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A theory of dissipative hydrodynamics must predict that the equilibrium
state is stable against small perturbations

https://acrossthemargin.com/skipping-stones/
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▶ Traditional relativistic Navier-Stokes theory predicts that small
perturbations in a homogeneous background can grow forever
[Hiscock and Lindblom (1985)]

▶ Müller-Israel-Stewart (MIS) theory emerged as an answer to this problem

▶ . . . Denicol-Niemi-Molnar-Rischke (DNMR) theory

▶ . . . Bemfica-Disconzi-Noronha-Kovtun (BDNK) theory of first-order
hydrodynamics
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Outline
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Our goal: extending [Hiscock and Lindblom (1985)] to inhomogenous equilibrium
configurations

1 Introduction: Categorization of equilibrium configurations

2 Extending to the tangent bundle
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4 Stability analysis

5 Application to MIS theory
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Introduction



What is equilibrium
 

 

CRC -  TR 

Only rigid motion is allowed in equilibrium

▶ Equilibrium state is defined by

a Killing vector︷ ︸︸ ︷
∇µβν +∇νβµ = 0 and

that is timelike︷ ︸︸ ︷
β · β > 0

▶ Geometry → Physics in equilibrium (see, e.g., [Becattini (2016)])

uµ = βµ/
√

β · β T = 1/
√
β · β LβPhys. = 0

▶ Thermal vorticity ϖµν ≡ −1
2

(
∇µβν −∇νβµ

)
* ∇ is the covariant derivative
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In flat spacetime using thermal vorticity, we can categorize equilibrium
configurations

▶ Homogenous configurations ϖµν = 0: hydrostatic and
uniformly moving fluids

▶ Inhomogenous configurations ϖµν ̸= 0 : pure acceleration and
rigid rotation (see e.g. [Becattini (2018)])

▶ To keep β timelike we need to enforce a boundary that
introduces a length scale ℓvort

* Thermal vorticity ϖµν ≡ −∇[µβν] =
2
T
a[µuν] +

1
T
ϵµναβω

αuβ

* Hydrostatic (fluid at rest with constant temperature) β = 1
T0

∂
∂t

* Uniformly moving fluid with constant temperature β = 1
T0

(
∂
∂t

+ vi ∂
∂xi

)
* Uniformly accelerating fluid β = 1

T0

[
∂
∂t

+ a0

(
z ∂
∂t

+ t ∂
∂z

)]
* Rigidly rotating fluid β = 1

T0

[
∂
∂t

+Ω0

(
x ∂

∂y
− y ∂

∂x

)]
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How do we study stability?

▶ Information current method:
The equilibrium state must have the maximum entropy
between the solutions with a shared initial state
[Hiscock and Lindblom (1983)] - [Olson (1990)] - [Gavassino et al. (2022)]

▶ Mode stability analysis:
Plane wave solutions of linearized hydrodynamics equations of
motion around an equlibrium state may not grow with time
[Hiscock and Lindblom (1985)]
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Linearized equations of hydrodynamics in a homogenous equilibrium
configuration have linear wave solutions which reveal the nature of the
theory in the linear regime and can be used to investigate linear stability

▶ We perturb our around a homogenous equilibrium
X0 → X0 + δX (X = ε, u, . . .) with Fourier modes
δX(x) → δX(k) exp(−iωt+ ik · x)

▶ Insert these into the EOM ∂µδT
µν = O

(
δ2
)

▶ Find the matrix form of the EOM MABδXB = 0

▶ This has solutions if det(M) = 0 =⇒ dispersion relations
ω = ω(k)

Sound waves in a perfect fluid(
ω −heqk

− ∂p
∂ε

k heqω

)
︸ ︷︷ ︸

MAB

(
δε(k)
δux(k)

)
︸ ︷︷ ︸

δXB

= 0 det(M) = 0 =⇒ ω2 − ∂p

∂ε
k2 = 0
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▶ Dissipative hydrodynamics → complex ω

▶ Linear stability requires Imω ≤ 0 [Hiscock and Lindblom (1985)]

▶ If Imω > 0 for some domain of k the norm of δX over
subsequent spacelike hypersurfaces grows without a bound
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Linear stability analysis in inhomogeneous configurations

▶ (Q.1) Can we find linear wave solutions in inhomogeneous
configurations?

▶ Naive Fourier modes do not work (ω = ω(x,k) is inconsistent
with ∂µ → −ikµ

▶ (Q.2) How are they related to stability?

