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Introduction

I the binding energies of light nuclei are much smaller than the
temperature of the environment (”snowballs in hell”)

I how fast do they form and how broad are they?

I a quantum mechanical description of creation and decay of bound
states (the nuclei) in an open thermal system (fireball) is needed

I use the framework of Kadanoff-Baym equations to analyse the
time evolution of occupation numbers and spectral functions

I These are obtained via non-equilibrium Green’s functions
→ Schwinger-Keldysh Contour



Kadanoff-Baym equations
−iΣ= +

G(1̄,1′) = G0(1̄,1′) +
∫

C
d2
∫

C
d3G0(1̄,2)Σ(2,3)G(3,1′)

I by multiplying with the (free) inverse propagator and integrating
over 1̄

∫
C

d 1̄G−1
0 (1, 1̄)G(1̄,1′) =

∫
C

d 1̄G−1
0 (1, 1̄)G0(1̄,1′)︸ ︷︷ ︸

δc(1,1′)=δc(t−t ′)δ(x1−x1′ )

+
∫

C
d 1̄
∫

C
d2
∫

C
d3G−1

0 (1, 1̄)G0(1̄,2)Σ(2,3)G(3,1′)

I Where G−1
0 (1, 1̄) is:

G−1
0 (1, 1̄) =

(
i

∂

∂ t1
+

∆1

2mf
−V (r1)

)
δc(1, 1̄)



Kadanoff-Baym equations

I the equation for t ′ can be obtained similarly:

G(1,1′)
(
−i

∂

∂ t ′1
+

∆1′

2mf
−V (r ′1)

)
= δc(1,1′) +

∫
C

d3G(1,3)Σ(3,1′)

I Σ denotes the self-energy, an 1PI part of the Greensfunction,
which is introduced by variational principle

I the general form contains also singular (in time) contributions on
the contour: (P. Danielewicz, Ann. Phys. (N.Y.) 152, 239 (1984))

Σ(1,1′) = Σδ (1,1′)︸ ︷︷ ︸
∝δc(t1−t1′ )

+Θc(t1, t1′)Σ>(1,1′) + Θc(t1′ , t1)Σ<(1,1′)

I To solve a system completely, we need to propagate G> and G<

for t and t ′



1+1 dim test model
I The Hamiltonian should describe a system of (heavier) fermions

scattering with free ”heat-bath” bosons

Ĥ(t) =
∫

dr ψ̂(r , t)†
(
− ∆

2mf
+ V (r)︸ ︷︷ ︸

h0

)
ψ̂(r , t)

︸ ︷︷ ︸
Ĥ0(t)

+ λ

∫
dr ψ̂(r , t)†

φ̂(r , t)†
ψ̂(r , t)φ̂(r , t)︸ ︷︷ ︸

Ĥint(t)

V (r)


−V0 if |r | ≤ a

2

0 if |r |> a
2

∞ if |r |> L
2 ,

I ”heat-bath” means, that the bosons are kept always in equilibrium



1+1 dim test model
I the fermionic Green’s functions are expanded in a set of

eigenfunctions of the free Hamiltonian

S>(1,1′) =−i
F

∑
n,m
〈ĉn(t)ĉm(t ′)†〉︸ ︷︷ ︸

c>n,m(t,t ′)

φn(r)φ
∗
m(r ′)

S<(1,1′) = i
F

∑
n,m
〈ĉm(t ′)†ĉn(t)〉︸ ︷︷ ︸

c<n,m(t,t ′)

φn(r)φ
∗
m(r ′)

I similar to the bosons

D>
0 (1,1′) =−i

B

∑
n

e−iεn(t−t ′)(1 + nB(εn))φ̃n(r)φ̃
∗
n (r ′)

D<
0 (1,1′) =−i

B

∑
n

e−iεn(t−t ′)nB(εn)φ̃n(r)φ̃
∗
n (r ′)

I were kn = πn
Lbath

, εn = k2
n

2mb
−µ and nB(εn) = 1

exp(εn/Tbath)−1



1+1 dim test model
I Kadanoff-Baym equations:(

i
∂

∂ t
+

∆1

2mf
−Veff(1)

)
S≷(1,1′) = I≷coll1(t, t ′)(

−i
∂

∂ t ′
+

∆1′

2mf
−Veff(1′)

