Kinetic model with arbitrary transport coefficients

Victor E. Ambruș

Department of Physics, West University of Timișoara, Romania

Work in collaboration with E. Molnár (Goethe U, Frankfurt; WUT; U. Wrocław) and D. Wagner (Goethe U, Frankfurt)

STRONG-2020 \& HFHF Theory Retreat 2023, Giardini Naxos, Sicily, Italy, $30^{\text {th }}$ September 2023

Universitatea de Vest din Timişoara

Outline

Introduction
Anderson-Witting (RTA) model
First-order relativistic Shakhov model
Application: Bjorken flow
Application: Sound waves
Second-order relativistic Shakhov model
Application: Shear-diffusion coupling
Application: Ultrarelativistic hard spheres (Riemann problem)
Conclusions

Relativistic hydro playground: Heavy-ion collisions

- Shortly after the collision, the system is far-from-equilibrium.
- Pre-eq. dynamics require a non-eq. description.
- Strongly-interacting QGP leaves imprints of thermalization and collectivity in final-state observables.

[Venaruzzo, PhD Thesis, 2011]

Hydro vs Kinetic theory

- Hydro employed in HIC modelling, but it breaks down far from eq.
- Kinetic theory overcomes this limitation, but realistic simulations are expensive due to $C[f]$.

AMPT: He, Edmonds, Lin, Liu, Molnar, Wang [PLB 753 (2016) 506]
BAMPS: Greif, Greiner, Schenke, Schlichting, Xu [PRD 96 (2017) 091504]

- RTA: $C[f]=-\frac{E_{\mathbf{k}}}{\tau_{R}}\left(f_{\mathbf{k}}-f_{0 \mathbf{k}}\right) \Rightarrow 1-2$ o.m. faster than BAMPS.

VEA, Busuioc, Fotakis, Gallmeister, Greiner [PRD 104 (2021) 094022]

- τ_{R} fixes the IR limit of RTA by matching e.g. η to that of $C[f] \Rightarrow$ good agreement with BAMPS.

Anderson-Witting model

- The Anderson \& Witting RTA reads

$$
\begin{equation*}
k^{\mu} \partial_{\mu} f_{\mathbf{k}}=C_{\mathrm{AW}}[f], \quad C_{\mathrm{AW}}[f]=-\frac{E_{\mathbf{k}}}{\tau_{R}}\left(f_{\mathbf{k}}-f_{0 \mathbf{k}}\right), \tag{1}
\end{equation*}
$$

where $E_{\mathbf{k}}=k^{\mu} u_{\mu}$, and τ_{R} is the relaxation time.

- The macroscopic quantities N^{μ} and $T^{\mu \nu}$ are obtained from $f_{\mathbf{k}}$ via

$$
\begin{equation*}
N^{\mu}=\int d K k^{\mu} f_{\mathbf{k}}, \quad T^{\mu \nu}=\int d K k^{\mu} k^{\nu} f_{\mathbf{k}} \tag{2}
\end{equation*}
$$

where $d K=g d^{3} k /\left[k_{0}(2 \pi)^{3}\right]$ and g is the degeneracy factor.

- $f_{0 \mathbf{k}}$ describes a fictitious local thermodynamic equilibrium, for which

$$
\begin{equation*}
N_{0}^{\mu}=n_{0} u^{\mu}, \quad T_{0}^{\mu \nu}=\epsilon_{0} u^{\mu} u^{\nu}-P_{0} \Delta^{\mu \nu}, \tag{3}
\end{equation*}
$$

with $\Delta^{\mu \nu}=g^{\mu \nu}-u^{\mu} u^{\nu}$.

- Imposing $\partial_{\mu} N^{\mu}=\partial_{\nu} T^{\mu \nu}=0$ requires Landau matching:

$$
\begin{equation*}
n=n_{0}, \quad \epsilon=\epsilon_{0}, \quad T_{\nu}^{\mu} u^{\nu}=\epsilon u^{\mu} . \tag{4}
\end{equation*}
$$

- The AW model retains from $C[f]$ the property of driving $f_{\mathbf{k}}$ towards $f_{0 \mathbf{k}}$, on a timescale τ_{R}.

Chapman-Enskog expansion

- We are now interested to obtain constitutive relations for the non-equilibrium quantities

$$
\begin{equation*}
N^{\mu}-N_{0}^{\mu}=V^{\mu}, \quad T^{\mu \nu}-T_{0}^{\mu \nu}=-\Pi \Delta^{\mu \nu}+\pi^{\mu \nu} \tag{5}
\end{equation*}
$$

- Employing the Chapman-Enskog procedure gives

$$
\begin{aligned}
& \quad \delta f_{\mathbf{k}} \equiv f_{\mathbf{k}}-f_{0 \mathbf{k}} \simeq-\frac{\tau_{R}}{E_{\mathbf{k}}} k^{\mu} \partial_{\mu} f_{0 \mathbf{k}}=-f_{0 \mathbf{k}} \tilde{f}_{0 \mathbf{k}}\left[E_{\mathbf{k}}^{2} \dot{\beta}-E_{\mathbf{k}} \dot{\alpha}\right. \\
& \left.+\frac{\beta}{3}\left(m^{2}-E_{\mathbf{k}}^{2}\right) \theta+k^{\langle\mu\rangle}\left(\beta E_{\mathbf{k}} \dot{u}_{\mu}+E_{\mathbf{k}} \nabla_{\mu} \beta-\nabla_{\mu} \alpha\right)+\beta k^{\langle\mu} k^{\nu\rangle} \sigma_{\mu \nu}\right], \\
& \text { with } \tilde{f}_{0 \mathbf{k}}=1-a f_{0 \mathbf{k}}, \alpha=\beta \mu, \theta=\partial_{\mu} u^{\mu} \text { and } \sigma^{\mu \nu}=\nabla^{\langle\mu} u^{\nu\rangle}
\end{aligned}
$$

- Taking appropriate moments gives

$$
\begin{equation*}
\Pi=-\zeta_{R} \theta, \quad V^{\mu}=\kappa_{R} \nabla^{\mu} \alpha, \quad \pi^{\mu \nu}=2 \eta_{R} \sigma^{\mu \nu} \tag{6}
\end{equation*}
$$

where ζ_{R}, κ_{R} and η_{R} are given by

$$
\begin{equation*}
\zeta_{R}=\frac{m^{2}}{3} \tau_{R} \alpha_{0}^{(0)}, \quad \kappa_{R}=\tau_{R} \alpha_{0}^{(1)}, \quad \eta_{R}=\tau_{R} \alpha_{0}^{(2)} \tag{7}
\end{equation*}
$$

where $\alpha_{0}^{(\ell)}$ are τ_{R}-independent thermodynamic functions.

