Exploring the phase diagram of stronginteraction matter with QCD inspired models

Michael Buballa

TU Darmstadt

STRONG-NA7 Workshop \& HFHF Theory Retreat

Giardini Naxos, Italy, September 28 - October 4, 2023
HFHF

QCD phase diagram

artist's view (CBM @ FAIR poster):

QCD phase diagram

schematic:

- phases depending on T and μ

QCD phase diagram

schematic:

- phases depending on T and μ
- hadronic phase (H)
- quarks confined in hadrons
- chiral symmetry broken: $\langle\bar{q} q\rangle \neq 0$
- nuclear liquid: baryon dominated
- nuclear gas: meson dominated

QCD phase diagram

schematic:

- phases depending on T and μ
- hadronic phase (H)
- quarks confined in hadrons
- chiral symmetry broken: $\langle\bar{q} q\rangle \neq 0$
- nuclear liquid: baryon dominated
- nuclear gas: meson dominated
- quark-gluon plasma (QGP)
- deconfined quarks \& gluons
- chiral symmetry restored: $\langle\bar{q} q\rangle \approx 0$

QCD phase diagram

schematic:

- phases depending on T and μ
- hadronic phase (H)
- quarks confined in hadrons
- chiral symmetry broken: $\langle\bar{q} q\rangle \neq 0$
- nuclear liquid: baryon dominated
- nuclear gas: meson dominated
- quark-gluon plasma (QGP)
- deconfined quarks \& gluons
- chiral symmetry restored: $\langle\bar{q} q\rangle \approx 0$
- critical endpoint

QCD phase diagram

schematic:

- phases depending on T and μ
- hadronic phase (H)
- quarks confined in hadrons
- chiral symmetry broken: $\langle\bar{q} q\rangle \neq 0$
- nuclear liquid: baryon dominated
- nuclear gas: meson dominated
- quark-gluon plasma (QGP)
- deconfined quarks \& gluons
- chiral symmetry restored: $\langle\bar{q} q\rangle \approx 0$
- critical endpoint
- color superconductor (CSC)
- quark pairing: $\langle q q\rangle \neq 0$

QCD phase diagram

schematic:

- extensions and variations:
- non-uniform order parameters ("inhomogeneous phases")
- additional axes: μ_{I}, μ_{S}, magnetic fields, ...

What do we really know?

TECHNISCHE UNIVERSITÄT DARMSTADT

What do we really know?

TECHNISCHE UNIVERSITÄT DARMSTADT

What do we really know?

- vacuum properties of hadrons

What do we really know?

What do we really know?

What do we really know?

- vacuum properties of hadrons
- nuclei and nuclear matter: $\mu_{B}=m_{N}-E_{\text {binding }}=923 \mathrm{MeV}$
- theory of nuclear matter and multifragmentation experiments:
- perturbative QCD:

QGP at $T \rightarrow \infty$, CSC at $\mu \rightarrow \infty$

$$
T_{E, l i q-g a s} \approx 15 \mathrm{MeV}
$$

What do we really know?

- vacuum properties of hadrons
- nuclei and nuclear matter: $\mu_{B}=m_{N}-E_{\text {binding }}=923 \mathrm{MeV}$
- theory of nuclear matter and multifragmentation experiments:

$$
T_{E, \text { liq-gas }} \approx 15 \mathrm{MeV}
$$

- perturbative QCD:

QGP at $T \rightarrow \infty$, CSC at $\mu \rightarrow \infty$

- lattice QCD:
- thermodynamics at $\mu=0$
- crossover at $T \approx 155 \mathrm{MeV}$

What do we really know?

TECHNISCHE

[Fu, Pawlowski, Rennecke, PRD (2020)]

- vacuum properties of hadrons
- nuclei and nuclear matter:

$$
\mu_{B}=m_{N}-E_{\text {binding }}=923 \mathrm{MeV}
$$

- theory of nuclear matter and multifragmentation experiments:
$T_{E, \text { liq-gas }} \approx 15 \mathrm{MeV}$
- perturbative QCD:

QGP at $T \rightarrow \infty$, CSC at $\mu \rightarrow \infty$

- lattice QCD:
- thermodynamics at $\mu=0$
- crossover at $T \approx 155 \mathrm{MeV}$
- extrapolations to $\mu \neq 0$
- no CEP at $\mu_{B} / T \lesssim 3$

What do we really know?

TECHNISCHE

[Fu, Pawlowski, Rennecke, PRD (2020)]

- vacuum properties of hadrons
- nuclei and nuclear matter:

$$
\mu_{B}=m_{N}-E_{\text {binding }}=923 \mathrm{MeV}
$$

- theory of nuclear matter and multifragmentation experiments:
$T_{E, \text { liq-gas }} \approx 15 \mathrm{MeV}$
- perturbative QCD:

QGP at $T \rightarrow \infty$, CSC at $\mu \rightarrow \infty$

- lattice QCD:
- thermodynamics at $\mu=0$
- crossover at $T \approx 155 \mathrm{MeV}$
- extrapolations to $\mu \neq 0$
- no CEP at $\mu_{B} / T \lesssim 3$
- HICs: freeze-out points

Why models?

- typical sentence in papers:

Unfortunately, present lattice QCD calculation at finite chemical potential is plagued with the so called "sign problem". Thus, to explore the QCD phase diagram at finite chemical potential, it is necessary to employ some QCD effective models, such as the Nambu-Jona-Lasinio (NJL) model and/or MIT bag model.

Why models?

- typical sentence in papers:

Unfortunately, present lattice QCD calculation at finite chemical potential is plagued with the so called "sign problem". Thus, to explore the QCD phase diagram at finite chemical potential, it is necessary to employ some QCD effective models, such as the Nambu-Jona-Lasinio (NJL) model and/or MIT bag model.

- This reminds me of the man who searches for his key near a street light because it is too dark at the place where he lost it ...

- Even when lattice QCD is not applicable, there are also non-perturbative continuum approaches to QCD ("functional methods"):
- Dyson-Schwinger Equations (DSEs)
\rightarrow Christian Fischer's talk on Thursday
- Functional Renormalization Group (FRG)

- Even when lattice QCD is not applicable, there are also non-perturbative continuum approaches to QCD ("functional methods"):
- Dyson-Schwinger Equations (DSEs)
\rightarrow Christian Fischer's talk on Thursday
- Functional Renormalization Group (FRG)
- truncations needed

- Even when lattice QCD is not applicable, there are also non-perturbative continuum approaches to QCD ("functional methods"):
- Dyson-Schwinger Equations (DSEs)
\rightarrow Christian Fischer's talk on Thursday
- Functional Renormalization Group (FRG)
- truncations needed
- sometimes additional model input, e.g., for vertex functions

- Even when lattice QCD is not applicable, there are also non-perturbative continuum approaches to QCD ("functional methods"):
- Dyson-Schwinger Equations (DSEs)
\rightarrow Christian Fischer's talk on Thursday
- Functional Renormalization Group (FRG)
- truncations needed
- sometimes additional model input, e.g., for vertex functions
- but in principle systematically improvable

- So again: Since we have QCD, why should we care about models?
- So again: Since we have QCD, why should we care about models?
- Often model calculations are much simpler than QCD calculations. But can we trust the results?
- In the best case, the results agree with model-independent theorems, but then we know them anyway.
- Model-dependent results could be different from QCD.

TECHNISCHE

- So again: Since we have QCD, why should we care about models?
- Often model calculations are much simpler than QCD calculations. But can we trust the results?
- In the best case, the results agree with model-independent theorems, but then we know them anyway.
- Model-dependent results could be different from QCD.
- Often models have other drawbacks,
e.g., NJL model:
- non-renormalizable
\rightarrow dependence on regularization scheme and cutoff parameters; cutoff artifacts
- no confinement
- many possible interaction terms allowed by symmetries \rightarrow many parameters
- temperature and density dependence of the effective couplings unknown and usually neglected

Why models - some answers ...

- Sometimes models can help to identify yet unknown model-independent theorems (e.g., Goldstone's theorem and GOR relation after the original NJL paper) .

Why models - some answers ...

- Sometimes models can help to identify yet unknown model-independent theorems (e.g., Goldstone's theorem and GOR relation after the original NJL paper) .
- "Model-independent" predictions are often based on rather unphysical assumptions
(e.g., Taylor expansions in "small parameters" which are not really small or not constant) . \rightarrow Models could help to identify situations where these predictions may fail.

Why models - some answers ...

- Sometimes models can help to identify yet unknown model-independent theorems (e.g., Goldstone's theorem and GOR relation after the original NJL paper) .
- "Model-independent" predictions are often based on rather unphysical assumptions
(e.g., Taylor expansions in "small parameters" which are not really small or not constant) .
\rightarrow Models could help to identify situations where these predictions may fail.
- Models can be employed for simplified explorative studies
- to identify interesting problems, which should then be studied more seriously
(e.g., the existence of a critical endpoint in the QCD phase diagram)
- to test ideas and techniques used in other frameworks
(e.g., methods to find the critical endpoint in lattice QCD) .

Why models - some answers ...