▶ (Q.2.a) . . . How do the known stability criteria in homogeneous
configurations generalize to inhomogeneous ones?
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To the tangent bundle



▶ The idea: plane waves in an infinitesimal neighborhood

▶ Tangent space TxM as a local infinitesimal homogeneous
configuration

▶ TxM is the space of infinitesimal displacements at point P

▶ Superposition of wave propagating in this space → solutions of
the EOM in the base manifold
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Wigner transform extends a tensor to the tangent bundle (Inspired
by [Fonarev (1994)])

Fµ1µ2···
ν1ν2··· (x, y) =

(
1 + yα∇α +

1

2!
yαyβ∇α∇β + · · ·

)
Fµ1µ2···
ν1ν2··· (x)

It knows all the local information about the base tensor

Fµ1µ2···
ν1ν2··· (x) =

∫
TxM

d4y δ4(y)Fµ1µ2···
ν1ν2··· (x, y)

∇µF
µ1µ2···
ν1ν2··· (x) =

∫
TxM

d4y δ4(y)∂y
µF

µ1µ2···
ν1ν2··· (x, y)

M. Shokri Sound of rigidly moving fluids 02.10.2023 11



Wigner transform of the β-vector

▶ Equilibrium-preserving directions

βµ(x, ye) = βµ(x)

▶ . . . exist if the spacetime is flat and ωµa
µ = 0

▶ Direction of acceleration is an example of NEP directions
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They are given by yµeϖµν(x) = 0

∇µϖαβ = Rαβµσβ
σ
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The procedure



Step 1. Extending the EOM to our local infinitesimal homogeneous
configuration

▶ (S1.a) We extend the EOM to the whole tangent space

∂y
µδT

µν(x, y) = 0 then ∇µδT
µν(x) = 0

▶ (S1.b) . . . and Fourier transform using the cotangent space

δTµν(x, y) =

∫
k
δTµν(x, k)e−ik·y

▶ . . . therefore
kµδT

µν(x, k) = 0
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Step 2. To find a plane-wave solution we need to define our local time

▶ (S2) We choose a future-directed timelike nµ(x) normalized as
n · n = 1

▶ . . . to find ω = n · k in terms of k⊥

We will work in the LRF nµ(x) = uµ(x)
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Step 3. Finding δTµν(x, k)

▶ (S3) Decompose δTµν(x, k) with uµeq(x)

δTµν(x, k) = δE(x, k)uµeq(x)uνeq(x)− δP(x, k)∆µν
eq (x)

+heq(x)
[
uµeq(x)δu

ν(x, k) + uνeq(x)δu
µ(x, k)

]
+δQ(x)µ(x, k)uνeq(x) + δQν(x, k)uµeq(x)

+δπµν(x, k)

▶ Equilibrium quantities are not Wigner transformed

* We will work in the local rest frame nµ(x) = uµ(x)

* In our mostly minus metric sign convention ∆µν = gµν − uµ
equ

ν
eq

* For example

δE(x, k) = uα
eq(x)u

β
eq(x)δTαβ(x, k) δP(x, k) = −1

3
∆αβ

eq (x)δTαβ(x, k)
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Step 4. Finding the dispersion relation

▶ (S4) Now we can write kµδT
µν(x, k) = 0 in matrix form and

find ωa(x, k)

▶ Applying to perfect fluids we find ω±(x,k) = ±vs(x)k

▶ The resulting dispersion relations are valid for any fixed
background metric

▶ For dissipative fluids we need derivatives of δX(x, k)

▶ . . . which are found by taking the derivative of the definition

▶ For example

∇µδE(x) → −ikµδE(x, k)− 2Teq(x)ϖµν(x)δQ̃ν(x, k)

δQ̃µ(x, k) = δQµ(x, k) + heq(x)δu
µ(x, k)
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Stability analysis



Does Imω > 0 means instability?

▶ Recall that instability is the growth of the norm of the solutions
on subsequent spacelike hypersurfaces without a bound

▶ This is not easy anymore . . .

▶ But in many cases, in flat spacetime, the norm can be
separated into equilibrium-preserving and
nonequilibrium-preserving directions

The norm

∥δX∥2 =
∑
A

∫
dΣn

∣∣δXA(x)
∣∣2
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A separation between EP and NEP directions is possible in the
hydrodynamics regime

▶ Restrict k⊥ via (kµ⊥ϖµν(x) = 0) to ke in the dispersion
relations

▶ If Imωa > 0 in this case

▶ . . . and the EP part dominates the NEP parts which requires

ℓmicro ≪ ℓvort

▶ . . . instability is proved

▶ But hydro is applicable if ℓmicro ≪ ℓmacro ∼ ℓvort

▶ If Imωa > 0 for k in NEP directions → inconclusive
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Application to MIS hydrodynamics