QGP Transport coefficients

- Bayesian estimation shows that η / s and ζ / s can be parametrized as
J. E. Bernhard, J. S. Moreland, S. A. Bass, Nature Phys. 15 (2019) 1113

$$
\begin{align*}
& \frac{\eta}{s}=(\eta / s)_{\min }+(\eta / s)_{\text {slope }}\left(T-T_{c}\right)\left(\frac{T}{T_{c}}\right)^{(\eta / s)_{\mathrm{crv}}} \tag{8}\\
& \frac{\zeta}{s}=(\zeta / s)_{\max } \times\left[1+\left(\frac{T-T_{\mathrm{peak}}}{(\zeta / s)_{\mathrm{width}}}\right)^{2}\right]^{-1} \tag{9}
\end{align*}
$$

- RTA allows, e.g. η to be specified by setting

$$
\tau_{R}=\frac{\eta}{\alpha_{0}^{(2)}}
$$

however, ζ / η is fixed uniquely by

$$
\frac{\zeta}{\eta}=\frac{m^{2} \alpha_{0}^{(0)}}{3 \alpha_{0}^{(2)}}
$$

which does not resemble the (ζ / η) in the QGP.

RTA vs BAMPS

- Also for UR hard spheres, $(\kappa T / \eta)_{\mathrm{HS}} \simeq 0.125$, whereas $(\kappa T / \eta)_{\mathrm{AW}}=5 / 48 \simeq 0.104$.

DNMR, PRD 85 (2012) 114047

- Fixing η via τ_{R} gives good agreement with BAMPS for $\pi^{\mu \nu}$ but q^{μ} is not captured correctly.
- Aim of this work: Extend RTA with extra parameters allowing multiple transport coefficients to be controlled independently.

Shakhov-like extension

- We consider a Shakhov-like extension:

$$
\begin{equation*}
C_{\mathrm{S}}[f]=-\frac{E_{\mathbf{k}}}{\tau_{R}}\left(f_{\mathbf{k}}-f_{\mathrm{Sk}}\right) \tag{10}
\end{equation*}
$$

where $f_{\mathrm{Sk}} \rightarrow f_{0 \mathbf{k}}$ as $\delta f_{\mathbf{k}}=f_{\mathbf{k}}-f_{0 \mathbf{k}} \rightarrow 0$.

- In the Shakhov model, $f_{\mathbf{k}}$ relaxes towards $f_{0 \mathbf{k}}$ on a modified path compared to AW.
- The cons. eqs. $\partial_{\mu} N^{\mu}=\partial_{\nu} T^{\mu \nu}=0$ imply:

$$
\begin{equation*}
u_{\mu} N^{\mu}=u_{\mu} N_{\mathrm{S}}^{\mu}, \quad u_{\nu} T^{\mu \nu}=u_{\nu} T_{\mathrm{S}}^{\mu \nu} \tag{11}
\end{equation*}
$$

which allows for plenty of degrees of freedom $\left(\delta n, \delta \epsilon, W^{\mu}\right.$, etc $)$.

- For simplicity, we stick to the Landau matching conditions:

$$
\begin{equation*}
\delta n=\delta \epsilon=0, \quad T^{\mu \nu} u_{\nu}=\epsilon u^{\mu} . \tag{12}
\end{equation*}
$$

Shakohv-like extension

- Employing the Chapman-Enskog procedure gives

$$
\begin{equation*}
\delta f_{\mathbf{k}}-\delta f_{\mathrm{Sk}}=-\frac{\tau_{R}}{E_{\mathbf{k}}} k^{\mu} \partial_{\mu} f_{0 \mathbf{k}} \tag{13}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\Pi-\Pi_{\mathrm{S}}=-\zeta_{R} \theta, \quad V^{\mu}-V_{\mathrm{S}}^{\mu}=\kappa_{R} \nabla^{\mu} \alpha, \quad \pi^{\mu \nu}-\pi_{\mathrm{S}}^{\mu \nu}=2 \eta_{R} \sigma^{\mu \nu} \tag{14}
\end{equation*}
$$

- We seek to replace ζ_{R} etc by independent transport coefficients:

$$
\begin{align*}
\Pi & \simeq-\zeta_{\mathrm{S}} \theta, & V^{\mu} \simeq \kappa_{\mathrm{S}} \nabla^{\mu} \alpha, & \pi^{\mu \nu} \simeq 2 \eta_{\mathrm{S}} \sigma^{\mu \nu} \\
\zeta_{\mathrm{S}} & =\frac{\tau_{\Pi}}{\tau_{R}} \zeta_{R}, & \kappa_{\mathrm{S}}=\frac{\tau_{V}}{\tau_{R}} \kappa_{R}, & \eta_{\mathrm{S}} \tag{15}
\end{align*}=\frac{\tau_{\pi}}{\tau_{R}} \eta_{R}
$$

- Eq. (15) can be obtained from Eq. (14) when

$$
\begin{gather*}
\Pi_{\mathrm{S}}=\Pi\left(1-\frac{\tau_{\Pi}}{\tau_{R}}\right), \quad V_{\mathrm{S}}^{\mu}=V^{\mu}\left(1-\frac{\tau_{V}}{\tau_{R}}\right) \\
\pi_{\mathrm{S}}^{\mu \nu}=\pi^{\mu \nu}\left(1-\frac{\tau_{\pi}}{\tau_{R}}\right) \tag{16}
\end{gather*}
$$

Minimal δf_{Sk}

- Writing $f_{\mathrm{Sk}}=f_{0 \mathbf{k}}+\delta f_{\mathrm{Sk}}$, we require:

$$
\begin{align*}
\begin{array}{l}
\text { Bulk visc. p. } \\
\text { Particle cons. }
\end{array} & \Rightarrow \int d K\left(\begin{array}{c}
1 \\
E_{\mathbf{k}} \\
E_{\mathbf{k}}^{2}
\end{array}\right) \delta f_{\mathrm{S} \mathbf{k}} \equiv\left(\begin{array}{c}
\rho_{\mathrm{S} ; 0} \\
\rho_{\mathrm{S} ; 1} \\
\rho_{\mathrm{S} ; 2}
\end{array}\right)=\left(\begin{array}{c}
-3 \Pi_{\mathrm{S}} / m^{2} \\
0 \\
0
\end{array}\right), \\
\begin{array}{c}
\text { Diff. current cons. } \\
\text { Mom. cons. }
\end{array} & \Rightarrow \int d K\binom{1}{E_{\mathbf{k}}} k^{\langle\mu\rangle} \delta f_{\mathrm{S} \mathbf{k}} \equiv\binom{\rho_{\mathrm{S} ; 0}^{\mu}}{\rho_{\mathrm{S} ; 1}^{\mu}}=\binom{V_{\mathrm{S}}^{\mu}}{0} \\
\quad \text { SS tens. } & \Rightarrow \int d K k^{\langle\mu} k^{\nu\rangle} \delta f_{\mathbf{k}} \equiv \rho_{\mathrm{S} ; 0}^{\mu \nu}=\pi_{\mathrm{S}}^{\mu \nu} \tag{17}
\end{align*}
$$

with $k^{\langle\mu\rangle}=\Delta_{\alpha}^{\mu} k^{\alpha}$ and $k^{\langle\mu} k^{\nu\rangle}=\Delta_{\alpha \beta}^{\mu \nu} k^{\alpha} k^{\beta}$ irreducible tensors.