- Sometimes models can help to identify yet unknown model-independent theorems (e.g., Goldstone's theorem and GOR relation after the original NJL paper) .
- "Model-independent" predictions are often based on rather unphysical assumptions
(e.g., Taylor expansions in "small parameters" which are not really small or not constant) .
\rightarrow Models could help to identify situations where these predictions may fail.
- Models can be employed for simplified explorative studies
- to identify interesting problems, which should then be studied more seriously
(e.g., the existence of a critical endpoint in the QCD phase diagram)
- to test ideas and techniques used in other frameworks (e.g., methods to find the critical endpoint in lattice QCD) .
- But we should always keep the limitations in mind and know when to stop ...

Which models?

Incomplete list of models to explore the phase diagram of strong-interaction matter: (see also Hubert Hansen's talk on Saturday)

- Hadronic degrees of freedom
- Hadron Resonance Gas
- Relativistic Mean Field models (Walecka, Parity Doublet, ...)
- Quark (and gluon) degrees of freedom
- Bag Models
- NJL-type models, Quark-Meson model (+ Polyakov-loop extensions)
- Quark-meson-coupling model
- Combinations and others
- Hybrid models (e.g., RMF + bag model)
- Quarkyonic model
- Holographic models

Which models?

Incomplete list of models to explore the phase diagram of strong-interaction matter: (see also Hubert Hansen's talk on Saturday)

- Hadronic degrees of freedom
- Hadron Resonance Gas
- Relativistic Mean Field models (Walecka, Parity Doublet, ...)
- Quark (and gluon) degrees of freedom
- Bag Models
- NJL-type models, Quark-Meson model (+ Polyakov-loop extensions)
- Quark-meson-coupling model
- Combinations and others
- Hybrid models (e.g., RMF + bag model)
- Quarkyonic model
- Holographic models
- ...

I will mainly concentrate on NJL and QM models (= my personal expertise).

Outline

1. Introduction
2. Chiral phase transition and critical endpoint
3. Color superconductivity
4. Inhomogeneous chiral phases

CHIRAL PHASE TRANSITION AND CRITICAL ENDPOINT

CHIRAL PHASE TRANSITION AND CRITICAL ENDPOINT

Detour: MIT bag model

- Simple model of confinement:
[Chodos et al., PRD (1974)]
- Hadrons = free quarks in a finite volume ("bag")
(+ perturbative corrections)
- Nontrivial vacuum with pressure B ('bag constant")

Detour: MIT bag model

- Simple model of confinement:
[Chodos et al., PRD (1974)]
- Hadrons = free quarks in a finite volume ("bag")
(+ perturbative corrections)

- Nontrivial vacuum with pressure B ('bag constant")
- Deconfinement at large temperature or density:
- All quarks (and gluons) in one big bag

Detour: MIT bag model

- Simple model of confinement:
[Chodos et al., PRD (1974)]
- Hadrons = free quarks in a finite volume ("bag")
(+ perturbative corrections)
- Nontrivial vacuum with pressure B ('bag constant")
- Deconfinement at large temperature or density:
- All quarks (and gluons) in one big bag
- Thermodynamic limit

- Pressure relative to the nontrivial vacuum:

$$
p_{B M}(T, \mu)=p_{q}^{\text {ideal }}(T, \mu)+p_{g}^{\text {ideal }}(T, \mu)-B \quad(+ \text { perturbative corrections) }
$$

Phase diagram

TECHNISCHE

- QGP: $\quad p_{\mathrm{BM}}=37 \cdot \frac{\pi^{2}}{90} T^{4}+\mu^{2} T^{2}+\frac{\mu^{4}}{2 \pi^{2}}-B$
(2-flavor bag model)
- Hadronic EoS:

$$
p_{\pi}=3 \cdot \frac{\pi^{2}}{90} T^{4}
$$ (ideal massless pion gas)

$$
\begin{array}{ll}
& \begin{array}{l}
\text { drastic change of \# d.o.f. } \\
\Rightarrow \text { 1st order all over }
\end{array} \\
\begin{array}{lll}
\text { dominated by } B
\end{array} \\
\text { (dashed line }=\text { no pions) }
\end{array}
$$

How large is the bag constant?

How large is the bag constant?

- Fits to the hadron spectrum:
e.g., original MIT fit: $\quad B=57.5 \mathrm{MeV} / \mathrm{fm}^{3}=(145 \mathrm{MeV})^{4}$

How large is the bag constant?

- Fits to the hadron spectrum:
e.g., original MIT fit: $\quad B=57.5 \mathrm{MeV} / \mathrm{fm}^{3}=(145 \mathrm{MeV})^{4}$
- QCD sum rules:

$$
B=-\frac{1}{4}\left\langle T_{\mu}^{\mu}\right\rangle \approx 455 \mathrm{MeV} / \mathrm{fm}^{3} \approx(240 \mathrm{MeV})^{4}
$$

How large is the bag constant?

- Fits to the hadron spectrum:
e.g., original MIT fit: $\quad B=57.5 \mathrm{MeV} / \mathrm{fm}^{3}=(145 \mathrm{MeV})^{4}$
- QCD sum rules:
$B=-\frac{1}{4}\left\langle T_{\mu}^{\mu}\right\rangle \approx 455 \mathrm{MeV} / \mathrm{fm}^{3} \approx(240 \mathrm{MeV})^{4}$
- Fits to T_{c} :
$p_{B M}\left(T_{c}\right)=p_{\text {pion gas }}\left(T_{c}\right) \quad \Rightarrow \quad B=(37-3) \frac{\pi^{2}}{90} T_{c}^{4}$
$T_{c} \approx 155 \mathrm{MeV} \Rightarrow B \approx 280 \mathrm{MeV} / \mathrm{fm}^{3} \approx(215 \mathrm{MeV})^{4}$

Chiral symmetry

- Chiral symmetry: $\operatorname{SU}\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}=S U\left(N_{f}\right)_{V} \times$ " $S U\left(N_{f}\right)_{A} "$
- $\operatorname{SU}\left(N_{f}\right)_{v}: q(x) \rightarrow e^{i \theta_{a} \tau_{a}} q(x)$
- "SU($\left.N_{f}\right)_{A} ": q(x) \rightarrow e^{i \theta_{a} \tau_{a} \gamma_{5}} q(x)$
- $q(x)=$ quark field operator
- $\tau_{a}=$ generator in flavor space (Pauli or Gell-Mann matrix)
- symmetry of QCD for vanishing quark masses

Chiral symmetry

- Chiral symmetry: $\operatorname{SU}\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}=S U\left(N_{f}\right)_{V} \times$ " $S U\left(N_{f}\right)_{A} "$
- $\operatorname{SU}\left(N_{f}\right)_{v}: q(x) \rightarrow e^{i \theta_{\mathrm{a}} \tau_{a}} q(x)$
- "SU($\left.N_{f}\right)_{A} ": q(x) \rightarrow e^{i \theta_{a} \tau_{a} \gamma_{5}} q(x)$
- $q(x)=$ quark field operator
- $\tau_{a}=$ generator in flavor space (Pauli or Gell-Mann matrix)
- symmetry of QCD for vanishing quark masses
- explicitly broken by (current) quark masses
- $m_{u}=2.16_{-0.26}^{+0.49} \mathrm{MeV}, \quad m_{d}=4.67_{-0.17}^{+0.48} \mathrm{MeV}, \quad m_{s}=93.4_{-0.3 .4}^{+8.6} \mathrm{MeV}$ (PDG, in $\overline{\mathrm{MS}}$ at 2 GeV scale)

Chiral symmetry

- Chiral symmetry: $\operatorname{SU}\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}=S U\left(N_{f}\right)_{V} \times$ " $S U\left(N_{f}\right)_{A} "$
- $\operatorname{SU}\left(N_{f}\right)_{v}: q(x) \rightarrow e^{i \theta_{\mathrm{a}} \tau_{\mathrm{a}}} q(x)$
- "SU($\left.N_{f}\right)_{A} ": q(x) \rightarrow e^{i \theta_{\mathrm{a}} \tau_{\mathrm{a}} \gamma_{5}} q(x)$
- $q(x)=$ quark field operator
- $\tau_{a}=$ generator in flavor space (Pauli or Gell-Mann matrix)
- symmetry of QCD for vanishing quark masses
- explicitly broken by (current) quark masses
- $m_{u}=2.11_{-0.26}^{+0.49} \mathrm{MeV}, \quad m_{d}=4.67_{-0.17}^{+0.48} \mathrm{MeV}, \quad m_{s}=93.4_{-0.3 .4}^{+8.6} \mathrm{MeV}$ (PDG, in $\overline{\mathrm{MS}}$ at 2 GeV scale)
- QCD vacuum: spontaneously broken by $\langle\bar{q} q\rangle \neq 0$ ("chiral condensate")

Spontaneous symmetry breaking

Analogy:

- spontaneous $\chi S B$
- spontan. breaking of rotational invariance in a ferromagnet

Spontaneous symmetry breaking

Analogy:

- spontaneous χ SB
- spontan. breaking of rotational invariance in a ferromagnet
\rightarrow lower ground state energy in the broken phase:

$$
\Delta \varepsilon=\varepsilon_{\text {broken }}-\varepsilon_{\text {symmetric }}<0
$$

Spontaneous symmetry breaking

Analogy:

- spontaneous $\chi S B$
- spontan. breaking of rotational invariance in a ferromagnet
\rightarrow lower ground state energy in the broken phase:

$$
\Delta \varepsilon=\varepsilon_{\text {broken }}-\varepsilon_{\text {symmetric }}<0
$$

\rightarrow higher vacuum pressure compared to the symmetric vacuum:

$$
\left.\Delta p\right|_{T=\mu=0}=-\left.\Delta \varepsilon\right|_{T=\mu=0}>0
$$

Spontaneous symmetry breaking

Analogy:

- spontaneous $\chi S B$
- spontan. breaking of rotational invariance in a ferromagnet
\rightarrow lower ground state energy in the broken phase:

$$
\Delta \varepsilon=\varepsilon_{\text {broken }}-\varepsilon_{\text {symmetric }}<0
$$

\rightarrow higher vacuum pressure compared to the symmetric vacuum:

$$
\left.\Delta p\right|_{T=\mu=0}=-\left.\Delta \varepsilon\right|_{T=\mu=0}>0
$$

\rightarrow dynamically generated bag constant!