)
S≷(1,1′) = I≷coll2(t, t ′)

I with shortcuts
Veff(1) = V (1) + ΣH(1),

I≷coll1(t, t ′) =
∫ t

t0
d 1̄

[
Σ>(1, 1̄)−Σ<(1, 1̄)

]
S≷(1̄,1′)

−
∫ t ′

t0
d 1̄Σ≷(1, 1̄)

[
S>(1̄,1′)−S<(1̄,1′)

]
I≷coll2(t, t ′) =

∫ t

t0
d 1̄

[
S>(1, 1̄)−S<(1, 1̄)

]
Σ≷(1̄,1)

−
∫ t

t0
d 1̄S≷(1, 1̄)

[
Σ>(1̄,1)−Σ<(1̄,1)

]



1+1 dim test model
I The lowest-order contributions to the self energy are given by the

tadpole- and the sunset-diagram

−iΣ =

I which will also be expanded in the same basis

Σ≷
b,a(t, t ′) = λ

2
F

∑
n,m

( B

∑
j,k

e∓i(εj−εk )(t−t ′) (1 + nB(εj))nB(εk )∫
drφ

∗
b (r)φn(r)φ̃j(r)φ̃

∗
k (r)︸ ︷︷ ︸

Vb,n,j,k

c≷n,m(t, t ′)Vm,a,k ,j

)

ΣHb,a(t) = λ

B

∑
j

e−iεj (t−t+)nB(εj)Vb,a,j,j



1+1 dim test model

Figure: Stan et al,Time propagation of the KadanoffBaym equations for
inhomogeneous systems, The Journal of Chemical Physics, 2009

I only 3 instead of 4 equations need to be solved because of
symmetry relations: −S

>
<(1,1′)† = S

>
<(1′,1)

I on the time diagonal only S< is propagated and the equal-time
commutation relation is used to obtain S>



Spectral properties

I the two-time propagation allows to extract not only statistical but
also spectral information of the system

I we introduce central time T̄ = t+t ′
2 and relative time ∆t = t− t ′

I the spectral function is defined as the fourier transform in relative
time of a

an,m(t, t ′) = c>n,m(t, t ′) + c<n,m(t, t ′)

ãn,m(ω, T̄ ) =
∫

d∆t eiω∆tan,m(T̄ +
∆t
2
, T̄ −∆t

2
)

I for non-interacting systems, we see just a δ -peak at the ”on-shell”
frequency ω = εn



Spectral properties
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Figure: Spectral functions ã0,0(ω, T̄ = 52fm), ã10,10(ω, T̄ = 52fm) and
ã24,24(ω, T̄ = 52fm).



Spectral properties

I non-vanishing self energies will lead to a shift of the peak (real
part of the retarded self energy) and a broadening of the
delta-type (imaginary part of the retarded self energy) of the
spectral function

Re(Σret
n,m(T̄ ,ω)) =

−i
2

∫
d∆t eiω∆t

[
sign(∆t)(

Σ>
n,m

(
T̄ +

∆t
2
, T̄ −∆t

2

)
+ Σ<

n,m

(
T̄ +

∆t
2
, T̄ −∆t

2

))]
Γn,m(T̄ ,ω) =−2 Im(Σret

n,m(T̄ ,ω)) =
∫

d∆t eiω∆t[(
Σ>

n,m

(
T̄ +

∆t
2
, T̄ −∆t

2

)
+ Σ<

n,m

(
T̄ +

∆t
2
, T̄ −∆t

2

))]
I the width can be understood as an inverse life time of the state



Spectral properties

I the peak is shifted to

Emedium−En = Re(Σret
n,n(T ,ω = Emedium))
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Figure: real part and imaginary part of the retarded self energy of the ground
state for T̄ = 52fm



Spectral properties

ã0,0(ω, T̄ ) =
Γ0,0(ω, T̄ )[

ω−E0−Re(Σret
0,0(T̄ ,ω))

]2
+
[

Γ0,0(ω,T̄ )
2

]2
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Figure: Spectral functions compared for T̄ = 52fm.



