Open Quantum Systems with Kadanoff-Baym Equations

Tim Neidig with Jan Rais, Marcus Bleicher, Hendrik van Hees, and Carsten Greiner

HFHF Retreat, Sicily, 02.10.23

GOETHE
UNIVERSITÄT
FRANKFURT AM MAIN

Table of content

Introduction

Kadanoff-Baym equations
$1+1$ dim test model

Results

Conclusions and Outlook

Back up: Schwinger-Keldysh Contour

Introduction

- the binding energies of light nuclei are much smaller than the temperature of the environment ("snowballs in hell")
- how fast do they form and how broad are they?
- a quantum mechanical description of creation and decay of bound states (the nuclei) in an open thermal system (fireball) is needed
- use the framework of Kadanoff-Baym equations to analyse the time evolution of occupation numbers and spectral functions
- These are obtained via non-equilibrium Green's functions \rightarrow Schwinger-Keldysh Contour

Kadanoff-Baym equations

$$
G\left(\overline{1}, 1^{\prime}\right)=G_{0}\left(\overline{1}, 1^{\prime}\right)+\int_{C} d 2 \int_{C} d 3 G_{0}(\overline{1}, 2) \Sigma(2,3) G\left(3,1^{\prime}\right)
$$

- by multiplying with the (free) inverse propagator and integrating over $\overline{1}$

$$
\begin{aligned}
\int_{C} d \overline{1} G_{0}^{-1}(1, \overline{1}) G\left(\overline{1}, 1^{\prime}\right) & =\underbrace{\int_{C} d \overline{1} G_{0}^{-1}(1, \overline{1}) G_{0}\left(\overline{1}, 1^{\prime}\right)}_{\delta_{c}\left(1,1^{\prime}\right)=\delta_{C}\left(t-t^{\prime}\right) \delta\left(x_{1}-x_{1}^{\prime}\right)} \\
& +\int_{C} d \overline{1} \int_{C} d 2 \int_{C} d 3 G_{0}^{-1}(1, \overline{1}) G_{0}(\overline{1}, 2) \Sigma(2,3) G\left(3,1^{\prime}\right)
\end{aligned}
$$

- Where $G_{0}^{-1}(1, \overline{1})$ is:

$$
G_{0}^{-1}(1, \overline{1})=\left(i \frac{\partial}{\partial t_{1}}+\frac{\Delta_{1}}{2 m_{f}}-V\left(r_{1}\right)\right) \delta_{c}(1, \overline{1})
$$

Kadanoff-Baym equations

- the equation for t^{\prime} can be obtained similarly:

$$
G\left(1,1^{\prime}\right)\left(-i \frac{\partial}{\partial t_{1}^{\prime}}+\frac{\Delta_{1^{\prime}}}{2 m_{f}}-V\left(r_{1}^{\prime}\right)\right)=\delta_{C}\left(1,1^{\prime}\right)+\int_{C} d 3 G(1,3) \Sigma\left(3,1^{\prime}\right)
$$

- Σ denotes the self-energy, an 1PI part of the Greensfunction, which is introduced by variational principle
- the general form contains also singular (in time) contributions on the contour: (P. Danielewicz, Ann. Phys. (N.Y.) 152, 239 (1984))

$$
\Sigma\left(1,1^{\prime}\right)=\underbrace{\Sigma^{\delta}\left(1,1^{\prime}\right)}_{\alpha \delta_{c}\left(t_{1}-t_{1^{\prime}}\right)}+\Theta_{c}\left(t_{1}, t_{1^{\prime}}\right) \Sigma^{>}\left(1,1^{\prime}\right)+\Theta_{c}\left(t_{1^{\prime}}, t_{1}\right) \Sigma^{<}\left(1,1^{\prime}\right)
$$

- To solve a system completely, we need to propagate $G^{>}$and $G^{<}$ for t and t^{\prime}