The Nambu-Jona-Lasinio model

Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I ${ }^{*}$
Y. Nambu and G. Jona-Lasinio \dagger

(Received October 27, 1960)
It is suggested that the nucleon mass arises largely as a self-energy of some primary fermion field through the same mechanism as the appearance of energy gap in the theory of superconductivity. The idea can be put into a mathematical formulation utilizing a generalized Hartree-Fock approximation which regards real nucleons as quasi-particle excitations. We consider a simplified model of nonlinear four-fermion interaction which allows a γ_{6} gauge group. An interesting consequence of the symmetry is that there arise automatically pseudoscalar zero-mass bound states of nucleon-antinucleon pair which may be regarded as an idealized pion. In addition, massive bound states of nucleon number zero and two are predicted in a simple approximation.
The theory contains two parameters which can be explicitly related to observed nucleon mass and the
pion-nucleon coupling constant. Some paradoxical aspects of the theory in connection with the γ_{s} transformation are discussed in detail.

- two papers more than 60 years ago: Phys. Rev. 122, 345-358; ibid. 124, $246-254$ (1961).
- no other common paper since then
- more than 6000 (3000) citations on INSPIRE
- Nambu: Nobel prize in physics 2008 "for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics"
- Nobel lecture presented by Jona-Lasinio:
https://www.nobelprize.org/prizes/physics/2008/nambu/lecture/

NJL model:
 main ideas and results of the original papers

- Lagrangian: $\mathscr{L}=\bar{\psi}(i \not \partial-m) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]$
- ψ nucleon field
- 4-point interaction, invariant under chiral transformations
- chiral symmetry explicitly broken by (small) bare mass m

NJL model:
 main ideas and results of the original papers

- Lagrangian: $\mathscr{L}=\bar{\psi}(i \not \partial-m) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]$
- ψ nucleon field
- 4-point interaction, invariant under chiral transformations
- chiral symmetry explicitly broken by (small) bare mass m
- spontaneous symmetry breaking: $\langle\bar{\psi} \psi\rangle \neq 0$

- dynamical generation of a "constituent mass" $M=m-2 G\langle\bar{\psi} \psi\rangle \gg m$

NJL model:
 main ideas and results of the original papers

- Lagrangian: $\mathscr{L}=\bar{\psi}(i \not \partial-m) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]$
- ψ nucleon field
- 4-point interaction, invariant under chiral transformations
- chiral symmetry explicitly broken by (small) bare mass m
- spontaneous symmetry breaking: $\langle\bar{\psi} \psi\rangle \neq 0$

- dynamical generation of a "constituent mass" $M=m-2 G\langle\bar{\psi} \psi\rangle \gg m$
- mesonic excitations:

- massless pions in the chiral limit (\rightarrow Goldstone theorem, 1961)
- $m_{\pi}^{2} \propto m(\rightarrow$ Gell-Mann-Oakes-Renner relation, 1968)

Later developments: brief history of the NJL model

- reinterpretation in the QCD era: schematic model for quarks [H. Kleinert, Erice lectures (1976); M.K. Volkov, Annals Phys. (1984); T. Hatsuda, T. Kunihiro, PLB (1984); ...]
- problem: no confinement (\rightarrow e.g., $q \bar{q}$-decays of mesons!)

Later developments: brief history of the NJL model

- reinterpretation in the QCD era: schematic model for quarks
[H. Kleinert, Erice lectures (1976); M.K. Volkov, Annals Phys. (1984); T. Hatsuda, T. Kunihiro, PLB (1984); . .]
- problem: no confinement (\rightarrow e.g., $q \bar{q}$-decays of mesons!)
- nonzero temperature and density
[V. Bernard, U.-G. Meißner, I. Zahed, PRD (1987); T. Hatsuda, T. Kunihiro, PLB (1987); ...]

Later developments: brief history of the NJL model

- reinterpretation in the QCD era: schematic model for quarks
[H. Kleinert, Erice lectures (1976); M.K. Volkov, Annals Phys. (1984); T. Hatsuda, T. Kunihiro, PLB (1984); ...]
- problem: no confinement (\rightarrow e.g., q \bar{q}-decays of mesons!)
- nonzero temperature and density
[V. Bernard, U.-G. Meißner, I. Zahed, PRD (1987); T. Hatsuda, T. Kunihiro, PLB (1987); ...]
- three quark flavors
[D. Ebert, H. Reinhardt, NPB (1986) V. Bernard, R.L. Jaffe, U.-G. Meißner, PLB (1987); T. Hatsuda, T. Kunihiro, PLB (1987); ...]
- nondegenerate strange quark mass
- 6-point interaction to model the $U_{A}(1)$ anomaly ($\rightarrow \eta-\eta^{\prime}$ mass splitting)

Later developments: brief history of the NJL model

- reinterpretation in the QCD era: schematic model for quarks
[H. Kleinert, Erice lectures (1976); M.K. Volkov, Annals Phys. (1984); T. Hatsuda, T. Kunihiro, PLB (1984); ...]
- problem: no confinement (\rightarrow e.g., q \bar{q}-decays of mesons!)
- nonzero temperature and density
[V. Bernard, U.-G. Meißner, I. Zahed, PRD (1987); T. Hatsuda, T. Kunihiro, PLB (1987); ...]
- three quark flavors
[D. Ebert, H. Reinhardt, NPB (1986) V. Bernard, R.L. Jaffe, U.-G. Meißner, PLB (1987); T. Hatsuda, T. Kunihiro, PLB (1987); ...]
- nondegenerate strange quark mass
- 6-point interaction to model the $U_{A}(1)$ anomaly ($\rightarrow \eta-\eta^{\prime}$ mass splitting)
- color superconductivity
[M. Alford, K. Rajagopal, F. Wilczek, PLB (1998); R. Rapp, T. Schäfer, E.V. Shuryak, M. Velkovsky, PRL (1998); ...]

Later developments: brief history of the NJL model

- reinterpretation in the QCD era: schematic model for quarks
[H. Kleinert, Erice lectures (1976); M.K. Volkov, Annals Phys. (1984); T. Hatsuda, T. Kunihiro, PLB (1984); ...]
- problem: no confinement (\rightarrow e.g., $q \bar{q}$-decays of mesons!)
- nonzero temperature and density
[V. Bernard, U.-G. Meißner, I. Zahed, PRD (1987); T. Hatsuda, T. Kunihiro, PLB (1987); ...]
- three quark flavors
[D. Ebert, H. Reinhardt, NPB (1986) V. Bernard, R.L. Jaffe, U.-G. Meißner, PLB (1987); T. Hatsuda, T. Kunihiro, PLB (1987); ...]
- nondegenerate strange quark mass
- 6-point interaction to model the $U_{A}(1)$ anomaly ($\rightarrow \eta-\eta^{\prime}$ mass splitting)
- color superconductivity
[M. Alford, K. Rajagopal, F. Wilczek, PLB (1998); R. Rapp, T. Schäfer, E.V. Shuryak, M. Velkovsky, PRL (1998); ...]
- Polyakov-loop extended NJL model
[K. Fukushima, PLB (2004); E. Megías, E. Ruiz Arriola, L. L. Salcedo,PRD (2006), C. Ratti, M.A. Thaler, W. Weise, PRD (2006); ...]
- "statistical realization" of confinement

Thermodynamics of the NJL model: mean-field approximation

- Lagrangian:

$$
\mathscr{L}=\bar{q}(i \not \partial \bar{\partial}-m) q+G\left[(\bar{q} q)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right]
$$

Thermodynamics of the NJL model: mean-field approximation

- Lagrangian:

$$
\mathscr{L}=\bar{q}(i \not \partial-m) q+G\left[(\bar{q} q)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right]
$$

- bosonize:

$$
\mathscr{L}=\bar{q}\left(i \not \partial-m+2 G\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) q-G\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

where, by the equations of motion, $\quad \sigma=\bar{q} q, \quad \vec{\pi}=\bar{q} i \gamma_{5} \vec{\tau} q$

