

J/Ψ formation within microscopic Langevin simulations

- STRONG-NA7 Workshop & HFHF Theory Retreat, September 30th 2023 Naomi Oei
- In collaboration with Carsten Greiner, Juan Torres-Rincon, Hendrik van Hees and Nadja Krenz

Motivation Heavy Quarkonia as Hard Probes

Production in primordial hard collisions

properties

Sensitivity to initial conditions, QGP properties, medium interactions $F_{g}^{p}(Q^{2})$

Measurement of quarkonium states: conclusions about medium

Physics Reports. 858. 10.1016

Motivation Heavy Quarkonia as Hard Probes

 J/ψ suppression: signal for deconfinement

- with medium
- Possibility of regeneration processes at higher energies

Dissociation in QGP due to color screening and elastic scatterings

Theoretical models: non-relativistic description of heavy quarks

Fokker-Planck equation

- Boltzmann equation for the phase-space distribution of the heavy quarks: $\left[\frac{\partial}{\partial t} + \frac{p}{E}\frac{\partial}{\partial x} + F\frac{\partial}{\partial p}\right]f_Q(t, p, x) = C[f_Q]$
- Assumption: no mean-field effects, uniform medium

$$\longrightarrow f_Q(\boldsymbol{p},t) = \frac{1}{V} \int d^3 \boldsymbol{x} f_Q(\boldsymbol{x},\boldsymbol{p},t)$$

Collision integral:

$$C[f_Q] = \int d^3k [\omega(\boldsymbol{p}+\boldsymbol{k},\boldsymbol{k})f_Q(\boldsymbol{p}+\boldsymbol{k}) - \omega(\boldsymbol{p},\boldsymbol{k})f_Q(\boldsymbol{p})]$$

Fokker-Planck equation

Reduction to Fokker-Planck equation:

$$\frac{\partial}{\partial t} f_Q(\boldsymbol{p}, t) = \frac{\partial}{\partial p_i} \left\{ \frac{A_i(\boldsymbol{p})}{\partial p_i} \right\}$$

- With drag coefficients $A_i(p)$ and diffusion coefficients $B_{ii}(p)$
- Approximation: constant transport coefficients:

 $f_Q(\boldsymbol{p},t) + \frac{\partial}{\partial p_i} [B_{ij}(\boldsymbol{p}) f_Q(\boldsymbol{p},t)] \bigg\}$

 $A(\mathbf{p}) \equiv \gamma = const., B_0(\mathbf{p}) = B_1(\mathbf{p}) \equiv D = const.$

Fokker-Planck equation realized with Langevin simulations Langevin equation:

Corresponding update steps for coordinate and momentum in time interval dt:

 $dx_j = \frac{p_j}{m}dt$ $dp_i = -\gamma p_i dt + \sqrt{2\gamma m T dt} \rho_i$

- $\triangleright \rho$: Gaussian-distributed white noise
- $\triangleright \gamma$: drag coefficient from Abelian plasma model
- Momentum update computed in rest frame of medium

 $m\ddot{x} = -m\gamma\dot{x} + \xi$

Potential of the Heavy Quarks

- •Formalism to describe heavy quarks in Abelian plasma by Blaizot et al. Idea: effective theory non-relativistic HQs in plasma of relativistic
- particles
- Influence functional in infinite-mass limit and large time limit: interpretation as complex potential:

$$\mathcal{V}(s) = -g^2 \left[V(r) - V_{ren}(0) \right] - ig^2 \left[W(r) - W(0) \right]$$
$$= -\frac{g^2}{4\pi} m_D - \frac{g^2}{4\pi} \frac{\exp(-m_D s)}{s} - i\frac{g^2 T}{4\pi} \phi(m_D s)$$

Potential of the Heavy Quarks

N. Krenz, H. van Hees, C. Greiner, J. Phys.: Conf. Ser. 1070, 012008 (2018)

Screened Coulomb potential with Cut-Off $\Lambda = 4 \ GeV$ and running coupling:

$$g^{2} = 4\pi\alpha_{s} = \frac{4\pi\alpha_{s}(T_{c})}{1 + C \ln(T/T_{c})},$$

$$m_{c} = 1.8 \ GeV/c^{2},$$

$$T_{c} = 160 \ MeV,$$

$$\alpha_{s}(T_{c}) = 0.5,$$

$$C = 0.76$$

Blaizot et al., Nucl.Phys.A 946 (2016) 49-88

Drag Coefficient

N. Krenz, H. van Hees, C. Greiner, J. Phys.: Conf. Ser. 1070, 012008 (2018)

 $\gamma(T)$ [fm⁻¹]