$1+1$ dim test model

- The Hamiltonian should describe a system of (heavier) fermions scattering with free "heat-bath" bosons

$$
\begin{aligned}
& \hat{H}(t)=\underbrace{\int d r \hat{\psi}(r, t)^{\dagger}(\underbrace{-\frac{\Delta}{2 m_{f}}+V(r)}_{h_{0}}) \hat{\psi}(r, t)}_{\hat{H}_{0}(t)} \\
& +\underbrace{\lambda \int d r \hat{\psi}(r, t)^{\dagger} \hat{\phi}(r, t)^{\dagger} \hat{\psi}(r, t) \hat{\phi}(r, t)}_{\hat{H}_{\text {int }}(t)}
\end{aligned}
$$

$$
V(r)\left\{\begin{array}{cc}
-V_{0} & \text { if }|r| \leq \frac{a}{2} \\
0 & \text { if }|r|>\frac{a}{2} \\
\infty & \text { if }|r|>\frac{L}{2}
\end{array}\right.
$$

- "heat-bath" means, that the bosons are kept always in equilibrium

$1+1$ dim test model

- the fermionic Green's functions are expanded in a set of eigenfunctions of the free Hamiltonian

$$
\begin{aligned}
& S^{>}\left(1,1^{\prime}\right)=-i \sum_{n, m}^{F} \underbrace{\left\langle\hat{c}_{n}(t) \hat{c}_{m}\left(t^{\prime}\right)^{\dagger}\right\rangle}_{c_{n, m}\left(t, t^{\prime}\right)} \phi_{n}(r) \phi_{m}^{*}\left(r^{\prime}\right) \\
& S^{<}\left(1,1^{\prime}\right)=i \sum_{n, m}^{F} \underbrace{\left\langle\hat{c}_{m}\left(t^{\prime}\right)^{\dagger} \hat{c}_{n}(t)\right\rangle}_{c_{n, m}^{<}\left(t, t^{\prime}\right)} \phi_{n}(r) \phi_{m}^{*}\left(r^{\prime}\right)
\end{aligned}
$$

- similar to the bosons

$$
\begin{aligned}
& D_{0}^{>}\left(1,1^{\prime}\right)=-i \sum_{n}^{B} e^{-i \varepsilon_{n}\left(t-t^{\prime}\right)}\left(1+n_{B}\left(\varepsilon_{n}\right)\right) \tilde{\phi}_{n}(r) \tilde{\phi}_{n}^{*}\left(r^{\prime}\right) \\
& D_{0}^{<}\left(1,1^{\prime}\right)=-i \sum_{n}^{B} e^{-i \varepsilon_{n}\left(t-t^{\prime}\right)} n_{B}\left(\varepsilon_{n}\right) \tilde{\phi}_{n}(r) \tilde{\phi}_{n}^{*}\left(r^{\prime}\right)
\end{aligned}
$$

- were $k_{n}=\frac{\pi n}{L_{\text {bath }}}, \varepsilon_{n}=\frac{k_{n}^{2}}{2 m_{b}}-\mu$ and $n_{B}\left(\varepsilon_{n}\right)=\frac{1}{\exp \left(\varepsilon_{\mathrm{n}} / \mathrm{T}_{\text {bath }}\right)-1}$

$1+1$ dim test model

- Kadanoff-Baym equations:

$$
\begin{aligned}
\left(i \frac{\partial}{\partial t}+\frac{\Delta_{1}}{2 m_{f}}-V_{\text {eff }}(1)\right) S \gtrless\left(1,1^{\prime}\right) & =k_{\text {coll }_{1}}^{\gtrless}\left(t, t^{\prime}\right) \\
\left(-i \frac{\partial}{\partial t^{\prime}}+\frac{\Delta_{1^{\prime}}}{2 m_{f}}-V_{\text {eff }}\left(1^{\prime}\right)\right) S^{\gtrless}\left(1,1^{\prime}\right) & =k_{\text {coll }_{2}}^{\gtrless}\left(t, t^{\prime}\right)
\end{aligned}
$$