Thermodynamics of the NJL model: mean-field approximation

- Lagrangian:

$$
\mathscr{L}=\bar{q}(i \not \partial \bar{\partial}-m) q+G\left[(\bar{q} q)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right]
$$

- bosonize:

$$
\mathscr{L}=\bar{q}\left(i \not \partial-m+2 G\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) q-G\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

where, by the equations of motion, $\quad \sigma=\bar{q} q, \quad \vec{\pi}=\bar{q} i \gamma_{5} \vec{\tau} q$

- constant mean fields: $\sigma(x)=\phi=$ const., $\quad \pi_{a}(x)=0$
\rightarrow mean-field Lagrangian:

$$
\mathscr{L}_{M F}=\bar{q}(i \not \partial-m+2 G \phi) q-G \phi^{2} \equiv \mathscr{L}_{M}-\mathcal{V}_{M}
$$

with
$\mathscr{L}_{M}=\bar{q}(i \not \partial-M) q \quad$ free fermion with mass $\quad M=m-2 G \phi$
$\mathcal{V}_{M}=G \phi^{2}=\frac{(M-m)^{2}}{4 G} \quad$ field independent "potential"

Thermodynamics of the NJL model: thermodynamic potential

- Grand potential per volume ("thermodynamic potential"): $\Omega(T, \mu)=-\frac{T}{V} \ln \mathcal{Z}$

Thermodynamics of the NJL model: thermodynamic potential

- Grand potential per volume ("thermodynamic potential"): $\Omega(T, \mu)=-\frac{T}{V} \ln \mathcal{Z}$
- Mean-field approximation: $\quad \mathscr{L}_{M F}=\mathscr{L}_{M}-\mathcal{V}_{M}$

$$
\begin{aligned}
\Rightarrow \Omega_{M F}(T, \mu ; M)= & \Omega_{M}(T, \mu)+\mathcal{V}_{M} \\
= & -12 \int \frac{d^{3} p}{(2 \pi)^{3}}\left\{E_{p}+T \ln \left(1+\exp \left(-\frac{E_{p}-\mu}{T}\right)\right)\right. \\
& \left.+T \ln \left(1+\exp \left(-\frac{E_{p}+\mu}{T}\right)\right)\right\}+\frac{(M-m)^{2}}{4 G}
\end{aligned}
$$

Thermodynamics of the NJL model: thermodynamic potential

- Grand potential per volume ("thermodynamic potential"): $\Omega(T, \mu)=-\frac{T}{v} \ln \mathcal{Z}$
- Mean-field approximation: $\mathscr{L}_{M F}=\mathscr{L}_{M}-\mathcal{V}_{M}$

$$
\begin{aligned}
\Rightarrow \Omega_{M F}(T, \mu ; M)= & \Omega_{M}(T, \mu)+\mathcal{V}_{M} \\
= & -12 \int \frac{d^{3} p}{(2 \pi)^{3}}\left\{E_{p}+T \ln \left(1+\exp \left(-\frac{E_{p}-\mu}{T}\right)\right)\right. \\
& \left.+T \ln \left(1+\exp \left(-\frac{E_{p}+\mu}{T}\right)\right)\right\}+\frac{(M-m)^{2}}{4 G}
\end{aligned}
$$

- general bilinear Lagrangian:

$$
\mathcal{L}_{\text {bil }}=\bar{q} S^{-1} q \Rightarrow \Omega_{\text {bil }}=-\frac{T}{V} \operatorname{Tr} \ln \frac{S^{-1}}{T}=-T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}} \operatorname{Tr} \ln \left(\frac{1}{T} S^{-1}\left(i \omega_{n}, \vec{p}\right)\right)
$$

Thermodynamics of the NJL model: thermodynamic potential

- Grand potential per volume ("thermodynamic potential"): $\Omega(T, \mu)=-\frac{T}{v} \ln \mathcal{Z}$
- Mean-field approximation: $\quad \mathscr{L}_{M F}=\mathscr{L}_{M}-\mathcal{V}_{M}$

$$
\begin{aligned}
& \Rightarrow \Omega_{M F}(T, \mu ; M)= \Omega_{M}(T, \mu)+\mathcal{V}_{M} \\
&=-12 \int \frac{d^{3} p}{(2 \pi)^{3}}\left\{E_{p}+\right. \\
&+T \ln \left(1+\exp \left(-\frac{E_{p}-\mu}{T}\right)\right) \\
&\left.+T \ln \left(1+\exp \left(-\frac{E_{p}+\mu}{T}\right)\right)\right\}+\frac{(M-m)^{2}}{4 G}
\end{aligned}
$$

- general bilinear Lagrangian:

$$
\mathcal{L}_{\text {bil }}=\bar{q} S^{-1} q \Rightarrow \Omega_{\text {bil }}=-\frac{T}{V} \operatorname{Tr} \ln \frac{S^{-1}}{T}=-T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}} \operatorname{Tr} \ln \left(\frac{1}{T} S^{-1}\left(i \omega_{n}, \vec{p}\right)\right)
$$

- Stable solution: minimize $\Omega_{M F}$ w.r.t. $M \quad \rightarrow \quad M=M(T, \mu)$
$-\frac{\partial \Omega_{M F}}{\partial M}=0 \rightarrow$ gap equation: $\rightarrow=\rightarrow+$ O

Thermodynamics of the NJL model: thermodynamic potential

- Grand potential per volume ("thermodynamic potential"): $\Omega(T, \mu)=-\frac{T}{v} \ln \mathcal{Z}$
- Mean-field approximation: $\mathscr{L}_{M F}=\mathscr{L}_{M}-\mathcal{V}_{M}$

$$
\begin{aligned}
\Rightarrow \Omega_{M F}(T, \mu ; M)=\Omega_{M}(T, \mu)+\mathcal{V}_{M} & \\
==-12 \int \frac{d^{3} p}{(2 \pi)^{3}}\left\{E_{p}+\right. & T \ln \left(1+\exp \left(-\frac{E_{p}-\mu}{T}\right)\right) \\
+ & \left.T \ln \left(1+\exp \left(-\frac{E_{p}+\mu}{T}\right)\right)\right\}+\frac{(M-m)^{2}}{4 G}
\end{aligned}
$$

- general bilinear Lagrangian:

$$
\mathcal{L}_{\text {bil }}=\bar{q} S^{-1} q \Rightarrow \Omega_{\text {bil }}=-\frac{T}{V} \operatorname{Tr} \ln \frac{S^{-1}}{T}=-T \sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}} \operatorname{Tr} \ln \left(\frac{1}{T} S^{-1}\left(i \omega_{n}, \vec{p}\right)\right)
$$

- Stable solution: minimize $\Omega_{M F}$ w.r.t. $M \quad \rightarrow \quad M=M(T, \mu)$
$-\frac{\partial \Omega_{M F}}{\partial M}=0 \rightarrow$ gap equation: $\rightarrow=\rightarrow+$?
- Thermodynamics: $p=-\Omega, \quad n=-\frac{\partial \Omega}{\partial \mu}, \quad s=-\frac{\partial \Omega}{\partial T}, \quad \varepsilon=-p+T s+\mu n, \ldots$

NJL bag pressure

NJL bag pressure

- NJL thermodynamic potential in vacuum (chiral limit):

- dynamically generated bag pressure $\rightarrow B$ a result, not an input

NJL bag pressure

- NJL thermodynamic potential at $T=0$ (chiral limit):

- dynamically generated bag pressure
$\rightarrow B$ a result, not an input

NJL bag pressure

- NJL thermodynamic potential at $T=0$ (chiral limit):

- dynamically generated bag pressure $\rightarrow B$ a result, not an input
- first-order phase transition vacuum \rightarrow restored phase (depends on model parameters)

NJL bag pressure

- NJL thermodynamic potential at $T=0$ (chiral limit):

- dynamically generated bag pressure $\rightarrow B$ a result, not an input
- first-order phase transition vacuum \rightarrow restored phase (depends on model parameters)

NJL bag pressure

- NJL thermodynamic potential at $T=0$ (chiral limit):

- dynamically generated bag pressure $\rightarrow B$ a result, not an input
- first-order phase transition vacuum \rightarrow restored phase (depends on model parameters)
- chiral limit: EoS identical to bag model (without gluons)

NJL bag pressure

- NJL thermodynamic potential at $T=0$ (chiral limit):

- dynamically generated bag pressure $\rightarrow B$ a result, not an input
- first-order phase transition vacuum \rightarrow restored phase (depends on model parameters)
- chiral limit: EoS identical to bag model (without gluons)
- non-trivial mass effects, in particular in the strange sector

NJL bag pressure

- NJL thermodynamic potential at $T=0$ (chiral limit):

- dynamically generated bag pressure $\rightarrow B$ a result, not an input
- first-order phase transition vacuum \rightarrow restored phase (depends on model parameters)
- chiral limit: EoS identical to bag model (without gluons)
- non-trivial mass effects, in particular in the strange sector
- further modified by vector interactions, pairing, ...

NJL bag pressure

- NJL thermodynamic potential at $T=0$ (chiral limit):

- dynamically generated bag pressure $\rightarrow B$ a result, not an input
- first-order phase transition vacuum \rightarrow restored phase (depends on model parameters)
- chiral limit: EoS identical to bag model (without gluons)
- non-trivial mass effects, in particular in the strange sector
- further modified by vector interactions, pairing, ... and temperature!