Blaizot et al., Nucl.Phys.A 946 (2016) 49-88

9

Elliptic parametrisation of transverse direc

H. van Hees, M. He, and R. Rapp, Nuclear Physics A, (2015) Vol. 933

► Volume of medium in Fireball:

 $V(\tau) = \pi \cdot a(\tau)b$

with long and short semi-axes $a(\tau)$, $b(\tau)$ ▶ semi-axes:

$$a(\tau) = a_0 + \frac{1}{a_a} \left(\sqrt{1 + a_a^2 \tau^2} - 1 \right), \ b(\tau) = b_0 + \frac{1}{a_b} \left(\sqrt{1 + a_b^2 \tau^2} - 1 \right)$$

 \bullet a_a, a_b : accelerations chosen to fit to p_T -spectra and elliptic flow of light hadrons

 x^2

$$\frac{x^2}{b^2(\tau)} + \frac{y^2}{a^2(\tau)} \le 1$$

$$p(\tau)(z_0 + c\tau)$$
, $z_0 = c\tau_0$

- Construction of transverse velocity field at midrapidity by expressing $r_{\perp}(x, y)$ using confocal elliptical coordinates u, v:
 - $\mathbf{v}_{\perp} = \frac{r}{r_B} \begin{pmatrix} v_b(\tau) \cos(v) \\ v_a(\tau) \sin(v) \end{pmatrix}$
- v_a, v_b : velocities of the boundary, r_B : distance from center to boundary
- confocal elliptical coordinates u, v given by inversion of
 - $x = r_0 \sinh(u)\cos(v)$, $y = r_0 \cosh(u)\sin(v)$, $r_0 = a_0\epsilon$

- Superimpose of model using boost-invariant Bjorken flow
- Resulting 3D-flow field:

$$v_x = \frac{\tau}{t} v_b(\tau) \cos(v) \frac{r}{r_B}$$
, $v_y = \frac{\tau}{t} v_a(\tau) \sin(v) \frac{r}{r_B}$, $v_z = \tanh(\eta)$

- Initial momentum distribution of heavy quarks in the fireball given by parametrization fitting charm-quark spectra from PYTHIA
- Initial spatial distribution according to Glauber model

• Extension to 3D-flow field with longitudinal component and finite rapidity:

Box Simulations Energy distribution in equilibrium

Formation of bound states when energy of charm-anticharm pair is < 0

$$\frac{dN}{dE_{rel}} = (4\pi)^2 (2\mu)^{\frac{3}{2}} C \int_0^R dr r^2 \sqrt{E_{rel} - V(r)} \exp\left(-\frac{1}{2} e^{-\frac{1}{2}} e^{-\frac{1}{$$

- Box simulation with 1 $c\bar{c}$ -pair at T = 160 MeV
- leads to right equilibrium density of states

Box Simulations Bound State Formation in Box Simulation (T = 180 MeV)

Box Simulations Comparison to theoretically estimated density of bound states

Number of pairs	$N_{J/\psi}$ Simulation	$N_{J/\psi}$ Theoreti Estimatio
1	0.0022	0.0023
2	0.00735	0.0094
5	0.0405	0.0588
10	0. 154	0. 2353

Box Simulations

Equilibration time for different scalings of drag coefficient γ

- Equilibration time from Langevin equation: $\tau_{eq} = 1/\gamma$
- Faster equilibration for stronger drag force
- Exponential fit:

 $\Rightarrow k = 2,3$: agreement with $\tau_{eq} = 1/\gamma$ \rightarrow Larger values: τ_{eq} too small

Elliptic Flow v_2

Azimuthal particle distibution:

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{3}N}{p_{T}dp_{T}dy} \left(1 + 2\sum_{n=1}^{\infty} v_{n}(p_{T}, y)\cos(n(\Phi - \Psi_{R}))\right)$$

Elliptic Flow:

$$v_2 = \left\langle \frac{p_x^2 - p_y^2}{p_T^2} \right\rangle$$

Elliptic Flow v_2

Charm Quarks: 5 Pairs

18

Elliptic Flow v_2 J/ψ : 5 Pairs

RHIC, 20-40% Centrality LHC, 0-20% Centrality 0.07 0.14 J/Psi v2, LHC 0-20% J/Psi v2, RHIC 20-40% 0.12 0.06 0.1 0.05 0.08 0.04 ζ2 0.06 0.03 0.04 0.02 0.02 0.01 0 -0.02 2.5 3.5 0.5 1.5 0.5 3 0 2 0 4 1 pT [GeV]