- The solution can be written as $\delta f_{\mathbb{S k}}=f_{0 \mathbf{k}} \tilde{f}_{0 \mathbf{k}} \mathbb{S}_{\mathbf{k}}$, where

$$
\begin{align*}
\mathbb{S}_{\mathbf{k}}=-\frac{3 \Pi}{m^{2}}\left(1-\frac{\tau_{R}}{\tau_{\Pi}}\right) \mathcal{H}_{\mathbf{k} 0}^{(0)} & +k_{\langle\mu\rangle} V^{\mu}\left(1-\frac{\tau_{R}}{\tau_{V}}\right) \mathcal{H}_{\mathbf{k} 0}^{(1)} \\
& +k_{\langle\mu} k_{\nu\rangle} \pi^{\mu \nu}\left(1-\frac{\tau_{R}}{\tau_{\pi}}\right) \mathcal{H}_{\mathbf{k} 0}^{(2)} \tag{18}
\end{align*}
$$

- $\mathcal{H}_{\mathbf{k} 0}^{(\ell)}$ are polynomials in $E_{\mathbf{k}}$ satisfying (17).

Entropy production

- The entropy current is given by

$$
\begin{equation*}
S^{\mu}=-\int d K k^{\mu}\left(f_{\mathbf{k}} \ln f_{\mathbf{k}}-f_{\mathbf{k}}\right) \tag{19}
\end{equation*}
$$

- In the Shakhov model, $k^{\mu} \partial_{\mu} f=C_{\mathrm{S}}[f]$ and

$$
\begin{equation*}
\partial_{\mu} S^{\mu}=-\int d K C_{\mathrm{S}}[f] \ln f_{\mathbf{k}}=\frac{1}{\tau_{R}} \int d K E_{\mathbf{k}}\left(\delta f_{\mathbf{k}}-\delta f_{\mathrm{Sk}}\right) \ln f_{\mathbf{k}} . \tag{20}
\end{equation*}
$$

- $\partial_{\mu} S^{\mu}$ difficult for generic $f_{\mathbf{k}}$.
- When $\phi_{\mathbf{k}}=\delta f_{\mathbf{k}} / f_{0 \mathbf{k}}$ is small, detailed manipulations lead to

$$
\begin{equation*}
\partial_{\mu} S^{\mu} \simeq \frac{\beta}{\zeta_{\mathrm{S}}} \Pi^{2}-\frac{1}{\kappa_{\mathrm{S}}} V_{\mu} V^{\mu}+\frac{\beta}{2 \eta_{\mathrm{S}}} \pi_{\mu \nu} \pi^{\mu \nu} \geq 0 . \tag{21}
\end{equation*}
$$

- Close to eq., the S-model satisfies the $2^{\text {nd }}$ law of thermodynamics.
- Proof far from eq. unavailable even for non-rel. Shakhov!

Application: Bjorken flow

- Bjorken model: flow invariant under longitudinal boosts:

$$
\begin{equation*}
u^{\mu} \partial_{\mu}=\frac{t}{\tau} \partial_{t}+\frac{z}{\tau} \partial_{z}, \quad \tau=\sqrt{t^{2}-z^{2}}, \quad \eta_{s}=\tanh ^{-1}(z / t) \tag{22}
\end{equation*}
$$

- In Bjorken coordinates $\left(\tau, \mathbf{x}_{\perp}, \eta_{s}\right)$,

$$
\begin{gather*}
T^{\mu \nu}=\operatorname{diag}\left(e, P_{T}, P_{T}, \tau^{-2} P_{L}\right), \\
P_{T}=P+\Pi-\frac{\pi_{d}}{2}, \quad P_{L}=P+\Pi+\pi_{d} . \tag{23}
\end{gather*}
$$

- In $2^{\text {nd }}$-order hydro, we have:

$$
\begin{align*}
\tau \dot{\epsilon}+\epsilon+P_{L} & =0 \tag{24a}\\
\tau \dot{\Pi}+\left(\frac{\delta_{\Pi \Pi}}{\tau_{\Pi}}+\frac{\tau}{\tau_{\Pi}}\right) \Pi+\frac{\lambda_{\Pi \pi}}{\tau_{\Pi}} \pi_{d} & =-\frac{\zeta}{\tau_{\Pi}} \\
\tau \dot{\pi}_{d}+\left(\frac{\delta_{\pi \pi}}{\tau_{\pi}}+\frac{\tau_{\pi \pi}}{3 \tau_{\pi}}+\frac{\tau}{\tau_{\pi}}\right) \pi_{d}+\frac{2 \lambda_{\pi \Pi}}{3 \tau_{\pi}} \Pi & =-\frac{4 \eta}{3 \tau_{\pi}} \tag{24b}
\end{align*}
$$

- We employ the Shakhov model to control ζ independently from η.

Shakhov model: ζ vs. η

- Choosing $\tau_{R}=\tau_{\Pi}$, the Shakhov distribution becomes

$$
\begin{equation*}
f_{\mathrm{S} \mathbf{k}}=f_{0 \mathbf{k}}\left[1+\frac{\beta^{2} k_{\mu} k_{\nu} \pi^{\mu \nu}}{2(e+P)}\left(1-\frac{\tau_{\Pi}}{\tau_{\pi}}\right)\right] \tag{25}
\end{equation*}
$$

- Left panel: τ_{π} is fixed and τ_{Π} is varied using the Shakhov model.
- Right panel: τ_{Π} is fixed and τ_{π} is varied using the Shakhov model.
$>m=1 \mathrm{GeV} ; \tau_{0}=0.5 \mathrm{fm} ; \beta_{0}^{-1}=0.6 \mathrm{GeV}$; For $\tau_{\pi}=0.5 \mathrm{fm}, 4 \pi \eta / s \simeq 3.3$ at $\tau=\tau_{0}$.