Energy per Baryon

- selfbound quark matter in the restored phase
- "schematic nucleon droplets" [MB, NPA (1996)]
- chirally broken solution
\rightarrow no confinement
solid: chirally broken solution
dashed: restored solution

Phase diagram

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- first NJL phase diagram:
[M. Asakawa, K. Yazaki, NPA (1989)]

CHIRAL RESTORATION AT FINITE DENSITY AND TEMPERATURE

Masayuki ASAKAWA and Koichi YAZAKI

Department of Physics, Faculty of Science, University of Tokyo, 7-3-I Hongo, Bunkyo-ku, Tokyo 113, Japan

Received 2 May 1988
(Revised 24 April 1989)

Abstract: We investigate the chiral symmetry breaking, its restoration and related quantities at finite density and temperature in the Nambu-Jona-Lasinio model. It is shown in the mean field approximation that a first-order transition exists at zero and low temperatures and that this transition can be identified as the chiral restoration.

Phase diagram

TECHNISCHE UNIVERSITATT
DARMSTADT

- first NJL phase diagram:
[M. Asakawa, K. Yazaki, NPA (1989)]

CHIRAL RESTORATION AT FINITE DENSITY AND TEMPERATURE

Masayuki ASAKAWA and Koichi YAZAKI
Department of Physics, Faculty of Science, University of Tokyo, 7-3-I Hongo, Bunkyo-ku, Tokyo 113, Japan

Received 2 May 1988
(Revised 24 April 1989)
Abstract: We investigate the chiral symmetry breaking, its restoration and related quantities at finite density and temperature in the Nambu-Jona-Lasinio model. It is shown in the mean field approximation that a first-order transition exists at zero and low temperatures and that this transition can be identified as the chiral restoration.

- first-order phase transition at low T and large μ, cross-over at high T and low μ
\rightarrow critical endpoint!

Phase diagram

TECHNISCHE UNIVERSITATT
DARMSTADT

- first NJL phase diagram:
[M. Asakawa, K. Yazaki, NPA (1989)]

CHIRAL RESTORATION AT FINITE DENSITY AND TEMPERATURE

Masayuki ASAKAWA and Koichi YAZAKI
Department of Physics, Faculty of Science, University of Tokyo, 7-3-I Hongo, Bunkyo-ku, Tokyo 113, Japan

Received 2 May 1988
(Revised 24 April 1989)
Abstract: We investigate the chiral symmetry breaking, its restoration and related quantities at finite density and temperature in the Nambu-Jona-Lasinio model. It is shown in the mean field approximation that a first-order transition exists at zero and low temperatures and that this transition can be identified as the chiral restoration.

- first-order phase transition at low T and large μ, cross-over at high T and low μ
\rightarrow critical endpoint!
- location depends on parameter choice

Influence of vector interactions

- include vector interaction: $\quad \mathcal{L}_{V}=-G_{V}\left(\bar{q} \gamma^{\mu} q\right)^{2}$

Influence of vector interactions

- include vector interaction: $\quad \mathcal{L}_{V}=-G_{V}\left(\bar{q} \gamma^{\mu} q\right)^{2}$
- mean field: $\left\langle\bar{q} \gamma^{\mu} q\right\rangle=n g^{\mu 0} \quad$ (quark number density)

$$
\rightarrow \Omega_{M F}(T, \mu ; M, \tilde{\mu})=\Omega_{M}(T, \tilde{\mu})+\frac{(M-m)^{2}}{4 G}-\frac{(\mu-\tilde{\mu})^{2}}{4 G_{V}}, \quad \tilde{\mu}=\mu-2 G_{V} n
$$

Influence of vector interactions

- include vector interaction: $\quad \mathcal{L}_{V}=-G_{V}\left(\bar{q} \gamma^{\mu} q\right)^{2}$
- mean field: $\left\langle\bar{q} \gamma^{\mu} q\right\rangle=n g^{\mu 0} \quad$ (quark number density)
$\rightarrow \Omega_{M F}(T, \mu ; M, \tilde{\mu})=\Omega_{M}(T, \tilde{\mu})+\frac{(M-m)^{2}}{4 G}-\frac{(\mu-\tilde{\mu})^{2}}{4 G_{V}}, \quad \tilde{\mu}=\mu-2 G_{V} n$
- location of the CEP (PNJL):
[K. Fukushima, PRD (2008)]

- Positive (negative) G_{V} weaken (strengthen) the first-order phase transition.
- The CEP can be shifted around or removed completely!

Another way to shift the CEP around

- 't Hooft interaction in the 3-flavor model:

$$
\mathcal{L}_{D}=K\left\{\operatorname{det}_{f}\left(\bar{\psi}\left(1+\gamma_{5}\right) \psi\right)+\operatorname{det}_{f}\left(\bar{\psi}\left(1-\gamma_{5}\right) \psi\right)\right\}
$$

[K. Fukushima, PRD (2008)]

Another way to shift the CEP around

- 't Hooft interaction in the 3-flavor model:

$$
\mathcal{L}_{D}=K\left\{\operatorname{det}_{f}\left(\bar{\psi}\left(1+\gamma_{5}\right) \psi\right)+\operatorname{det}_{f}\left(\bar{\psi}\left(1-\gamma_{5}\right) \psi\right)\right\}
$$

[K. Fukushima, PRD (2008)]

\rightarrow The (P)NJL model is not suited for quantitative predictions

Compilation of critical points

[M. Stephanov, PoSLAT (2006)]

Conclusion so far:

- Chiral models, like NJL, cannot predict the location of the CEP and not even tell whether it exists.

Conclusion so far:

- Chiral models, like NJL, cannot predict the location of the CEP and not even tell whether it exists.
- But they gave the first hint for its possible existence and in that way inspired experimental searches and more serious theroretical investigations.

Conclusion so far:

- Chiral models, like NJL, cannot predict the location of the CEP and not even tell whether it exists.
- But they gave the first hint for its possible existence and in that way inspired experimental searches and more serious theroretical investigations.

And, as we will discuss, they can help to interprete these.

Regularization

- $\Omega_{M F}=-12 \int \frac{d^{3} p}{(2 \pi)^{3}}\left\{E_{p}+(\right.$ thermal part) $\}+\frac{(M-m)^{2}}{4 G}$, quartically divergent \rightarrow regularization needed

Regularization

- $\Omega_{M F}=-12 \int \frac{d^{3} p}{(2 \pi)^{3}}\left\{E_{p}+(\right.$ thermal part) $\}+\frac{(M-m)^{2}}{4 G}$,
quartically divergent \rightarrow regularization needed
- examples:
- sharp 3-momentum cutoff: $\int_{0}^{\infty} d p f(p) \rightarrow \int_{0}^{\Lambda} d p f(p)$
- Pauli-Villars: $E_{p} \rightarrow \sum_{j=0}^{N} c_{j} E_{p, j}, \quad E_{p}=\sqrt{\vec{p}^{2}+M_{j}^{2}}$

$$
\text { e.g., } \quad M_{j}^{2}=M^{2}+j \lambda^{2}, \quad c_{0}=1, c_{1}=-3, c_{2}=3, c_{3}=-1
$$

Regularization

- $\Omega_{M F}=-12 \int \frac{d^{3} p}{(2 \pi)^{3}}\left\{E_{p}+(\right.$ thermal part) $\}+\frac{(M-m)^{2}}{4 G}$,
quartically divergent \rightarrow regularization needed
- examples:
- sharp 3-momentum cutoff: $\int_{0}^{\infty} d p f(p) \rightarrow \int_{0}^{\Lambda} d p f(p)$
- Pauli-Villars: $E_{p} \rightarrow \sum_{j=0}^{N} c_{j} E_{p, j}, \quad E_{p}=\sqrt{\vec{p}^{2}+M_{j}^{2}}$

$$
\text { e.g., } M_{j}^{2}=M^{2}+j \lambda^{2}, \quad c_{0}=1, c_{1}=-3, c_{2}=3, c_{3}=-1
$$

- NJL 4-point vertices \Rightarrow model not renormalizable
\rightarrow regularizations scheme and cutoff parameters part of the model

Regularization

- $\Omega_{M F}=-12 \int \frac{d^{3} p}{(2 \pi)^{3}}\left\{E_{p}+(\right.$ thermal part $\left.)\right\}+\frac{(M-m)^{2}}{4 G}$,
quartically divergent \rightarrow regularization needed
- examples:
- sharp 3-momentum cutoff: $\int_{0}^{\infty} d p f(p) \rightarrow \int_{0}^{\wedge} d p f(p)$
- Pauli-Villars: $E_{p} \rightarrow \sum_{j=0}^{N} c_{j} E_{p, j}, \quad E_{p}=\sqrt{\vec{p}^{2}+M_{j}^{2}}$

$$
\text { e.g., } M_{j}^{2}=M^{2}+j \lambda^{2}, \quad c_{0}=1, c_{1}=-3, c_{2}=3, c_{3}=-1
$$

- NJL 4-point vertices \Rightarrow model not renormalizable
\rightarrow regularizations scheme and cutoff parameters part of the model Should we better employ renormalizable models to avoid artifacts?