Pb+Pb @ 2.76 TeV (ALICE): $v_2 \simeq 10\%$ (central) E. Abbas et al. (ALICE Collaboration) $v_2 \simeq 11.6\%$ (semicentral) Phys. Rev. Lett. 111, 162301

Elliptic Flow v_2 for different scalings of the drag coefficient Charm Quarks, RHIC & LHC

20

Elliptic Flow v_2 for different scalings of the drag coefficient

 J/ψ , RHIC & LHC

Outlook

Possible extensions:

- In the different heavy-quark potentials
- Number of initial heavy-quark pairs according to experimental data
- Nuclear modification factor R_{AA}

Initial momentum distribution from PYTHIA \longrightarrow include primordial J/ψ

Backup

First half of coordinate update step

 $\vec{r}_{c,i+\frac{1}{2}} =$

Calculation of Potential for Momentum Update $\overrightarrow{F}(\overrightarrow{r}_{c.i})$

Boost to Medium Rest Frame

 $p_i^* = p_i - \gamma \beta_i E +$

$$= \vec{r}_{c,i} + \frac{\vec{p}_{c,i}}{2E_c} \Delta t$$

$$(\frac{1}{2}, \vec{r}_{\bar{c},i+\frac{1}{2}})\Delta t$$

$$(\gamma - 1) \frac{\beta_i}{\vec{\beta}^2} \vec{\beta} \vec{p}, \quad i = 1, 2, 3$$

- Analytic form of momentum update step:
- covariance matrix C_{ik}
- Determination of momentum argument in C_{ik} :
- $\Rightarrow \xi = 0, \frac{1}{2}, 1$ for pre-point, midpoint and post-point realisation
- In this work: post-point scheme,

$dp_i = -\gamma p_i dt + \sqrt{dt} C_{ik} \rho_k$

Stochastic process dependent on specific choice of the momentum argument of the

$C_{jk} \rightarrow C_{jk}(t, \mathbf{x}, \mathbf{p} + \xi d\mathbf{p})$

 $C_{jk} \rightarrow C_{jk}(t, x, p + dp)$

•momentum update:

Two-step computation:

I. Calculation of dp_i of pre-point scheme, $dp_i = -\gamma p_i dt + \sqrt{2dtD(p)}\rho_i$

II. Use result for argument |p + dp| of D to evaluate the second part of the postpoint momentum update, $dp_i^{diff} = \sqrt{2dtD(|\mathbf{p} + d\mathbf{p}|)}\rho_i$

III. Complete momentum update: $dp_j = dp_j^{drag} + dp_j^{diff}$ with dp_j^{drag} from I.

$dp_{i} = -\gamma p_{i}dt + \sqrt{2dtD(|\mathbf{p} + d\mathbf{p}|)}\rho_{i} = -\gamma p_{i}dt + \sqrt{2\gamma mTdt}\rho_{i}$

- Boost back to computational frame
- Complete momentum update:

$$\vec{p}_{c,i+1} = \vec{p}_{c,i} + \vec{F}(\vec{r}_{c,i+\frac{1}{2}}, \vec{r})$$

Second half of coordinate update step:

$$\vec{r}_{c,i+1} = \vec{r}_{c,i+\frac{1}{2}} + \frac{\vec{p}_{c,i+1}}{2m_c} \Delta t$$

 $\vec{r}_{\bar{c},i+\frac{1}{2}})\Delta t - \gamma \vec{p}_{c,i}\Delta t + \sqrt{2mT\gamma\Delta t}\rho$

Description of the Model Elliptic Fireball: Momentum distribution

parametrisation fitting charm-quark spectra from PYTHIA Intitial momentum distribution given by $\frac{1}{2\pi p_T dp_T} = \frac{(A_1 + p_T^2)^2}{(1 + A_2 \cdot p_T^2)^{A_3}}$ With the parameters $A_1 = 0.5$, $A_2 = 0.1471$, $A_3 = 21$

Potential of the Heavy Quarks

- Formalism to describe heavy quarks in Abelian plasma by Blaizot et al.
- Idea: effective theory of non-relativistic HQs in plasma of relativistic particles
- Influence functional in infinite-mass limit and large time limit:

$$\Phi[\boldsymbol{Q}] \simeq g^2(t_f - t_i) \int \frac{d^3 \boldsymbol{k}}{(2\pi)^3}$$