Application: Sound waves

- We now consider an infinitesimal perturbation propagating in an ultrarelativistic fluid at rest.
- Writing $u^{\mu} \simeq(1,0,0, \delta v), \epsilon=\epsilon_{0}+\delta \epsilon$ and $n=n_{0}+\delta n$, we have

$$
\begin{align*}
\partial_{t} \delta n+n_{0} \partial_{z} \delta v+\partial_{z} \delta V & =0, \\
\partial_{t} \delta \epsilon+\left(\epsilon_{0}+P_{0}\right) \partial_{z} \delta v & =0, \\
\left(\epsilon_{0}+P_{0}\right) \partial_{t} \delta v+\partial_{z} \delta P+\partial_{z} \delta \pi & =0, \\
\tau_{V} \partial_{t} \delta V+\delta V+\kappa \partial_{z} \delta \alpha-\ell_{V \pi} \partial_{z} \delta \pi & =0, \\
\tau_{\pi} \partial_{t} \delta \pi+\delta \pi+\frac{4 \eta}{3} \partial_{z} \delta v+\frac{2}{3} \ell_{\pi V} \partial_{z} \delta V & =0, \tag{26}
\end{align*}
$$

where $\delta V=V^{z}$ and $\delta \pi=\pi^{z z} / \gamma^{2}$.

- In RTA, $\ell_{V \pi}=\ell_{\pi V}=0$.
- We track the time evolution of the amplitudes

$$
\begin{equation*}
\widetilde{\delta V}=\frac{2}{L} \int_{0}^{L} d z \delta V \cos (k z), \quad \widetilde{\delta \pi}=\frac{2}{L} \int_{0}^{L} d z \delta \pi \sin (k z) . \tag{27}
\end{equation*}
$$

- We employ the Shakhov model to control κ independently from η.

Shakhov model: κ vs. η

- Setting $\tau_{R}=\tau_{\pi}$, the Shakhov distribution becomes

$$
\begin{equation*}
f_{\mathrm{Sk}}=f_{0 \mathbf{k}}\left[1+\frac{k_{\mu} V^{\mu}}{P}\left(\beta E_{\mathbf{k}}-5\right)\left(1-\frac{\tau_{\pi}}{\tau_{V}}\right)\right] . \tag{28}
\end{equation*}
$$

Beyond first order: second-order transport coefficients?

- Relativistic hydrodynamics must obey causality \Rightarrow first-order theories are excluded.
- One example is the Israel-Stewart-type hydro, by which e.g. $\pi^{\mu \nu}$ evolves according to $\tau_{\pi} \dot{\pi}^{\langle\mu \nu\rangle}+\pi^{\mu \nu}=2 \eta \sigma^{\mu \nu}+\mathcal{J}^{\mu \nu}+\mathcal{R}^{\mu \nu}$, with

$$
\begin{align*}
\mathcal{J}^{\mu \nu} & =2 \tau_{\pi} \pi_{\lambda}^{\langle\mu} \omega^{\nu\rangle \lambda}-\delta_{\pi \pi} \pi^{\mu \nu} \theta-\tau_{\pi \pi} \pi^{\lambda\langle\mu} \sigma_{\lambda}^{\nu\rangle}+\lambda_{\pi \Pi} \Pi \sigma^{\mu \nu} \\
& -\tau_{\pi V} V^{\langle\mu} \dot{u}^{\nu\rangle}+\ell_{\pi V} \nabla^{\langle\mu} V^{\nu\rangle}+\lambda_{\pi V} V^{\langle\mu} \nabla^{\nu\rangle} \alpha \\
\mathcal{R}^{\mu \nu} & =\varphi_{6} \Pi \pi^{\mu \nu}+\varphi_{7} \pi^{\lambda\langle\mu} \pi_{\lambda}^{\nu\rangle}+\varphi_{8} V^{\langle\mu} V^{\nu\rangle} \tag{29}
\end{align*}
$$

$-\ln \mathrm{RTA}, \mathcal{R}^{\mu \nu}=0$.

- $2^{\text {nd }}$-order t.c. are important e.g. in preeq!
- In conformal RTA, $\delta_{\pi \pi}+\tau_{\pi \pi} / 3=38 / 21$.
- Solving hydro with $\delta_{\pi \pi}+\tau_{\pi \pi} / 3=31 / 15$ gives much better agreement with RTA!
[J.-P. Blaizot, L. Yan, PRC 104 (2021) 055201]

Second-order hydro from KT

- In the method of moments, second-order hydro can be derived using:

■ Irreducible moments of $\delta f_{\mathbf{k}}: \rho_{r}^{\mu_{1} \cdots \mu_{\ell}}=\int d K E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f_{\mathbf{k}}$.
■ Irreducible moments of $C[f]: C_{r}^{\mu_{1} \cdots \mu_{\ell}}=\int d K E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} C[f]$.
■ Define collision matrix via $C_{r-1}^{\mu_{1} \cdots \mu_{\ell}}=-\sum_{n} \mathcal{A}_{r n}^{(\ell)} \rho_{n}^{\mu_{1} \cdots \mu_{\ell}}$.
■ Define inverse matrix $\tau_{r n}^{(\ell)}$ via $\sum_{n} \tau_{r n}^{(\ell)} \mathcal{A}_{n m}^{(\ell)}=\delta_{r m}$.

- For example, the first-order transport coeffs. are

$$
\zeta_{r}=\frac{m^{2}}{3} \sum_{n} \tau_{r n}^{(0)} \alpha_{n}^{(0)}, \quad \kappa_{r}=\sum_{n} \tau_{r n}^{(1)} \alpha_{n}^{(1)}, \quad \eta_{r}=\sum_{n} \tau_{r n}^{(2)} \alpha_{n}^{(2)}
$$

- The relaxation times can be obtained via

$$
\begin{equation*}
\tau_{\Pi}=\sum_{n} \tau_{0 n}^{(0)} \mathcal{C}_{n}^{(0)}, \quad \tau_{V}=\sum_{n} \tau_{0 n}^{(1)} \mathcal{C}_{n}^{(1)}, \quad \tau_{\pi}=\sum_{n} \tau_{0 n}^{(2)} \mathcal{C}_{n}^{(2)} \tag{30}
\end{equation*}
$$

- ...all other 2 nd-order t.c. are computed using $\tau_{0 n}^{(\ell)}$ and $\mathcal{C}_{n}^{(\ell)}$.
- Idea: Use Shakhov model to "manipulate" $\mathcal{A}_{r n}^{(\ell)}$.