Quark-meson model

- Lagrangian: $\mathcal{L}_{\mathrm{QM}}=\mathcal{L}_{\text {mes }}+\mathcal{L}_{q}$
- $\mathcal{L}_{\text {mes }}=\frac{1}{2}\left(\partial_{\mu} \sigma \partial^{\mu} \sigma+\partial_{\mu} \vec{\pi} \partial^{\mu} \vec{\pi}\right)-U(\sigma, \vec{\pi})$,

$$
\begin{aligned}
& U(\sigma, \vec{\pi})=\frac{\lambda}{4}\left(\sigma^{2}+\vec{\pi}^{2}-v^{2}\right)^{2}-h \sigma, \quad \text { chiral limit: } h=0 \\
& \mathcal{L}_{q}=\bar{\psi}\left(i \not \partial-g\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi
\end{aligned}
$$

- Mean-field approximation: $\sigma, \vec{\pi}$ classical fields
- Mean-field thermodynamic potential quite similar to NJL, but renormalizable
- Typical renormalization conditions: determine g, v, λ, h by fitting $M, f_{\pi}, m_{\sigma}, m_{\pi}$ at given Λ, then $\Lambda \rightarrow \infty$

Phase diagram (chiral limit)

[Carignano, MB, Schaefer, PRD (2014)]
TECHNISCHE UNIVERSITÄT DARMSTADT

Phase diagram (chiral limit)

[Carignano, MB, Schaefer, PRD (2014)]

Phase diagram (chiral limit)

[Carignano, MB, Schaefer, PRD (2014)]

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Phase diagram (chiral limit)

[Carignano, MB, Schaefer, PRD (2014)]

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Phase diagram (chiral limit)

[Carignano, MB, Schaefer, PRD (2014)]

TECHNISCHE
UNIVERSITATT
DARMSTADT

Phase diagram (chiral limit)

[Carignano, MB, Schaefer, PRD (2014)]

Phase diagram (chiral limit)

[Carignano, MB, Schaefer, PRD (2014)]

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Phase diagram (chiral limit)

[Carignano, MB, Schaefer, PRD (2014)]

TECHNISCHE
UNIVERSITATT
DARMSTADT

Phase diagram (chiral limit)

[Carignano, MB, Schaefer, PRD (2014)]

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Phase diagram (chiral limit)

[Carignano, MB, Schaefer, PRD (2014)]

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Phase diagram (chiral limit)

[Carignano, MB, Schaefer, PRD (2014)]

TECHNISCHE
UNIVERSITATT
DARMSTADT

Phase diagram (chiral limit)

[Carignano, MB, Schaefer, PRD (2014)]

TECHNISCHE
UNIVERSITATT
DARMSTADT

Phase diagram (chiral limit)

[Carignano, MB, Schaefer, PRD (2014)]

- Convergence reached at $\Lambda \approx 2 \mathrm{GeV}$.

Vacuum instabilities

- Thermodynamic potential for $T=\mu=0$ [Carignano, MB, Schaefer, PRD (2014)]

$$
\Lambda=600 \mathrm{MeV}
$$

$\Lambda=5 \mathrm{GeV}$

Vacuum instabilities

- Thermodynamic potential for $T=\mu=0$ [Carignano, MB, Schaefer, PRD (2014)]

$$
\Lambda=600 \mathrm{MeV}
$$

$$
\Lambda=5 \mathrm{GeV}
$$

- known instability [Skokov et al., PRD 2010]
"symptomatic of the renormalized one-loop approximation" [Coleman, Weinberg, PRD (1973)]. The inclusion of higher order loop contributions is known to cure this problem".

Vacuum instabilities

- Thermodynamic potential for $T=\mu=0$ [Carignano, MB, Schaefer, PRD (2014)]

$$
\Lambda=600 \mathrm{MeV}
$$

$$
\Lambda=5 \mathrm{GeV}
$$

- known instability [Skokov et al., PRD 2010]
"symptomatic of the renormalized one-loop approximation" [Coleman, Weinberg, PRD (1973)]. The inclusion of higher order loop contributions is known to cure this problem".
- Can the problem be cured by including bosonic fluctuations $(\rightarrow$ FRG)?

Model extensions and applications (not shown in the lecture for time reasons)

PNJL model

- main shortcoming of the NJL model: no confinement
- no gluons
- unphysical $q \bar{q}$ decays of mesons
- unphysical contribution of free quarks to the pressure at low T

PNJL model

- main shortcoming of the NJL model: no confinement
- no gluons
- unphysical $q \bar{q}$ decays of mesons
- unphysical contribution of free quarks to the pressure at low T
- Polyakov loop: $\quad \ell=\frac{1}{N_{c}}\left\langle\operatorname{Tr}_{c} L\right\rangle, \quad \bar{\ell}=\frac{1}{N_{c}}\left\langle\operatorname{Tr}_{c} L^{\dagger}\right\rangle$

$$
L=\mathcal{P} \exp \left[-i \int_{0}^{\beta} d x_{4} A_{4}\left(x_{4}, \vec{x}\right)\right]
$$

- order parameter for confinement (at infinite quark mass):
- $\ell=\bar{\ell}=0$ confined
- $\ell, \bar{\ell} \neq 0$ deconfined

PNJL model

- main shortcoming of the NJL model: no confinement
- no gluons
- unphysical $q \bar{q}$ decays of mesons
- unphysical contribution of free quarks to the pressure at low T
- Polyakov loop: $\quad \ell=\frac{1}{N_{c}}\left\langle\operatorname{Tr}_{c} L\right\rangle, \bar{\ell}=\frac{1}{N_{c}}\left\langle\operatorname{Tr}_{c} L^{\dagger}\right\rangle$

$$
L=\mathcal{P} \exp \left[-i \int_{0}^{\beta} d x_{4} A_{4}\left(x_{4}, \vec{x}\right)\right]
$$

- order parameter for confinement (at infinite quark mass):
- $\ell=\bar{\ell}=0$ confined
- $\ell, \bar{\ell} \neq 0$ deconfined
- P(olyakov loop extended) NJL model: [k. Fuksshima, PLB (2004)]

$$
\mathcal{L}_{P N J L}=\bar{q}(i \not D-m) q+G\left[(\bar{q} q)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right]-\mathcal{U}(\ell, \bar{\ell})
$$

- covariant derivative: $D_{\mu}=\partial_{\mu}-i A_{\mu}, \quad A_{\mu}=\delta_{\mu}^{0} A_{0}$ constant background field
- $\mathcal{U}(\ell, \bar{\ell})$ phenomenological potential (\leftrightarrow pure gluon pressure)

PNJL model: thermodynamics

- thermodynamic potential (thermal quark part):

$$
\begin{aligned}
\Omega_{q, t h}=-2 N_{f} T \int \frac{d^{3} p}{(2 \pi)^{3}}\{ & \ln \left(1+3 \ell e^{-\left(E_{p}-\mu\right) / T}+3 \bar{\ell} e^{-2\left(E_{p}-\mu\right) / T}+e^{-3\left(E_{p}-\mu\right) / T}\right) \\
+ & \left.\ln \left(1+3 \bar{\ell} e^{-\left(E_{p}+\mu\right) / T}+3 \ell e^{-2\left(E_{p}+\mu\right) / T}+e^{-3\left(E_{p}+\mu\right) / T}\right)\right\}
\end{aligned}
$$

PNJL model: thermodynamics

- thermodynamic potential (thermal quark part):

$$
\begin{aligned}
\Omega_{q, \text { th }}=-2 N_{f} T \int \frac{d^{3} p}{(2 \pi)^{3}}\{ & \ln \left(1+3 \ell e^{-\left(E_{p}-\mu\right) / T}+3 \bar{\ell} e^{-2\left(E_{p}-\mu\right) / T}+e^{-3\left(E_{p}-\mu\right) / T}\right) \\
& \left.+\ln \left(1+3 \bar{\ell} e^{-\left(E_{p}+\mu\right) / T}+3 \ell e^{-2\left(E_{p}+\mu\right) / T}+e^{-3\left(E_{p}+\mu\right) / T}\right)\right\}
\end{aligned}
$$

- thermal quarks strongly suppressed for $\ell=\bar{\ell}=0$

[K. Fukushima, PRD (2008)]

PNJL model: thermodynamics

- thermodynamic potential (thermal quark part):

$$
\begin{aligned}
\Omega_{q, \text { th }}=-2 N_{f} T \int \frac{d^{3} p}{(2 \pi)^{3}}\{ & \ln \left(1+3 \ell e^{-\left(E_{p}-\mu\right) / T}+3 \bar{\ell} e^{-2\left(E_{p}-\mu\right) / T}+e^{-3\left(E_{p}-\mu\right) / T}\right) \\
& \left.+\ln \left(1+3 \bar{\ell} e^{-\left(E_{p}+\mu\right) / T}+3 \ell e^{-2\left(E_{p}+\mu\right) / T}+e^{-3\left(E_{p}+\mu\right) / T}\right)\right\}
\end{aligned}
$$