- with shortcuts

$$
\begin{aligned}
V_{\text {eff }}(1) & =V(1)+\Sigma_{H}(1), \\
\gtrless_{\text {coll }_{1}}^{\gtrless}\left(t, t^{\prime}\right) & =\int_{t_{0}}^{t} d \overline{1}\left[\Sigma^{>}(1, \overline{1})-\Sigma^{<}(1, \overline{1})\right] S^{\gtrless}\left(\overline{1}, 1^{\prime}\right) \\
& -\int_{t_{0}}^{t^{\prime}} d \overline{1} \Sigma^{\gtrless}(1, \overline{1})\left[S^{>}\left(\overline{1}, 1^{\prime}\right)-S^{<}\left(\overline{1}, 1^{\prime}\right)\right] \\
R_{\text {coll }_{2}}^{\gtrless}\left(t, t^{\prime}\right) & =\int_{t_{0}}^{t} d \overline{1}\left[S^{>}(1, \overline{1})-S^{<}(1, \overline{1})\right] \Sigma^{\gtrless}(\overline{1}, 1) \\
& -\int_{t_{0}}^{t} d \overline{1} S^{\gtrless}(1, \overline{1})\left[\Sigma^{>}(\overline{1}, 1)-\Sigma^{<}(\overline{1}, 1)\right]
\end{aligned}
$$

$1+1$ dim test model

- The lowest-order contributions to the self energy are given by the tadpole- and the sunset-diagram

- which will also be expanded in the same basis

$$
\begin{aligned}
& \sum_{b, a}^{\gtrless}\left(t, t^{\prime}\right)=\lambda^{2} \sum_{n, m}^{F}\left(\sum_{j, k}^{B} e^{\mp i\left(\varepsilon_{j}-\varepsilon_{k}\right)\left(t-t^{\prime}\right)}\left(1+n_{B}\left(\varepsilon_{j}\right)\right) n_{B}\left(\varepsilon_{k}\right)\right. \\
& \underbrace{\int d r \phi_{b}^{*}(r) \phi_{n}(r) \tilde{\phi}_{j}(r) \tilde{\phi}_{k}^{*}(r)}_{V_{b, n, j, k}} c_{n, m}^{\gtrless}\left(t, t^{\prime}\right) V_{m, a, k, j}) \\
& \Sigma_{H_{b, a}}(t)=\lambda \sum_{j}^{B} e^{-i \varepsilon_{j}\left(t-t^{+}\right)} n_{B}\left(\varepsilon_{j}\right) V_{b, a, j, j}
\end{aligned}
$$

$1+1$ dim test model

Figure: Stan et al, Time propagation of the KadanoffBaym equations for inhomogeneous systems, The Journal of Chemical Physics, 2009

- only 3 instead of 4 equations need to be solved because of symmetry relations: $-S^{<}\left(1,1^{\prime}\right)^{\dagger}=S^{<}\left(1^{\prime}, 1\right)$
- on the time diagonal only $S^{<}$is propagated and the equal-time commutation relation is used to obtain $S^{>}$

Spectral properties

- the two-time propagation allows to extract not only statistical but also spectral information of the system
- we introduce central time $\bar{T}=\frac{t+t^{\prime}}{2}$ and relative time $\Delta t=t-t^{\prime}$
- the spectral function is defined as the fourier transform in relative time of a

$$
\begin{aligned}
& a_{n, m}\left(t, t^{\prime}\right)=c_{n, m}^{>}\left(t, t^{\prime}\right)+c_{n, m}^{<}\left(t, t^{\prime}\right) \\
& \tilde{a}_{n, m}(\omega, \bar{T})=\int d \Delta t e^{i \omega \Delta t} a_{n, m}\left(\bar{T}+\frac{\Delta t}{2}, \bar{T}-\frac{\Delta t}{2}\right)
\end{aligned}
$$

- for non-interacting systems, we see just a δ-peak at the "on-shell" frequency $\omega=\varepsilon_{n}$

Spectral properties

Figure: Spectral functions $\tilde{a}_{0,0}(\omega, \bar{T}=52 \mathrm{fm}), \tilde{a}_{10,10}(\omega, \bar{T}=52 \mathrm{fm})$ and $\tilde{a}_{24,24}(\omega, \bar{T}=52 \mathrm{fm})$.