Interpretation as complex potential

$$\mathcal{V}(\boldsymbol{r}) = -g^2 \left[V(\boldsymbol{r}) - V_{ren}(0) \right] - ig^2 \left[W(\boldsymbol{r}) - W(0) \right]$$

 $\frac{1}{2}(1 - exp[ik(r - \bar{r})]\Delta(0,k))$

Potential of the Heavy Quarks

Real part:

Imaginary part:

with the propagator $\Delta(0,\mathbf{r}) = \Delta^{R}(0,\mathbf{r}) + i\Delta^{<}(0,\mathbf{r})$

 $V(\mathbf{r}) = -\Delta^{R}(0,\mathbf{r}) = -\left[\frac{d\mathbf{k}}{(2\pi)^{3}}e^{i\mathbf{k}\mathbf{r}}\Delta^{R}(\omega=0,\mathbf{k})\right]$

 $W(\mathbf{r}) = -\Delta^{<}(0,\mathbf{r}) = -\left[\frac{d\mathbf{k}}{(2\pi)^{3}}e^{i\mathbf{k}\mathbf{r}}\Delta^{<}(0,\mathbf{k})\right]$

Heavy Quarks in Abelian Plasma

• Complex potential for $c\bar{c}$ -pair after evaluation of integrals:

$$\mathcal{V}(s) = -\frac{g^2}{4\pi}m_D - \frac{g^2}{4\pi}\frac{\exp(-m_D s)}{s} - i\frac{g^2 T}{4\pi}\phi(m_D s)$$

With
$$\phi(x) = 2 \int_0^\infty dz \frac{z}{(z^2 + 1)^2} \left[1 - \frac{\sin(z)}{zx} \right]$$

The Drag and diffusion coefficients derived W:

$$\mathscr{H}_{\alpha\beta}(\boldsymbol{s}) = \frac{\partial^2 W(\boldsymbol{s})}{\partial r_{\alpha} \partial r_{\beta}},$$

and using $g^2 \mathcal{H}(0)_{\alpha\beta} = 2MT\gamma \delta_{\alpha\beta}$

Blaizot et al., Nucl.Phys.A 946 (2016) 49-88

x)

Drag and diffusion coefficients derived from potential from the second derivative of

- Superimpose of model using boost-invariant Bjorken flow
- Ansatz for 4-velocity with $t = \tau \cosh(\eta)$, $z = \tau \sinh(\eta)$:

 $\boldsymbol{v} = \frac{\boldsymbol{u}}{\boldsymbol{u}^0} = \left(\frac{\boldsymbol{g}_{\perp}}{\tau \cosh(\eta)}, \tanh(\eta)\right)$

• Extension to 3D-flow field with longitudinal component and finite rapidity: $u^{\mu}(\tau, \mathbf{r}_{\perp}, \eta) = f(\tau, \mathbf{r}_{\perp}) \begin{pmatrix} \tau \cosh(\eta) \\ \mathbf{g}_{\perp}(\tau, \mathbf{r}_{\perp}) \\ \tau \sinh(\eta) \end{pmatrix}$

Resulting transversal velocity at mid rap

Extension to by combining the two previous equations:

$$\mathbf{v}_{\perp}(\tau, \mathbf{r}_{\perp}, \eta) = \frac{1}{\cosh(\eta)} \mathbf{v}_{\perp}(\tau, \mathbf{r}_{\perp}, \eta = 0) = \frac{\tau}{t} \mathbf{v}_{\perp}(\tau, \mathbf{r}_{\perp}, \eta = 0)$$

► 3D-flow field: $v_x = \frac{\tau}{t} v_b(\tau) \cos(v) \frac{r}{r_B}, \quad v_y = \frac{\tau}{t} v_b(\tau) \cos(v) \frac{r}{r_B}$

 Initial momentum distribution of heavy quarks in the fireball given by parametrization fitting charm-quark spectra from PYTHIA