- thermal quarks strongly suppressed for $\ell=\bar{\ell}=0$ (but $\bar{q} q$ decays of mesons still possible (Hansen e eal., prd ory)

[K. Fukushima, PRD (2008)]

PNJL model: thermodynamics

- thermodynamic potential (thermal quark part):

$$
\begin{aligned}
\Omega_{q, \text { th }}=-2 N_{f} T \int \frac{d^{3} p}{(2 \pi)^{3}} & \left\{\ln \left(1+3 \ell e^{-\left(E_{p}-\mu\right) / T}+3 \bar{\ell} e^{-2\left(E_{p}-\mu\right) / T}+e^{-3\left(E_{p}-\mu\right) / T}\right)\right. \\
+ & \left.\ln \left(1+3 \bar{\ell} e^{-\left(E_{p}+\mu\right) / T}+3 \ell e^{-2\left(E_{p}+\mu\right) / T}+e^{-3\left(E_{p}+\mu\right) / T}\right)\right\}
\end{aligned}
$$

- thermal quarks strongly suppressed for $\ell=\bar{\ell}=0$ (but $\bar{q} q$ decays of mesons still possible [Hansen etal., PRD © 07)
- chiral and deconfinement transitions (partially) synchronized

[K. Fukushima, PRD (2008)]

[K. Fukushima, PLB (2004)]

Assessing nonzero μ on the lattice

- lattice QCD:
- standard Monte Carlo methods fail at (real) $\mu \neq 0$ ("sign problem")

Assessing nonzero μ on the lattice

- lattice QCD:
- standard Monte Carlo methods fail at (real) $\mu \neq 0$ ("sign problem")
- suggested work-arounds:
- Taylor expansion around $\mu=0$
- extrapolation from imaginary μ

Assessing nonzero μ on the lattice

- lattice QCD:
- standard Monte Carlo methods fail at (real) $\mu \neq 0$ ("sign problem")
- suggested work-arounds:
- Taylor expansion around $\mu=0$
- extrapolation from imaginary μ
- How reliable are these methods?

Assessing nonzero μ on the lattice

- lattice QCD:
- standard Monte Carlo methods fail at (real) $\mu \neq 0$ ("sign problem")
- suggested work-arounds:
- Taylor expansion around $\mu=0$
- extrapolation from imaginary μ
- How reliable are these methods?
\rightarrow Check for models where real $\mu \neq 0$ are accessible!

Taylor expansion

- Taylor expansion of the pressure: $\quad \frac{p}{T^{4}}(T, \mu)=\sum_{n=0}^{\infty} c_{n}(T)\left(\frac{\mu}{T}\right)^{n}$
- lattice: $n=2,4,6,8$
(modern lattice data: multidimensional expansion w.r.t. $\mu_{B}, \mu_{Q}, \mu_{S}$)

Taylor expansion

- Taylor expansion of the pressure: $\quad \frac{p}{T^{4}}(T, \mu)=\sum_{n=0}^{\infty} c_{n}(T)\left(\frac{\mu}{T}\right)^{n}$
- lattice: $n=2,4,6,8$
(modern lattice data: multidimensional expansion w.r.t. $\mu_{B}, \mu_{Q}, \mu_{S}$)
- comparison with PNJL: [s. AB8sere, C. Ratit, w. Weise, PRD (2007); laticice: C.f. Allon etal., PRD (2002,2003)]

Taylor expansion: test of concept

- Idea: test Taylor expansion method within the model

Taylor expansion: test of concept

- Idea: test Taylor expansion method within the model
- NJL model, no precision fit [D. Scheffler, Bachelor thesis (2007)]
"exact" phase diagram:

- crossover line:
maxima of $\frac{\chi_{m m}}{T^{2}}=-\frac{1}{T^{2}} \frac{\partial^{2} \Omega}{\partial m^{2}}$ along $\frac{\mu}{T}=$ const.
- endpoint:

$$
\begin{aligned}
T_{c} & =82.2 \mathrm{MeV} \\
\mu_{c} & =322.0 \mathrm{MeV} \\
\frac{\mu_{c}}{T_{c}} & =3.92
\end{aligned}
$$

Taylor expansion: test of concept

- Idea: test Taylor expansion method within the model
- NJL model, no precision fit [D. Scheffler, Bachelor thesis (2007)]
"exact" phase diagram:

- crossover line:
maxima of $\frac{\chi_{m m}}{T^{2}}=-\frac{1}{T^{2}} \frac{\partial^{2} \Omega}{\partial m^{2}}$ along $\frac{\mu}{T}=$ const.
- endpoint:

$$
\begin{aligned}
T_{c} & =82.2 \mathrm{MeV} \\
\mu_{c} & =322.0 \mathrm{MeV} \\
\frac{\mu_{c}}{T_{c}} & =3.92
\end{aligned}
$$

Taylor expansion: test of concept

- Idea: test Taylor expansion method within the model
- NJL model, no precision fit [D. Scheffler, Bachelor thesis (2007)]
"exact" vs. 6th order:

- crossover line:
maxima of $\frac{\chi_{m m}}{T^{2}}=-\frac{1}{T^{2}} \frac{\partial^{2} \Omega}{\partial m^{2}}$ along $\frac{\mu}{T}=$ const.
- endpoint:

$$
\begin{aligned}
T_{c} & =82.2 \mathrm{MeV} \\
\mu_{c} & =322.0 \mathrm{MeV} \\
\frac{\mu_{c}}{T_{c}} & =3.92
\end{aligned}
$$

Taylor expansion: test of concept

- Idea: test Taylor expansion method within the model
- NJL model, no precision fit [D. Scheffler, Bachelor thesis (2007)]
zoom in:

- crossover line:
maxima of $\frac{\chi_{m m}}{T^{2}}=-\frac{1}{T^{2}} \frac{\partial^{2} \Omega}{\partial m^{2}}$ along $\frac{\mu}{T}=$ const .
- endpoint:

$$
\begin{aligned}
T_{c} & =82.2 \mathrm{MeV} \\
\mu_{c} & =322.0 \mathrm{MeV} \\
\frac{\mu_{c}}{T_{c}} & =3.92
\end{aligned}
$$

Taylor expansion: test of concept

- Idea: test Taylor expansion method within the model
- NJL model, no precision fit [D. Scheffler, Bachelor thesis (2007)]
"exact" vs. Taylor expansion:

- crossover line:
maxima of $\frac{\chi_{m m}}{T^{2}}=-\frac{1}{T^{2}} \frac{\partial^{2} \Omega}{\partial m^{2}}$ along $\frac{\mu}{T}=$ const.
- endpoint:

$$
\begin{aligned}
T_{c} & =82.2 \mathrm{MeV} \\
\mu_{c} & =322.0 \mathrm{MeV} \\
\frac{\mu_{c}}{T_{c}} & =3.92
\end{aligned}
$$

Taylor expansion: test of concept

- Idea: test Taylor expansion method within the model
- NJL model, no precision fit [D. Scheffler, Bachelor thesis (2007)]
"exact" vs. 6th order:

- crossover line:
maxima of $\frac{\chi_{m m}}{T^{2}}=-\frac{1}{T^{2}} \frac{\partial^{2} \Omega}{\partial m^{2}}$ along $\frac{\mu}{T}=$ const.
- endpoint:

$$
\begin{aligned}
T_{c} & =82.2 \mathrm{MeV} \\
\mu_{c} & =322.0 \mathrm{MeV} \\
\frac{\mu_{c}}{T_{c}} & =3.92
\end{aligned}
$$

Taylor expansion: test of concept

- Idea: test Taylor expansion method within the model
- NJL model, no precision fit [D. Scheffler, Bachelor thesis (2007)]
\rightarrow very high orders necessary if $\frac{\mu}{T}$ not small!

Taylor expansion: test of concept

- Idea: test Taylor expansion method within the model
- NJL model, no precision fit [D. Scheffler, Bachelor thesis (2007)]
\rightarrow very high orders necessary if $\frac{\mu}{T}$ not small!
- More sophisticated study [Karsch, Schaefer, Wagner, Wambach PLB (2011)]
- $2+1$ flavor PQM model
- expansion up the 24th order (via "algorithmic differentiation")
- radius-of-convergence studies
- Padé approximation

Taylor expansion: test of concept

- Idea: test Taylor expansion method within the model
- NJL model, no precision fit [D. Scheffler, Bachelor thesis (2007)]
\rightarrow very high orders necessary if $\frac{\mu}{T}$ not small!
- More sophisticated study [Karsch, Schaefer, Wagner, Wambach PLB (2011)]
- $2+1$ flavor PQM model
- expansion up the 24th order (via "algorithmic differentiation")
- radius-of-convergence studies
- Padé approximation

I would say: similar conclusion

PNJL beyond mean-field approximation

- PNJL at mean field: quarks suppressed at low T, but no hadrons either ...
\rightarrow include meson contributions!