Spectral properties

- non-vanishing self energies will lead to a shift of the peak (real part of the retarded self energy) and a broadening of the delta-type (imaginary part of the retarded self energy) of the spectral function

$$
\begin{aligned}
& \operatorname{Re}\left(\Sigma_{n, m}^{\mathrm{ret}}(\bar{T}, \omega)\right)=\frac{-i}{2} \int d \Delta t e^{i \omega \Delta t}[\operatorname{sign}(\Delta t) \\
& \left.\left(\Sigma_{n, m}^{>}\left(\bar{T}+\frac{\Delta t}{2}, \bar{T}-\frac{\Delta t}{2}\right)+\Sigma_{n, m}^{<}\left(\bar{T}+\frac{\Delta t}{2}, \bar{T}-\frac{\Delta t}{2}\right)\right)\right] \\
& \Gamma_{n, m}(\bar{T}, \omega)=-2 \operatorname{lm}\left(\Sigma_{n, m}^{\mathrm{ret}}(\bar{T}, \omega)\right)=\int d \Delta t e^{i \omega \Delta t} \\
& {\left[\left(\Sigma_{n, m}^{>}\left(\bar{T}+\frac{\Delta t}{2}, \bar{T}-\frac{\Delta t}{2}\right)+\Sigma_{n, m}^{<}\left(\bar{T}+\frac{\Delta t}{2}, \bar{T}-\frac{\Delta t}{2}\right)\right)\right]}
\end{aligned}
$$

- the width can be understood as an inverse life time of the state

Spectral properties

- the peak is shifted to

$$
E_{\text {medium }}-E_{n}=\operatorname{Re}\left(\Sigma_{n, n}^{\text {ret }}\left(T, \omega=E_{\text {medium }}\right)\right)
$$

Figure: real part and imaginary part of the retarded self energy of the ground state for $\bar{T}=52 \mathrm{fm}$

Spectral properties

$$
\tilde{a}_{0,0}(\omega, \bar{T})=\frac{\Gamma_{0,0}(\omega, \bar{T})}{\left[\omega-E_{0}-\operatorname{Re}\left(\sum_{0,0}^{\mathrm{ret}}(\bar{T}, \omega)\right)\right]^{2}+\left[\frac{\Gamma_{0,0}(\omega, \bar{T})}{2}\right]^{2}}
$$

Figure: Spectral functions compared for $\bar{T}=52 \mathrm{fm}$.

Equilibration and Thermalization

- in the long-time limit the system should approach a thermal equilibration fixed point at temperature $T_{\text {bath }}$
- the diagonal elements $c_{n, n}^{<}(t, t)$ should approach the Fermi-Dirac distribution

$$
\lim _{t \rightarrow \infty} c_{n, n}^{<}(t, t)=\int d \omega n_{F}\left(T_{\text {syst }}, \mu_{\text {syst }}, \omega\right) \tilde{a}_{n, n}(\omega, T)
$$

- $T_{\text {syst }}$ and $\mu_{\text {syst }}$ are extracted via a fit to all n under the constrains, that the trace of $c_{n, m}^{<}(t, t)$ is constant

Equilibration and Thermalization

Figure: $c_{n, n}^{<}(t, t)$ plotted for different times. The occupation number of the final states ($t=100 \mathrm{fm}$) was fitted to a Fermi-Dirac distribution yield $T_{\text {system }} \approx 100.133 \mathrm{MeV}$ and $\mu_{\text {system }} \approx-298.125 \mathrm{MeV}$.

Kubo-Martin-Schwinger boundary condition

Figure: KMS - condition checked. For the derivation: "Quantum Statistical Mechanics" by L. Kadanoff and G. Baym.