▶ According to the info-current method: same stability criteria
for homogeneous/accelerating/rotating/non-self-gravitating
equilibria [Hiscock and Lindblom (1983)]

Linearized MIS hydrodynamics

δTµν = δEuµ
equ

ν
eq −

(
v2sδE + δΠ

)
∆µν

eq + heq

(
uµ
eqδu

ν + uν
eqδu

µ)+ δπµν

τΠueq · ∇δΠ+ δΠ+ ζ∇ · δu = 0

τπ∆
µν
αβeq

(
ueq · ∇δπαβ − 2δπα

λΩ
βλ
eq

)
+ δπµν − 2η δσµν = 0

Recall

∆µν
αβ ≡ 1

2

(
∆µ

α∆
ν
β +∆µ

β∆
ν
α

)
− 1

3
∆µν∆αβ σµν ≡ ∆αβ

µν∇αuβ
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MIS hydrodynamics with bulk viscosity alone

▶ The sound modes are modified in the direction of the
acceleration (α ≡ a/Teq)

Ωsound = ±
√

v2sκ
2
t +

1

4
α2V2

ζ κ
2
ℓ −

1

2
αVζκℓ + · · ·

▶ Decomposition of k (a generalization of [Brito and Denicol (2020)])

kµ = Teq

(
Ωuµ

eq + κℓℓ
µ + κµ) ω = TeqΩ κℓ = k · ℓ

* Tetrad of orthonormal vectors {u, ℓ, κ̃, χ}

ℓµ = aµ/
√
−a · a κ̃µ = κµ/

√
−κ · κ χµ ≡ ϵµναβueq

ν ℓακ̃β

* Auxiliary parameter

Vζ =

(
2 +

1

v2s

)
Cζ −

2

3

(
1− 3v2s

)
Rζ Rζ = τΠTeq Cζ = Teqζ/heq
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MIS hydrodynamics with bulk viscosity alone

▶ The nonhdyro mode receives linear contribution ∼ κℓ

Ωgapped = − i

Rζ
+ αVζκℓ + · · ·

▶ There is no novel contribution in EQP directions

▶ The acceleration-induced terms disappear in k → ∞: standard
causality/stability criteria [Pu et al. (2010)]

Rζ > Cζ ,
Cζ

Rζ
< 1− v2s

▶ But Imω can be positive in ℓ direction if α > αc
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Is this physically relevant?

▶ Assume a cylinder of QGP rotating with Ω0 ∼ 1022s−1 and
T0 ∼ 200MeV

▶ Then α ∼ 0.01 while αc ∼ 0.1

▶ The unknown effects of a positive Imω don’t seem to be
physically relevant in the domain of applicability of vanilla MIS
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Conformal MIS hydrodynamics

▶ Modes are modified by acceleration and rotation

▶ . . . not only in EQP directions

▶ Imω becomes positive for some modes if (1) a and/or ω are
large enough or (2) we are very close to the causal boundary

▶ . . . not only in EQP directions!!

▶ (1) requires α > 1 → ℓmicro ∼ Maximum size of the system!

▶ Homogeneous modes are recovered in k → ∞ limit

▶ In the domain of applicability of MIS hydrodynamics stability
requires

Tτπ > 2η/s > 0

▶ We numerically investigated the full MIS and ended up with
similar results
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Summary and outlook



▶ We extended the equations to the tangent bundle to find linear wave
solutions in inhomogeneous equilibrium configurations

▶ This machinery can be consistently applied to hydrodynamics

▶ Novel modes are found in MIS theory arising from coupling between
dissipative fluxes and thermal vorticity

▶ Such modes are only present in the long wavelength regime

▶ The bulk viscous pressure couples only to the acceleration

▶ Shear stress tensor couples both to acceleration and kinematic
vorticity

▶ MIS theory in its domain of validity and far from the boundary
remains linearly stable in purely accelerating and rigidly rotating
configurations, with the standard stability and causality conditions.

▶ In agreement with the info-current method
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Outlook
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▶ Applications to hydro theories with the explicit presence of thermal
vorticity in fluxes (Spin hydrodynamics, hydrodynamic theories with
quantum corrections arising from acceleration and rotation, . . . )

▶ Boundary effects
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Backup



Information current method has pros

+ Doesn’t assume a homogenous configuration

+ Is more fundamental in some sense: proves that u and T must
be related to the thermal Killing vector, leads to some
important thermodynamic inequalities . . .

