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Introduction

» the binding energies of light nuclei are much smaller than the
temperature of the environment ("snowballs in hell”)

» how fast do they form and how broad are they?

» a quantum mechanical description of creation and decay of bound
states (the nuclei) in an open thermal system (fireball) is needed

» use the framework of Kadanoff-Baym equations to analyse the
time evolution of occupation numbers and spectral functions

> These are obtained via non-equilibrium Green’s functions
— Schwinger-Keldysh Contour



Kadanoff-Baym equations

G(1,1) = Go(7,1") + /C d2 /C d3Go(7,2)x(2,3)G(3,1')

» by multiplying with the (free) inverse propagator and integrating
over 1

[ diG" (1,16, 1) = [ diGy" (1. T)Go(T.1)
C C
8o(1,1)=86(t— )8 (1 —xy1)
+/ dT/ dz/ d3G, '(1,1)Go(1,2)2(2,3)G(3,1)
C C C

> Where G, '(1,7) is:
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Kadanoff-Baym equations

» the equation for t' can be obtained similarly:

G(1,1’)( 981‘1 +— =l v(r;)) :60(1,1’)+/Cd36(1,3)2(3,1’)

> > denotes the self-energy, an 1Pl part of the Greensfunction,
which is introduced by variational principle

» the general form contains also singular (in time) contributions on
the contour: (P. Danielewicz, Ann. Phys. (N.Y.) 152, 239 (1984))
T(1,1) = Z°(1,1") +O4(t1, t) X7 (1,1) + Oc(ty, t1)Z=(1,1)

N——
<X50(t1 711/)

> To solve a system completely, we need to propagate G~ and G<
for tand ¢



1+1 dim test model

» The Hamiltonian should describe a system of (heavier) fermions
scattering with free "heat-bath” bosons

/drq/ 1) A+ V() ) 9(r. 1
ﬁ_,

ho
Fo(t)
4 [ dri(r. ) 6(r. ) (r.08(r,1)
’:Iint(t)
—Vo if|r| <3
v(nd o if]r]>2
o if |r| > £,

P> “heat-bath” means, that the bosons are kept always in equilibrium



1+1 dim test model

» the fermionic Green’s functions are expanded in a set of
eigenfunctions of the free Hamiltonian

§7(1,1) = =i’} {&n(t)em(t)") n(r)9m(r')

n,m
crm(tt)
a /
=i (&m Gn(r)Pm(r')
m\—/_l

crm(tt')

» similar to the bosons

Dy (1,1') /Ze_'g”t D1+ na(€n))9a(r) 5 ()

Dy (1,1) ’Ze (=) ng(€,) B(r) G5 (')

k2
> were k, = 2~ , &, =2 — 1 and ng(&,) =
2mb

1
Lpam’ exp(€n/Tpan)—1



1+1 dim test model

» Kadanoff-Baym equations:

Jd A
(132 oy — Vo) S%(1.1) = G, (1)
Jd Ay

(i o = Ven(1) S%(1,1) = o, (1.0)

» with shortcuts
Verr(1) = V(1) +Zp(1),

I, (8.1 =/ttd7 [z>(1,1)z<(1,1)] $2(1,1)

B (1) = /th [s>(1,T —s<(1,1)]z%(1,1)



1+1 dim test model

> The lowest-order contributions to the self energy are given by the
tadpole- and the sunset-diagram

» which will also be expanded in the same basis

F ,B
Zia(ta t/) = 2,2 Z <Z eqzl(gj_gk)(t_t ) (1 + nB(ej)) ng(gk)
nm ~jk

[ 89 NHIF (1) 05 (.Y Vi)
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Thpa() =AY efisj(tfﬁ)ns(gj) Vb.ajj
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1+1 dim test model
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Figure: Stan et al, Time propagation of the KadanoffBaym equations for
inhomogeneous systems, The Journal of Chemical Physics, 2009

» only 3 instead of 4 equations need to be solved because of
symmetry relations: —S=<(1,1)" = 8(1/,1)

» on the time diagonal only S< is propagated and the equal-time
commutation relation is used to obtain S~



Spectral properties

> the two-time propagation allows to extract not only statistical but
also spectral information of the system

> we introduce central time T = %‘/ and relative time At =t—t'

P the spectral function is defined as the fourier transform in relative
time of a

anm(t,t') = ¢y m(t, )+ crm(t 1)
At - At

(@, T) = / At ey T+ 0 T~ 2

)

» for non-interacting systems, we see just a 6-peak at the “on-shell”
frequency @ = &,



Spectral properties
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Figure: Spectral functions Z00(@, T = 52fm), d10.10(®, T = 52fm) and
524724((0, T= 52fm).