PNJL beyond mean-field approximation

- PNJL at mean field: quarks suppressed at low T, but no hadrons either ...
\rightarrow include meson contributions!
- ring sum:

(NLO in a $1 / N_{c}$ expansion)

PNJL beyond mean-field approximation

TECHNISCHE UNIVERSITATT DARMSTADT

- PNJL at mean field: quarks suppressed at low T, but no hadrons either ...
\rightarrow include meson contributions!
- ring sum: $\Omega_{\text {ring }}=0+\Omega+Q+\infty+$ (NLO in a $1 / N_{c}$ expansion)
- pressure: [Blaschke, M.B., Radzzabov, Voloov, Ya. Fi. (2008)]

PNJL beyond mean-field approximation

- PNJL at mean field: quarks suppressed at low T, but no hadrons either ...
\rightarrow include meson contributions!
- ring sum: $\Omega_{\text {ring }}=\bigcirc+\Omega+Q+\cdots \quad$ (NLO in a $1 / N_{c}$ expansion)
- pressure: [Blaschke, M.B., Radzhabov, Volkov, Yad. Fiz. (2008)]

- $T \lesssim T_{c}:$
dominated by mesons

PNJL beyond mean-field approximation

- PNJL at mean field: quarks suppressed at low T, but no hadrons either ...
\rightarrow include meson contributions!
- ring sum: $\Omega_{\text {ring }}=\bigcirc+\Omega+Q+\infty+\ldots \quad$ (NLO in a $1 / N_{c}$ expansion)
- pressure: [Blaschke, M.B., Radzhabov, Volkov, Yad. Fiz. (2008)]

- $T \lesssim T_{c}$:
dominated by mesons
- $T \lesssim 100 \mathrm{MeV}$:
almost ideal pion gas

PNJL beyond mean-field approximation

- PNJL at mean field: quarks suppressed at low T, but no hadrons either ...
\rightarrow include meson contributions!
- ring sum: $\Omega_{\text {ring }}=\bigcirc+\Omega+Q+\infty+\ldots \quad$ (NLO in a $1 / N_{c}$ expansion)
- pressure: [Blaschke, M.B., Radzhabov, Volkov, Yad. Fiz. (2008)]

- $T \lesssim T_{c}$:
dominated by mesons
- $T \lesssim 100 \mathrm{MeV}$:
almost ideal pion gas
- $T>T_{c}$:
gradual convergence to mean field

Isospin chemical potential

- unequal chemical potentials: $\quad \mu_{u}=\mu+\delta \mu, \quad \mu_{d}=\mu-\delta \mu$

Isospin chemical potential

- unequal chemical potentials: $\quad \mu_{u}=\mu+\delta \mu, \quad \mu_{d}=\mu-\delta \mu$
- phase diagram:
[D. Toublan, J.B. Kogut, PLB (2003)]

Isospin chemical potential

- unequal chemical potentials: $\quad \mu_{u}=\mu+\delta \mu, \quad \mu_{d}=\mu-\delta \mu$
- phase diagram:
[D. Toublan, J.B. Kogut, PLB (2003)]

- generalized interaction: $\quad \mathcal{L}_{\text {int }}=\mathcal{L}_{1}+\mathcal{L}_{2}$
- $\mathcal{L}_{1}=(1-\alpha) G\left[(\bar{q} q)^{2}+(\bar{q} \vec{\tau} q)^{2}+\left(\bar{q} i \gamma_{5} q\right)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right] \quad\left(U(2)_{L} \times U(2)_{R}\right.$ symm. $)$
- $\mathcal{L}_{2}=\quad \alpha G\left[(\bar{q} q)^{2}-(\bar{q} \vec{\tau} q)^{2}-\left(\bar{q} i \gamma_{5} q\right)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right] \quad\left(U_{A}(1)\right.$ breaking $)$

Isospin chemical potential

- unequal chemical potentials: $\quad \mu_{u}=\mu+\delta \mu, \quad \mu_{d}=\mu-\delta \mu$
- phase diagram:
[D. Toublan, J.B. Kogut, PLB (2003)]

- generalized interaction: $\quad \mathcal{L}_{\text {int }}=\mathcal{L}_{1}+\mathcal{L}_{2}$
- $\mathcal{L}_{1}=(1-\alpha) G\left[(\bar{q} q)^{2}+(\bar{q} \vec{\tau} q)^{2}+\left(\bar{q} i \gamma_{5} q\right)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right] \quad\left(U(2)_{L} \times U(2)_{R}\right.$ symm. $)$
- $\mathcal{L}_{2}=\quad \alpha G\left[(\bar{q} q)^{2}-(\bar{q} \vec{\tau} q)^{2}-\left(\bar{q} i \gamma_{5} q\right)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right] \quad\left(U_{A}(1)\right.$ breaking $)$
- $\Omega=\Omega_{M_{u}}\left(T, \mu_{u}\right)+2 G \phi_{u}^{2}+\Omega_{M_{d}}\left(T, \mu_{d}\right)+2 G \phi_{d}^{2}-2 G \alpha\left(\phi_{u}-\phi_{d}\right)^{2}$

Isospin chemical potential

- unequal chemical potentials: $\quad \mu_{u}=\mu+\delta \mu, \quad \mu_{d}=\mu-\delta \mu$
- phase diagram:
[D. Toublan, J.B. Kogut, PLB (2003)]

- generalized interaction: $\quad \mathcal{L}_{\text {int }}=\mathcal{L}_{1}+\mathcal{L}_{2}$
- $\mathcal{L}_{1}=(1-\alpha) G\left[(\bar{q} q)^{2}+(\bar{q} \vec{\tau} q)^{2}+\left(\bar{q} i \gamma_{5} q\right)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right] \quad\left(U(2)_{L} \times U(2)_{R}\right.$ symm. $)$
- $\mathcal{L}_{2}=\quad \alpha G\left[(\bar{q} q)^{2}-(\bar{q} \vec{\tau} q)^{2}-\left(\bar{q} i \gamma_{5} q\right)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right] \quad\left(U_{A}(1)\right.$ breaking $)$
- $\Omega=\Omega_{M_{u}}\left(T, \mu_{u}\right)+2 G \phi_{u}^{2}+\Omega_{M_{d}}\left(T, \mu_{d}\right)+2 G \phi_{d}^{2}-2 G \alpha\left(\phi_{u}-\phi_{d}\right)^{2}$
- standard NJL: $\alpha=0.5$, Toublan \& Kogut: $\alpha=0 \rightarrow$ flavors decouple

Isospin chemical potential

- unequal chemical potentials: $\mu_{u}=\mu+\delta \mu, \quad \mu_{d}=\mu-\delta \mu$
- phase diagram:
[D. Toublan, J.B. Kogut, PLB (2003)]

[M. Frank, M.B., M. Oertel, PLB (2003)]

- generalized interaction: $\quad \mathcal{L}_{\text {int }}=\mathcal{L}_{1}+\mathcal{L}_{2}$
- $\mathcal{L}_{1}=(1-\alpha) G\left[(\bar{q} q)^{2}+(\bar{q} \vec{\tau} q)^{2}+\left(\bar{q} i \gamma_{5} q\right)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right] \quad\left(U(2)_{L} \times U(2)_{R}\right.$ symm.)
- $\mathcal{L}_{2}=\quad \alpha G\left[(\bar{q} q)^{2}-(\bar{q} \vec{\tau} q)^{2}-\left(\bar{q} i \gamma_{5} q\right)^{2}+\left(\bar{q} i \gamma_{5} \vec{\tau} q\right)^{2}\right] \quad\left(U_{A}(1)\right.$ breaking $)$
- $\Omega=\Omega_{M_{u}}\left(T, \mu_{u}\right)+2 G \phi_{u}^{2}+\Omega_{M_{d}}\left(T, \mu_{d}\right)+2 G \phi_{d}^{2}-2 G \alpha\left(\phi_{u}-\phi_{d}\right)^{2}$
- standard NJL: $\alpha=0.5$, Toublan \& Kogut: $\alpha=0 \rightarrow$ flavors decouple

Discussion: vector interactions

Discussion: vector interactions

- [Klähn et al., PLB (2007)]:
repulsive vector interaction ($G_{V}=G / 2$) necessary to get an EoS stiff enough to allow for $M>2 M_{\odot}$ stars

Discussion: vector interactions

- [Klähn et al., PLB (2007)]:
repulsive vector interaction ($G_{V}=G / 2$) necessary to get an EoS stiff enough to allow for $M>2 M_{\odot}$ stars

- [Steinheimer \& Schramm, PLB (2011)]: $G_{V}=G / 2$ is incompatible with lattice data at $\mu=0$

Discussion: vector interactions

- [Klähn et al., PLB (2007)]:
repulsive vector interaction ($G_{V}=G / 2$) necessary to get an EoS stiff enough to allow for $M>2 M_{\odot}$ stars

- [Steinheimer \& Schramm, PLB (2011)]:
$G_{V}=G / 2$ is incompatible with lattice data at $\mu=0$
- μ-dependent G_{v} ?

Discussion: vector interactions

- [Klähn et al., PLB (2007)]:
repulsive vector interaction ($G_{V}=G / 2$) necessary to get an EoS stiff enough to allow for $M>2 M_{\odot}$ stars

- [Steinheimer \& Schramm, PLB (2011)]: $G_{V}=G / 2$ is incompatible with lattice data at $\mu=0$
- μ-dependent G_{V} ?
- possible, but that adds further parameters to the model ...