From RTA to Shakhov

- In RTA, $C[f]=-\frac{E_{\mathbf{k}}}{\tau_{R}} \delta f_{\mathbf{k}}$ and

$$
\begin{equation*}
C_{r-1}^{\mu_{1} \cdots \mu_{\ell}}=-\frac{1}{\tau_{R}} \rho_{r}^{\mu_{1} \cdots \mu_{\ell}} \Rightarrow \mathcal{A}_{r n}^{(\ell)}=\frac{\delta_{r n}}{\tau_{R}} \Rightarrow \tau_{r n}^{(\ell)}=\tau_{R} \delta_{r n} \tag{31}
\end{equation*}
$$

- In the Shakhov model, $C_{\mathrm{S}}=-\frac{E_{\mathbf{k}}}{\tau_{R}}\left[\delta f_{\mathbf{k}}-\delta f_{\mathrm{Sk}}\right]$ and

$$
\begin{equation*}
C_{r-1}^{\mu_{1} \cdots \mu_{\ell}}=-\frac{1}{\tau_{R}}\left[\rho_{r}^{\mu_{1} \cdots \mu_{\ell}}-\rho_{\mathrm{S} ; r}^{\mu_{1} \cdots \mu_{\ell}}\right] \tag{32}
\end{equation*}
$$

where $\rho_{\mathrm{S} ; r}^{\mu_{1} \cdots \mu_{\ell}}$ are essentially arbitrary.

- Imposing $C_{r-1}^{\mu_{1} \cdots \mu_{\ell}}=-\sum_{n} \mathcal{A}_{r n}^{(\ell)} \rho_{n}^{\mu_{1} \cdots \mu_{\ell}}$ suggests taking

$$
\begin{equation*}
\rho_{\mathrm{S} ; r}^{\mu_{1} \cdots \mu_{\ell}}=\sum_{n}\left[\delta_{r n}-\tau_{R} \mathcal{A}_{r n}^{(\ell)}\right] \rho_{n}^{\mu_{1} \cdots \mu_{\ell}} \tag{33}
\end{equation*}
$$

where $\mathcal{A}_{r n}^{(\ell)}$ is the desired collision matrix and $\rho_{n}^{\mu_{1} \cdots \mu_{\ell}}$ is extracted from $f_{\mathbf{k}}$.

- Problem: For a generic $C[f], \mathcal{A}_{r n}^{(\ell)}$ is infinite!

Constructing \mathbb{S}_{k}

- Our approach is to fix a subset of $\rho_{\mathrm{S} ; r}^{\mu_{1} \cdots \mu_{\ell}}$ with:

$$
\begin{equation*}
0 \leq \ell \leq L=2, \quad-s_{\ell} \leq r \leq N_{\ell} \tag{34}
\end{equation*}
$$

where $s_{\ell} \equiv$ "shift" and $N_{\ell} \geq\{2,1,0\}$.

- This can be achieved using the Method of Moments for $\delta f_{\mathrm{Sk}} \equiv f_{\mathrm{Sk}}-f_{0 \mathbf{k}} \equiv=f_{0 \mathbf{k}} \tilde{f}_{0 \mathbf{k}} \mathbb{S}_{\mathbf{k}}$, by setting:

$$
\begin{equation*}
\mathbb{S}_{\mathbf{k}}=\sum_{\ell=0}^{L} \sum_{n=-s_{\ell}}^{N_{\ell}} \rho_{\mathrm{S} ; n}^{\mu_{1} \cdots \mu_{\ell}} E_{\mathbf{k}}^{-s_{\ell}} k_{\left\langle\mu_{1}\right.} \cdots k_{\left.\mu_{\ell}\right\rangle} \widetilde{\mathcal{H}}_{\mathbf{k}, n+s_{\ell}}^{(\ell)} \tag{35}
\end{equation*}
$$

with $\widetilde{\mathcal{H}}_{\mathbf{k} n}^{(\ell)}$ to be determined.

- Inverting the logic, $\rho_{\mathrm{S} ; r}^{\mu_{1} \cdots \mu_{\ell}}$ are obtained from δf_{Sk} through

$$
\begin{align*}
\rho_{\mathrm{S} ; r}^{\mu_{1} \cdots \mu_{\ell}} & =\sum_{n=-s_{\ell}}^{N_{\ell}} \rho_{\mathrm{S} ; n}^{\mu_{1} \cdots \mu_{\ell}} \widetilde{\mathcal{F}}_{-\left(r+s_{\ell}\right), n+s_{\ell}}^{(\ell)} \\
\widetilde{\mathcal{F}}_{r n}^{(\ell)} & \equiv \frac{\ell!}{(2 \ell+1)!!} \int d K f_{0 \mathbf{k}} \tilde{f}_{0 \mathbf{k}} E_{\mathbf{k}}^{-2 s_{\ell}-r}\left(\Delta^{\alpha \beta} k_{\alpha} k_{\beta}\right)^{\ell} \widetilde{\mathcal{H}}_{\mathbf{k} n}^{(\ell)} \tag{36}
\end{align*}
$$

- Imposing $\widetilde{F}_{-r, n}^{(\ell)}=\delta_{r n}$ for $-s_{\ell} \leq r, n \leq N_{\ell}$ ensures compatibility with Eq. (20) and fully determines $\widetilde{\mathcal{H}}_{\mathbf{k} n}^{(\ell)}$.

Shakhov collision matrix

- Eq. (36) $\Rightarrow \rho_{\mathrm{S} ; r}^{\mu_{1} \cdots \mu_{\ell}} \neq 0$ even when $r<-s_{\ell}$ and $r>N_{\ell}$.
- $\Rightarrow \mathcal{A}_{\mathrm{S} ; r n}^{(\ell)}$ contains non-trivial entries when $r<-s_{\ell}$ and $r>N_{\ell}$:

$$
\mathcal{A}_{r n}^{(\ell)}=\left(\begin{array}{ccc}
\frac{1}{\tau_{R}} \delta_{r n} & \mathcal{A}_{\ll \text { lrn }}^{(\ell)} & 0 \tag{37}\\
0 & \mathcal{A}_{\mathrm{S} ; r n}^{(\ell)} & 0 \\
0 & \mathcal{A}_{>; r n}^{(\ell)} & \frac{1}{\tau_{R}} \delta_{r n}
\end{array}\right),
$$

where $\mathcal{A}_{</>; r n}^{(\ell)}$ correspond to $r<-s_{\ell}$ and $r>N_{\ell}$, respectively.