Spectral properties

» non-vanishing self energies will lead to a shift of the peak (real
part of the retarded self energy) and a broadening of the
delta-type (imaginary part of the retarded self energy) of the
spectral function

Re(T% (T, @) = — / diste > [sign(At)

(7437 4) (7424
rn,m(T, w)=-2 /m(Zf,e‘m(T,w)) — /dAteicoAt
[(Zim(h%i A2T)+z;m(r+m 7 %m

» the width can be understood as an inverse life time of the state



Spectral properties

P the peak is shifted to

Emedium - En = Re(Z;‘fL(T, o= Emedium))
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Figure: real part and imaginary part of the retarded self energy of the ground
state for T = 52fm
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Spectral properties
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Figure: Spectral functions compared for T = 52fm.



Equilibration and Thermalization

» in the long-time limit the system should approach a thermal
equilibration fixed point at temperature Tyh

> the diagonal elements c; ,(t,t) should approach the Fermi-Dirac
distribution

limtﬁooc,in(t, t) = /d(l) nF(Tsysta,usysh o) é,,,,,((u, T)

> Tgyst and Uy are extracted via a fit to all n under the constrains,
that the trace of ¢, ,(t,t) is constant



Equilibration and Thermalization
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Figure: ¢, ,(t,t) plotted for different times. The occupation number of the
final states (t = 100fm) was fitted to a Fermi-Dirac distribution yield
Teystem =~ 100.133MeV and fgysiem ~ —298.125MeV.



Kubo-Martin-Schwinger boundary condition
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Figure: KMS - condition checked. For the derivation: "Quantum Statistical
Mechanics” by L. Kadanoff and G. Baym.



Decoherence

> density matrix of a pure state
p=|v) (V|
P density matrix of a mixed state
p=Ypilv)wil ZP:—Ntot
i
P for an explicit example, we choose for the initial conditions

1 1
super — E|10>+$‘15>

= Psuper = 0.5+ ([10) (10| +[10) (15[ +-[15) (10| +- [15) (15])
Iapure =1.0-0) (0|

V)



Decoherence
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Figure: Top: The initial superimposed and Bottom: the initial pure state.



Conclusions and Outlook

Conclusion:

» short introduction to non-relativistic, non-equilibrium Green’s
functions

» presentation of the used method to solve the coupled
integro-differential equations for a simple testbox

P results for spectral properties, thermalisation and decoherence
Outlook:

> extend it to 3+1 dimensions

» spectral function of a Bose-Einstein condensate



Back up: Schwinger-Keldysh Contour

» The one-particle Green’s function is defined as a corrolation
function i.e. an expectation value of two (Heisenberg) operators

G(1,1") = —i{To[W(r, ) 9(r', £)'])

> Where T, is the time ordering operator:
_— U, )e(r,0)  ift>t
ST RO ) (r, ) <t

» the + corresponds to bosons/fermions. The operators are
defined as:

(r,0) = ™Y gu(r)ee ™
k

———
=9(r)



Back up: Schwinger-Keldysh Contour

» To "see” the contour, we switch to the interaction representation:

(I\/(r? t) = UI(_°°7 t)l/[\//(l‘, t)Ul(ta _°°)

> Where U(t,t;) is the time evolution operator in this
representation:

Utt) =T, [exp(—i/ttdt’lﬁl,-m(t’))}

P substituting these expressions in the definition of the Green’s
function and assume t > t'

—j R P .
G (1,1)= 777{UI(—°°>°°)e_ﬁHU/(°°at)‘l’/(ﬂ )
O oi(r ) O —e0) }
—I ~ P n
— 7Tr{e’ﬁHTC[UCq//(r, Hwi(r,¢)]}



Back up: Schwinger-Keldysh Contour
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Figure: The closed-time path %. Thanks to David Wagner

» the upper contour is going from —oo to o representing the "time
ordering” of the field operators

» the lower part going the reverse way outside of the "anti-time
ordering” operator

» in general there are three other Green’s function (upper-lower,
lower-upper and lower-lower)
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