Equilibration and Thermalization

I in the long-time limit the system should approach a thermal
equilibration fixed point at temperature Tbath

I the diagonal elements c<n,n(t, t) should approach the Fermi-Dirac
distribution

limt→∞c<n,n(t, t) =
∫

dω nF (Tsyst,µsyst,ω) ãn,n(ω,T )

I Tsyst and µsyst are extracted via a fit to all n under the constrains,
that the trace of c<n,m(t, t) is constant



Equilibration and Thermalization
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Figure: c<n,n(t, t) plotted for different times. The occupation number of the
final states (t = 100fm) was fitted to a Fermi-Dirac distribution yield
Tsystem ≈ 100.133MeV and µsystem ≈−298.125MeV.



Kubo-Martin-Schwinger boundary condition
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Figure: KMS - condition checked. For the derivation: ”Quantum Statistical
Mechanics” by L. Kadanoff and G. Baym.



Decoherence

I density matrix of a pure state

ρ̂ = |Ψ〉〈Ψ|

I density matrix of a mixed state

ρ̂ = ∑
i

pi · |ψi〉〈ψi | ; ∑
i

pi = Ntot(1)

I for an explicit example, we choose for the initial conditions

|Ψ〉super =
1√
2
|10〉+ 1√

2
|15〉

→ ρ̂super = 0.5 · (|10〉〈10|+ |10〉〈15|+ |15〉〈10|+ |15〉〈15|)
ρ̂pure = 1.0 · |0〉〈0|



Decoherence

t [fm]0.0

0.1

0.2

0.3

0.4

0.5
|c

n(
t)

c m
(t)

| | c0(t) c0(t) |
| c10(t) c10(t) |
| c15(t) c10(t) |
| c15(t) c15(t) |

0 20 40 60 80 100
t [fm]

0.0

0.1

0.2

0.3

0.4

0.5

|c
n(

t)
c m

(t)
| | c0(t) c0(t) |

| c10(t) c10(t) |
| c15(t) c10(t) |
| c15(t) c15(t) |

Figure: Top: The initial superimposed and Bottom: the initial pure state.



Conclusions and Outlook

Conclusion:

I short introduction to non-relativistic, non-equilibrium Green’s
functions

I presentation of the used method to solve the coupled
integro-differential equations for a simple testbox

I results for spectral properties, thermalisation and decoherence

Outlook:

I extend it to 3+1 dimensions

I spectral function of a Bose-Einstein condensate



Back up: Schwinger-Keldysh Contour

I The one-particle Green’s function is defined as a corrolation
function i.e. an expectation value of two (Heisenberg) operators

G(1,1′) =−i
〈
Tc
[
ψ̂(r , t)ψ̂(r ′, t ′)†]〉

I Where Tc is the time ordering operator:

Tc =

{
ψ̂(r , t)ψ̂(r ′, t ′)† if t > t ′

±ψ̂(r ′, t ′)†ψ̂(r , t) if t ≤ t ′

I the ± corresponds to bosons/fermions. The operators are
defined as:

ψ̂(r , t) = eiĤt
∑
k

φk (r)ĉk︸ ︷︷ ︸
=ψ̂(r)

e−iĤt



Back up: Schwinger-Keldysh Contour
I To ”see” the contour, we switch to the interaction representation:

ψ̂(r , t) = ÛI(−∞, t)ψ̂I(r , t)ÛI(t,−∞)

I Where ÛI(t, t1) is the time evolution operator in this
representation:

ÛI(t, t1) = Tc
[
exp(−i

∫ t

t1
dt ′Ĥint(t ′))

]
I substituting these expressions in the definition of the Green’s

function and assume t > t ′

G>(1,1′) =
−i
Z

Tr
{

ÛI(−∞,∞)e−β ĤÛI(∞, t)ψ̂I(r , t)

ÛI(t, t ′)ψ̂I(r ′, t ′)†ÛI(t ′,−∞)
}

=
−i
Z

Tr
{

e−β ĤTc
[
ÛCψ̂I(r , t)ψ̂I(r ′, t ′)†]}



Back up: Schwinger-Keldysh Contour

∞
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t1t ′1
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Figure: The closed-time path C . Thanks to David Wagner

I the upper contour is going from −∞ to ∞ representing the ”time
ordering” of the field operators

I the lower part going the reverse way outside of the ”anti-time
ordering” operator

I in general there are three other Green’s function (upper-lower,
lower-upper and lower-lower)
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