- These entries supplement the $\tau_{R}^{-1} \delta_{r n}$ structure of AW with

$$
\begin{equation*}
\mathcal{A}_{</ />; r n}^{(\ell)}=-\frac{1}{\tau_{R}} \widetilde{\mathcal{F}}_{-\left(r+s_{\ell}\right), n+s_{\ell}}^{(\ell)}+\sum_{j=-s_{\ell}}^{N_{\ell}} \widetilde{\mathcal{F}}_{-\left(r+s_{\ell}\right), j+s_{\ell}}^{(\ell)} \mathcal{A}_{\mathrm{S} ; j n}^{(\ell)} . \tag{38}
\end{equation*}
$$

Inverse collision matrix

- The inverse matrix $\tau_{r n}^{(\ell)}$ reads

$$
\tau_{r n}^{(\ell)}=\left(\begin{array}{ccc}
\tau_{R} \delta_{r n} & \tau_{<; r n}^{(\ell)} & 0 \tag{39}\\
0 & \tau_{\mathrm{S} ; r n}^{(\ell)} & 0 \\
0 & \tau_{>; r n}^{(\ell)} & \tau_{R} \delta_{r n}
\end{array}\right)
$$

with $\tau_{\mathrm{S} ; r n}^{(\ell)}=\left[\mathcal{A}_{\mathrm{S} ; r n}^{(\ell)}\right]^{-1}$ a finite $\left(N_{\ell}+s_{\ell}+1\right)^{2}$ matrix and

$$
\begin{equation*}
\tau_{<,>; r n}^{(\ell)}=-\tau_{R} \widetilde{\mathcal{F}}_{-\left(r+s_{\ell}\right), n+s_{\ell}}^{(\ell)}+\sum_{j=-s_{\ell}}^{N_{\ell}} \widetilde{\mathcal{F}}_{-\left(r+s_{\ell}\right), j+s_{\ell}}^{(\ell)} \tau_{\mathrm{S} ; j n}^{(\ell)} \tag{40}
\end{equation*}
$$

- For example, the shear viscosities $\eta_{r}=\sum_{n} \tau_{r n}^{(2)} \alpha_{n}^{(2)}$ are

$$
\begin{align*}
\eta_{-s_{\ell} \leq r \leq N_{\ell}} & =\sum_{n=-s_{2}}^{N_{2}} \tau_{\mathrm{S} ; r n}^{(2)} \alpha_{n}^{(2)} \\
\eta_{r,</>} & =\tau_{R} \alpha_{r}^{(2)}+\sum_{n=-s_{2}}^{N_{2}} \widetilde{\mathcal{F}}_{-r-s_{2}, n+s_{2}}^{(2)}\left(\eta_{n}-\tau_{R} \alpha_{n}^{(2)}\right) \tag{41}
\end{align*}
$$

Tunable coefficients in the Shakhov model

- The t.c. depend on

$$
\begin{array}{rlrl}
\tau_{0, n \neq 1,2}^{(0)}: N_{0}+s_{0}-1 \text { entries } ; & \mathcal{C}_{n \neq 1,2}^{(0)} & \equiv \frac{\zeta_{n}}{\zeta_{0}}: N_{0}+s_{0}-2 \text { extra lines } \\
\tau_{0, n \neq 1}^{(1)}: N_{1}+s_{1} \text { entries; } & & \mathcal{C}_{n \neq 1}^{(1)} & \equiv \frac{\kappa_{n}}{\kappa_{0}}: N_{1}+s_{1}-1 \text { extra lines } \\
\tau_{0 n}^{(2)}: N_{2}+s_{2}+1 \text { entries } ; & \mathcal{C}_{n}^{(2)} & \equiv \frac{\eta_{n}}{\eta_{0}}: N_{2}+s_{2} \text { extra lines } \tag{42}
\end{array}
$$

so in total:

$$
\begin{equation*}
2\left(N_{0}+s_{0}+N_{1}+s_{1}+N_{2}+s_{2}\right)-3 \text { transport coefficients, } \tag{43}
\end{equation*}
$$

plus a hidden degree of freedom given by τ_{R}.

- For an ultrarelativistic gas, the scalar sector is not important, leaving in total

$$
\begin{equation*}
2\left(N_{1}+s_{1}+N_{2}+s_{2}\right) \text { transport coefficients, } \tag{44}
\end{equation*}
$$

plus τ_{R}.

Example: shear-diffusion coupling

- Consider a longitudinal wave propagating along z.
- The linearized hydro equations for $\delta \pi \equiv \pi^{z z}$ and $\delta V \equiv V^{z}$ read

$$
\begin{align*}
\tau_{V} \partial_{t} \delta V+\delta V & =-\kappa \partial_{z} \delta \alpha+\ell_{V \pi} \partial_{z} \delta \pi= & 0 \\
\tau_{\pi} \partial_{t} \delta \pi+\delta \pi & =-\frac{4 \eta}{3} \partial_{z} \delta v-\frac{2}{3} \ell_{\pi V} \partial_{z} \delta V & =0 \tag{45}
\end{align*}
$$

where the cross couplings read (for an UR classical gas):

$$
\begin{equation*}
\ell_{V \pi}=\sum_{r \neq 1} \tau_{0 r}^{(1)}\left(\frac{\beta J_{r+2,1}}{\epsilon+P}-\mathcal{C}_{r-1}^{(2)}\right), \quad \ell_{\pi V}=\frac{2}{5} \sum_{r} \tau_{0 r}^{(2)} \mathcal{C}_{r+1}^{(1)} \tag{46}
\end{equation*}
$$

- In RTA, $\ell_{V \pi}=\tau_{R}\left(\frac{\beta J_{21}}{\epsilon+P}-\mathcal{C}_{-1}^{(2)}\right)$ and $\ell_{\pi V}=\tau_{R} \mathcal{C}_{1}^{(1)}$ both vanish:

$$
\begin{align*}
J_{21}=P=\frac{1}{3} \epsilon, & \mathcal{C}_{-1}^{(2)}=\frac{\alpha_{-1}^{(2)}}{\alpha_{0}^{(2)}}=\frac{\beta}{4} \quad \Rightarrow \quad \ell_{V \pi}=0 \\
\kappa_{1}=\alpha_{1}^{(1)}=0, & \mathcal{C}_{1}^{(1)}=\frac{\alpha_{1}^{(1)}}{\alpha_{0}^{(1)}}=0 \quad \Rightarrow \quad \ell_{\pi V}=0 \tag{47}
\end{align*}
$$

- We aim to control independently 4 t.c.: $\kappa, \eta, \ell_{V \pi}$ and $\ell_{\pi V}$

Example: shear-diffusion coupling

- We use $\left(N_{1}, N_{2}, s_{1}, s_{2}\right)=(1,0,0,1)$ with $\mathcal{A}_{\mathrm{S}}^{(1)}=1 / \tau_{R}$ and

$$
\mathcal{A}_{\mathrm{S}}^{(2)}=\frac{1}{\tau_{\pi} H\left(H+L_{V \pi} L_{\pi V}\right)}\left(\begin{array}{cc}
H-L_{\pi V} & \frac{\beta}{4}\left(H L_{V \pi}+L_{\pi V}\right) \tag{48}\\
-\frac{4}{\beta} L_{\pi V} & H+L_{\pi V}
\end{array}\right),
$$

allowing $\ell_{V \pi}$ and $\ell_{\pi V}$ to be controlled independently via

$$
\begin{equation*}
L_{V \pi}=\frac{4}{\beta \tau_{V}} \ell_{V \pi}, \quad L_{\pi V}=\frac{5 \beta}{8 \tau_{\pi}} \ell_{\pi V}, \quad H=\frac{5 \eta}{4 \tau_{\pi} P} . \tag{49}
\end{equation*}
$$

$>\lambda=1 \mathrm{fm} ; T_{0}=1 \mathrm{GeV}, \mu_{0}=0 \Rightarrow n_{0}=212.04 \mathrm{fm}^{-3} \Rightarrow \sigma_{\square}=1.2676 / \beta \eta \simeq 3.7 \mathrm{mb}$.