Decoherence

- density matrix of a pure state

$$
\hat{\rho}=|\Psi\rangle\langle\Psi|
$$

- density matrix of a mixed state

$$
\hat{\rho}=\sum_{i} p_{i} \cdot\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \quad ; \quad \sum_{i} p_{i}=N_{t o t}(1)
$$

- for an explicit example, we choose for the initial conditions

$$
\begin{aligned}
|\Psi\rangle_{\text {super }} & =\frac{1}{\sqrt{2}}|10\rangle+\frac{1}{\sqrt{2}}|15\rangle \\
\rightarrow \hat{\rho}_{\text {super }} & =0.5 \cdot(|10\rangle\langle 10|+|10\rangle\langle 15|+|15\rangle\langle 10|+|15\rangle\langle 15|) \\
\hat{\rho}_{\text {pure }} & =1.0 \cdot|0\rangle\langle 0|
\end{aligned}
$$

Decoherence

Figure: Top: The initial superimposed and Bottom: the initial pure state.

Conclusions and Outlook

Conclusion:

- short introduction to non-relativistic, non-equilibrium Green's functions
- presentation of the used method to solve the coupled integro-differential equations for a simple testbox
- results for spectral properties, thermalisation and decoherence

Outlook:

- extend it to 3+1 dimensions
- spectral function of a Bose-Einstein condensate

Back up: Schwinger-Keldysh Contour

- The one-particle Green's function is defined as a corrolation function i.e. an expectation value of two (Heisenberg) operators

$$
G\left(1,1^{\prime}\right)=-i\left\langle T_{c}\left[\hat{\psi}(r, t) \hat{\psi}\left(r^{\prime}, t^{\prime}\right)^{\dagger}\right]\right\rangle
$$

- Where T_{c} is the time ordering operator:

$$
T_{c}= \begin{cases}\hat{\psi}(r, t) \hat{\psi}\left(r^{\prime}, t^{\prime}\right)^{\dagger} & \text { if } t>t^{\prime} \\ \pm \hat{\psi}\left(r^{\prime}, t^{\prime}\right)^{\dagger} \hat{\psi}(r, t) & \text { if } t \leq t^{\prime}\end{cases}
$$

- the \pm corresponds to bosons/fermions. The operators are defined as:

$$
\hat{\psi}(r, t)=e^{i \hat{H} t} \underbrace{\sum_{k} \phi_{k}(r) \hat{c}_{k}}_{=\hat{\psi}(r)} e^{-i \hat{H} t}
$$

Back up: Schwinger-Keldysh Contour

- To "see" the contour, we switch to the interaction representation:

$$
\hat{\psi}(r, t)=\hat{U}_{l}(-\infty, t) \hat{\psi}_{l}(r, t) \hat{U}_{l}(t,-\infty)
$$

- Where $\hat{U}_{l}\left(t, t_{1}\right)$ is the time evolution operator in this representation:

$$
\hat{U}_{l}\left(t, t_{1}\right)=T_{c}\left[\exp \left(-i \int_{t_{1}}^{t} d t^{\prime} \hat{H}_{\text {int }}\left(t^{\prime}\right)\right)\right]
$$

- substituting these expressions in the definition of the Green's function and assume $t>t^{\prime}$

$$
\begin{aligned}
G^{>}\left(1,1^{\prime}\right)= & \frac{-i}{Z} \operatorname{Tr}\left\{\hat{U}_{l}(-\infty, \infty) e^{-\beta \hat{H}^{\prime}} \hat{U}_{l}(\infty, t) \hat{\psi}_{l}(r, t)\right. \\
& \left.\hat{U}_{l}\left(t, t^{\prime}\right) \hat{\psi}_{l}\left(r^{\prime}, t^{\prime}\right)^{\dagger} \hat{U}_{l}\left(t^{\prime},-\infty\right)\right\} \\
= & \frac{-i}{Z} \operatorname{Tr}\left\{e^{-\beta \hat{H}} T_{c}\left[\hat{U}_{C} \hat{\psi}_{l}(r, t) \hat{\psi}_{l}\left(r^{\prime}, t^{\prime}\right)^{\dagger}\right]\right\}
\end{aligned}
$$

Back up: Schwinger-Keldysh Contour

Figure: The closed-time path \mathscr{C}. Thanks to David Wagner

- the upper contour is going from $-\infty$ to ∞ representing the "time ordering" of the field operators
- the lower part going the reverse way outside of the "anti-time ordering" operator
- in general there are three other Green's function (upper-lower, lower-upper and lower-lower)

