluctuations
- was essential for the determination of freeze-out conditions from net-p and net-Q fluctuations!

Impact of isospin randomization processes

reactions of the form

$$p(n) + \pi^{0}(\pi^{+}) \rightarrow \Delta^{+} \rightarrow n(p) + \pi^{+}(\pi^{0})$$

modify primordial protons into undetected neutrons

⇒ isospin of nucleons randomized after 2 cycles; depends on pion density and duration of hadronic phase compared to time for resonance regeneration plus decay

- KA-effect can be taken into account 1107.2755, 1205.3292
- can cause up to 5 10% deviations in lowest-order fluctuations
- was essential for the determination of freeze-out conditions from net-p and net-Q fluctuations!

Impact on heavy-ion collision phenomenology

- Can the freeze-out conditions be reliably determined from fluctuation observables?
 - Study of (net-p, net-Q) fluctuations and of (net-K fluctuations, Bbar/B yield ratios)
 - → High sensitivity of fluctuations vs. yields on FO conditions.
- Separation of strange FO and light FO at highest beam energies.
- Coupled dynamics of fluctuations shows:
 - If the prior QGP evolution/hadronization leads to equilibrium at T≈160MeV: Final fluctuations portray equilibrium at chemical freeze-out in the Q channels.
 - In the S channel: FO temperatures obtained from the comparison of equilibrium HRG vs. experiment are **over-estimated** compared to dynamically expanding systems.

Bluhm, Nahrgang, Eur.Phys.J.C.79 (2019) see also: Bellwied et al., Phys.Rev.C.99 (2019)