Ultrarelativistic hard spheres (URHS)

- The t.c. of the URHS model are:
[D. Wagner, A. Palermo, VEA, PRD 106 (2022) 016013]
[D. Wagner, VEA, E. Molnár, arXiv: 2309.09335]

$\kappa \sigma$	$\tau_{V}\left[\lambda_{\mathrm{mfp}}\right]$	$\delta_{V V}\left[\tau_{V}\right]$	$\ell_{V \pi}\left[\tau_{V}\right]=\tau_{V \pi}\left[\tau_{V}\right]$	$\lambda_{V V}\left[\tau_{V}\right]$	$\lambda_{V \pi}\left[\tau_{V}\right]$
0.15892	2.0838	1	0.028371β	0.89862	0.069273β

$\eta \sigma \beta$	$\tau_{\pi}\left[\lambda_{\mathrm{mfp}}\right]$	$\delta_{\pi \pi}\left[\tau_{\pi}\right]$	$\ell_{\pi V}\left[\tau_{\pi}\right]$	$\tau_{\pi V}\left[\tau_{\pi}\right]$	$\tau_{\pi \pi}\left[\tau_{\pi}\right]$	$\lambda_{\pi V}\left[\tau_{\pi}\right]$
1.2676	1.6557	$4 / 3$	$-0.56960 / \beta$	$-2.2784 / \beta$	1.6945	$0.20503 / \beta$

- The t.c. of RTA with $\eta_{R}=\eta_{\mathrm{HS}}$ are

$\kappa \sigma$	$\tau_{V}\left[\lambda_{\mathrm{mfp}}\right]$	$\delta_{V V}\left[\tau_{V}\right]$	$\ell_{V \pi}\left[\tau_{V}\right]=\tau_{V \pi}\left[\tau_{V}\right]$	$\lambda_{V V}\left[\tau_{V}\right]$	$\lambda_{V \pi}\left[\tau_{V}\right]$
0.13204	1.5845	1	0	$3 / 5$	$\beta / 16$

$\eta \sigma \beta$	$\tau_{\pi}\left[\lambda_{\mathrm{mfp}}\right]$	$\delta_{\pi \pi}\left[\tau_{\pi}\right]$	$\ell_{\pi V}\left[\tau_{\pi}\right]$	$\tau_{\pi V}\left[\tau_{\pi}\right]$	$\tau_{\pi \pi}\left[\tau_{\pi}\right]$	$\lambda_{\pi V}\left[\tau_{\pi}\right]$
1.2676	1.5845	$4 / 3$	0	0	$10 / 7$	0

- RTA-HS mismatch for almost all coefficients, except $\delta_{V V}=\tau_{V}$ and $\delta_{\pi \pi}=4 \tau_{\pi} / 3$, which are fixed for an UR gas.
- To align all transport coefficients, we need 11 parameters!

Various $\left(N_{1}, N_{2}, s_{1}, s_{2}\right)$ models

- A Shakhov model with parameters ($N_{1}, N_{2}, s_{1}, s_{2}$) provides $2\left(N_{1}+N_{2}+s_{1}+s_{2}\right)$.
- To test the effect of various t.c., we employed several models:
- AW: τ_{R} is used to fix $\eta_{R}=\eta_{\mathrm{HS}}$.
- (1001): discussed previously, fixes ($\kappa, \eta, \ell_{V \pi}, \ell_{\pi V}$)
- (1012): has $2 \times 4=8$ free entries and fixes everything except $\lambda_{V V}$ and $\lambda_{V \pi}$.
- (2101): has $2 \times 4=8$ free entries and fixes everything except $\lambda_{V V}$ and $\lambda_{V \pi}$.

Sod shock tube: Comparison to BAMPS

- In the frame of the Sod shock tube, we considered a comparison to BAMPS for hard-sphere interactions.
- Using τ_{R} to tune η, shear comes out well with AW and Shakhov.
- For diffusion: $1001 \equiv$ first-order Shakhov underestimates peak.
- Higher-order (2101) Shakhov required to tune $2^{\text {nd }}$ order t. coeffs.

Sod shock tube: Comparison to BAMPS

- In the heat-flow problem (const. initial λ, pressure jump), again higher-order 2101 Shahkov required.

Conclusions

- Shakhov model generalized for the relativistic Anderson-Witting RTA, allowing ζ, κ and η to be controlled independently.
- Numerical simulations of the Bjorken flow and of sound waves damping confirmed that the model is robust.
- Extending the Shakhov model allows $2^{\text {nd }}$-order t . coeffs. to be controlled \Rightarrow agreement with BAMPS in Sod shock tube.
- This work was supported through a grant of the Ministry of Research, Innovation and Digitization, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2021-1707, within PNCDI III.

Appendix

First-order model

- Specifically, $\mathcal{H}_{\mathrm{k} 0}^{(\ell)}$ must satisfy:

$$
\begin{align*}
\int d K f_{0 \mathbf{k}}\left(\begin{array}{c}
1 \\
E_{\mathbf{k}} \\
E_{\mathbf{k}}^{2}
\end{array}\right) \mathcal{H}_{\mathbf{k} 0}^{(0)} & =\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \\
\frac{1}{3} \int d K f_{0 \mathbf{k}}\binom{1}{E_{\mathbf{k}}}\left(\Delta^{\alpha \beta} k_{\alpha} k_{\beta}\right) \mathcal{H}_{\mathbf{k} 0}^{(1)} & =\binom{1}{0}, \\
\frac{2}{15} \int d K f_{0 \mathbf{k}}\left(\Delta^{\alpha \beta} k_{\alpha} k_{\beta}\right)^{2} \mathcal{H}_{\mathbf{k} 0}^{(2)} & =1 . \tag{50}
\end{align*}
$$