+ Can be easier to apply

+ Is independent of the equations of motion for dissipative fluxes

+ Recently applied to electromagnetic fields and charged
equilibria:
The electromagnetic part of the information current is stable
and causal by construction and, therefore, the stability criteria
found for Israel-Stewart theories of hydrodynamics
automatically extend to similar formulations of
magnetohydrodynamics. L. Gavassino and MS [2307.11615]
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. . . and cons

- Neglects the existence of boundaries

- Works only for certain types of theories

- Doesn’t tell us much about the nature of the solutions
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Information current
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▶ One defines
ϕµ = Sµ + α⋆N

µ − β⋆
νT

νµ

▶ A common perturbation parameter λ, with λ = 0 denoting the
equilibrium

▶ (1) In equilibrium
dϕµ(0)

dλ
= 0

▶ (2) The information current must be future-directed non-spacelike:

Eµ = −1

2

d2ϕµ(0)

dλ2
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Uniform acceleration
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▶ We can add the generator of boost along z-direction (see for example
[Becattini (2018)])

β =
1

T0

[
∂

∂t
+ a0

(
z
∂

∂t
+ t

∂

∂z

)]
▶ To keep β timelike we need to a enforce boundary |1 + a0z| > |a0t|
▶ Thermal vorticity scale ℓvort ∼ a−1

0

▶ In Rindler coordinates (τ, x, y, ξ)

uµ = e−a0ξ (1,0) T = e−a0ξ T0 aµ = a0e
−2a0ξ (0, 0, 0, 1),

τ =
1

2a0
log

[
1 + a0 (z + t)

1 + a0 (z − t)

]
ξ =

1

2a0
log
[
(1 + a0z)

2 − a20t
2
]
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Rigid rotation
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▶ . . . and/or we can the generator of rotation around z-direction (see for
example [Palermo et al. (2021)])

β =
1

T0

[
∂

∂t
+Ω0

(
x
∂

∂y
− y

∂

∂x

)]

▶ Again, we have a boundary Ω2
0

(
x2 + y2

)
< 1

▶ Thermal vorticity length scale ℓvort ∼ Ω−1
0

▶ In cylindrical coordinates (t, ρ, φ, z)

uµ = γ(ρ) (1, 0,Ω0, 0) , T = γ(ρ)T0 γ(ρ) =
1√

1− ρ2Ω2
0

aµ = −γ2(ρ) ρΩ2
0 (0, 1, 0, 0) , ωµ = γ2(ρ) Ω0 (0, 0, 0, 1)
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Equilibrium-preserving directions
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▶ In pure accelerating equilibrium T changes in ξ-direction while uµ

changes in τ -direction ( Figure from [Becattini (2018)])

▶ x and y are EP directions

▶ In the cylindrical rotation z is the only EP directions

z

t

RRW

LRW

-1/a

β

Σ
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Wave equation in the tangent bundle
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▶ Let’s assume a toy model (f and m are functions of Teq)(
□− f(x)

Teq(x)
ueq(x) · ∂ +m(x)2

)
ϕ(x) = 0

▶ Wave equation in the tangent space[
□2

y − f(x)β(x) · ∂y +m2(x)
]
ϕ(x, y) = 0

▶ Characteristic equation at x in the LRF

ω(x,k)2 − k2 − i
f(x)

T (x)
ω(x,k)−m2(x) = 0

▶ The base solution

ϕ(x) =

∫
k

∑
a=±

ϕa(x, k) δ(u · k − ωa)
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Frame Title
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▶ The amplitudes fulfill

D̃µ

[
ϕa(x, k)δ(u · k − ωa)

]
= −ikµϕa(x, k)δ(u·k−ωa)+curvature terms.

▶ Horizontal lift in the cotangent bundle

D̃µϕ(x, k) = ∇µϕ(x, k) + Γρ
µσkρ∂

σ
kϕ(x, k)
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Wave equation in the tangent bundle
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▶ Separate EQP part

ϕ(x) =

∫
ddke
(2π)d

∑
a=±

eΓa(xne,ke)+ike·xeϕa(xne,ke)

▶ Frequencies depend on k and equilibrium quantities

Γa(xne, k) = −i

∫ s

0
ds′ ωa(xne, k)

▶ f(T ) > 0 =⇒ Γ+(x,k) > Λs > 0 the norm grows without a bound

∥∥ϕ(s)∥∥2 = ∫
Σn(s)

dΣn

∣∣ϕ(x)∣∣2 ≥ e2Λs
∫

d4−dxne F (s, xne)
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Step 3. What is δTµν(x, k)?

▶ This does not work

δTµν(x) → Decompose w.r.t uµeq(x) → δTµν(x, k)

▶ This works

δTµν(x) → δTµν(x, k) → Decompose w.r.t uµeq(x)
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