Initial spatial distribution according to Glauber model

Didity (
$$\eta=0$$
): $m{v}_{\perp\mid\eta=0}=rac{m{g}_{\perp}}{ au}$

$$= \frac{\tau}{t} v_a(\tau) \sin(v) \frac{r}{r_B}, \quad v_z = \tanh(\eta)$$

Parametrisation of hadronic freeze-out

In the differential momentum spectrum of a particle:

$$\frac{dN}{p_T dp_T d\phi_p dy} = \frac{2g}{(2\pi)^3} \tau_f \ m_T \ e^{\frac{\mu}{T_f}} \int r dr \int d\phi_s K_1(m_T, T, \beta_T) e^{\frac{p_T}{T_f \sinh(\rho(r, \phi_s)} \cos(\phi_p - \phi_b))}$$

 $\bullet T_f$: freeze-out temperature, ϕ_b : azimuthal angle of the boost, K_1 : Bessel function •transverse rapidity $\rho(r, \phi_s)$: function of radius r and spatial azimuthal angle ϕ_s •Elliptic flow:

$$v_2(p_T) = \frac{\int_0^{2\pi} dd}{\int_0^{2\pi} dd}$$

 $d\phi_p \cos(2\phi_p) \frac{dN}{p_T dp_T d\phi_p dy}$ $\int 2\pi$ $d\phi_p \frac{dN}{p_T dp_T d\phi_n dy}$

He, Fries, Rapp, Physical Review C, 82 (2010)

Parametrization of the Fireball

RHIC (20-40%), v_2

Choice of parameters in fireball model by fitting results to experimental data

• Elliptic flow v_2 of K_S and ϕ from STAR

35

Parametrization of the Fireball

RHIC (20-40%), p_T

- p_T -spectra of p and ϕ from STAR

Choice of parameters in fireball model by fitting results to experimental data

36

5

Parametrization of the Fireball (LHC, 0-20%)

• Comparison of elliptic flow spectra from simulation to data from ϕ and Ξ from ALICE

Parametrization of the Fireball (LHC, 0-20%)

• Comparison of p_T - spectra from simulation to data from π and Ξ from ALICE

Parametrization of the Fireball (LHC, 20-40%)

• Comparison of elliptic flow spectra from simulation to data from π and Ξ from ALICE

Parametrization of the Fireball (LHC, 20-40%)

• Comparison of p_T - spectra from simulation to data from π and Ξ from ALICE

Testing the Model Equilibrium Conditions in Box Calculations

Single $c\bar{c}$ -pair in box calculation with T = 180 MeV and $m_c = 1.8 GeV/c^2$

Momentum distribution in equilibrium limit:

$$f_{eq}(\boldsymbol{p}) \propto \exp\left(-\frac{\boldsymbol{p}^2}{2MT}\right)$$

Temperature of the Fireball

LHC, 0-20% LHC, 20-40% RHIC, 20-40%

Sequential freeze-out

$T_{ch} = 160 MeV$

- Isentropic expansion towards kinetic freeze-out
- Extrapolation to temperature in QGP-phase
- Exponential decrease of T until T_{ch}

Lorentz Boost to Moving Medium

 p_z distribution

ytical)	Single $c\bar{c}$ -pair in box calculation
	with $T = 180 MeV$ and
	$m_c = 1.5 \ GeV/c^2$
	Constant flow-field $v = (0, 0, 0.9)$
	Boltzmann-Jüttner distribution:
	$f_{eq}(\boldsymbol{p}) \propto \exp\left(-\frac{E(\boldsymbol{p})}{T}\right)$
10	

Relative energy of a $C\bar{C}$ -pair

Energy distribution in equilibrium

Relative energy of $c\bar{c}$ -pair:

$$E_{rel} = E_c + E_{\bar{c}} + V(|\mathbf{r}_c - \mathbf{r}_{\bar{c}}|) - E_{tot}$$

= $\sqrt{m_c^2 + \mathbf{p}_c^2} + \sqrt{m_{\bar{c}}^2 + \mathbf{p}_{\bar{c}}^2} + V(r, T) - \sqrt{(m_c + m_{\bar{c}})^2 + (\mathbf{p}_c + \mathbf{p}_{\bar{c}})^2}$

In com-system $((p_c + p_{\bar{c}}) = 0)$ equivalent to

$$E_{rel} = m_{0,cms} + V(r,T) - (m_c + m_{\bar{c}})$$

With $p_{tot}^{\mu} p_{\mu,tot} = (E^c + E^{\bar{c}})^2 - (p_c + p_{\bar{c}})^2 = m_{0,cms}^2$

Box Calculations

Drag Coefficient, Equilibration Time and Temperature

Drag coefficient γ as a function of Temperature

 $\tau_{eq} = 1\gamma$ as a function of Temperature