- The lowest-order polynomials satisfying these relations are

$$
\begin{align*}
& \mathcal{H}_{\mathbf{k} 0}^{(0)}=\frac{G_{33}-G_{23} E_{\mathbf{k}}+G_{22} E_{\mathbf{k}}^{2}}{J_{00} G_{33}-J_{10} G_{23}+J_{20} G_{22}}, \\
& \mathcal{H}_{\mathbf{k} 0}^{(1)}=\frac{J_{31} E_{\mathbf{k}}-J_{41}}{J_{21} J_{41}-J_{31}^{2}}, \quad \mathcal{H}_{\mathbf{k} 0}^{(2)}=\frac{1}{2 J_{42}}, \tag{51}
\end{align*}
$$

where $G_{n m}=J_{n 0} J_{m 0}-J_{n-1,0} J_{m+1,0}$, while

$$
\begin{equation*}
J_{n q}=\frac{(-1)^{q}}{(2 q+1)!!} \int d K E_{\mathbf{k}}^{n-2 q}\left(\Delta^{\alpha \beta} k_{\alpha} k_{\beta}\right)^{q} f_{0 \mathbf{k}} . \tag{52}
\end{equation*}
$$

Sound waves: linear modes

- Inserting $A(t, x)=A_{0}+\int_{-\infty}^{\infty} d k \sum_{\omega} e^{-i(\omega t-k z)} \delta A_{\omega}(k)$ gives

$$
\left(\begin{array}{ccccc}
-3 \frac{\omega}{k} & 4 P_{0} & 0 & 0 & 0 \\
1 & -\frac{4 \omega}{k} P_{0} & 1 & 0 & 0 \\
0 & \frac{4 \eta}{3} & -\frac{i}{k}-\frac{\omega}{k} \tau_{\pi} & 0 & \ell_{\pi V} \\
0 & n_{0} & 0 & -\frac{\omega}{k} & 1 \\
-\frac{3 \kappa}{P_{0}} & 0 & -\ell_{V \pi} & \frac{4 \kappa}{n_{0}} & -\frac{i}{k}-\frac{\omega}{k} \tau_{V}
\end{array}\right)\left(\begin{array}{c}
\delta P_{\omega}(k) \\
\delta v_{\omega}(k) \\
\delta \pi_{\omega}(k) \\
\delta n_{\omega}(k) \\
\delta V_{\omega}(k)
\end{array}\right)=0
$$

- Thanks to $\ell_{V \pi}=\ell_{\pi V}=0$, the shear and diffusion sectors decouple:

$$
\left(k^{2}-3 \omega^{2}\right)\left(1-i \omega \tau_{\pi}\right)-\frac{i k^{2} \omega}{P_{0}} \eta=0, \quad \omega\left(1-i \omega \tau_{V}\right)+\frac{4 i k^{2}}{n_{0}} \kappa=0
$$

- The shear and diffusion modes are:

$$
\begin{gather*}
\omega_{a}^{ \pm}= \pm|k| c_{s ; a}-i \xi_{a}, \quad \omega_{\eta}=-i \xi_{\eta} ; \quad \omega_{\kappa}^{ \pm}=-i \xi_{\kappa}^{ \pm}, \\
c_{s ; a} \simeq \frac{1}{\sqrt{3}}, \quad \xi_{a} \simeq \frac{k^{2} \eta}{6 P_{0}}, \quad \xi_{\eta} \simeq \frac{1}{\tau_{\pi}}-\frac{k^{2} \eta}{3 P_{0}}, \\
\xi_{\kappa}^{-} \simeq \frac{4 k^{2} \kappa}{n_{0}}, \quad \xi_{\kappa}^{+} \simeq \frac{1}{\tau_{V}}-\frac{4 k^{2} \kappa}{n_{0}} . \tag{53}
\end{gather*}
$$

Solution

- At initial time, $n(0, z)=n_{0}+\delta n_{0} \cos (k z)$ and $v(0, z)=\delta v_{0} \sin (k z)$.
- The approximate solution is

$$
\begin{align*}
\widetilde{\delta V} & \simeq \frac{4 k \kappa \delta n_{0}}{\tau_{V} n_{0}} \frac{e^{-\xi_{\kappa}^{+} t}-e^{-\xi_{\kappa}^{-} t}}{\xi_{\kappa}^{+}-\xi_{\kappa}^{-}} \\
\widetilde{\delta \pi} & \simeq-\frac{4 \eta}{3} \delta v_{0}\left\{e^{-\xi_{a} t}\left[\cos \left(k c_{s} t\right)-\frac{\xi_{a}}{k c_{s}} \sin \left(k c_{s} t\right)\right]-e^{-t / \tau_{\pi}}\right\} . \tag{54}
\end{align*}
$$

Arbitrary Shakhov matrix

- The model can be extended to control $2^{\text {nd }}$-order transport coeffs..
- Systematic extensions can be obtained by writing in general

$$
\begin{equation*}
\mathbb{S}_{\mathbf{k}}=\sum_{\ell=0}^{\infty} \sum_{n=-s_{\ell}}^{N_{\ell}} \rho_{\mathrm{S} ; n}^{\mu_{1} \cdots \mu_{\ell}} E_{\mathbf{k}}^{-s_{\ell}} k_{\left\langle\mu_{1}\right.} \cdots k_{\left.\mu_{\ell}\right\rangle} \widetilde{\mathcal{H}}_{\mathbf{k}, n+s_{\ell}}^{(\ell)} \tag{55}
\end{equation*}
$$

where $N_{\ell} \equiv$ expansion order and $s_{\ell} \equiv$ basis-shift allowing to access negative-order moments.

- The Shakhov irreducible moments are taken as

$$
\begin{equation*}
\rho_{\mathrm{S} ; r}^{\mu_{1} \cdots \mu_{\ell}}=\sum_{n=-s_{\ell}}^{N_{\ell}}\left(\delta_{r n}-\tau_{R} \mathcal{A}_{\mathrm{S} ; r n}^{(\ell)}\right) \rho_{n}^{\mu_{1} \cdots \mu_{\ell}} . \tag{56}
\end{equation*}
$$

with arbitrary entries $\mathcal{A}_{\mathrm{S} ; r n}^{(\ell)}$ defined for $-s_{\ell} \leq r, n \leq N_{\ell}$.

- The irreducible moments $C_{\mathrm{S} ; r-1}^{\mu_{1} \cdots \mu_{\ell}}$ of the collision term can be written as

$$
C_{\mathrm{S} ; r-1}^{\mu_{1} \cdots \mu_{\ell}}=-\sum_{n} \mathcal{A}_{r n}^{(\ell)} \rho_{n}^{\mu_{1} \cdots \mu_{\ell}}, \quad \mathcal{A}_{r n}^{(\ell)}=\left(\begin{array}{ccc}
\frac{1}{\tau_{R}} \delta_{r n} & \mathcal{A}_{<; r n}^{(\ell)} & 0 \tag{Z}\\
0 & \mathcal{A}_{\mathrm{S} ; r n}^{(\ell)} & 0 \\
0 & \mathcal{A}_{>; r n}^{(\ell)} & \frac{1}{\tau_{R}} \delta_{r n}
\end{array}\right)
$$

