
Kinetic model with arbitrary transport coefficients

Victor E. Ambrus,

Department of Physics, West University of Timis,oara, Romania

Work in collaboration with E. Molnár (Goethe U, Frankfurt; WUT; U. Wroc law) and D.
Wagner (Goethe U, Frankfurt)

STRONG-2020 & HFHF Theory Retreat 2023,
Giardini Naxos, Sicily, Italy,

30th September 2023



Outline

Introduction

Anderson-Witting (RTA) model

First-order relativistic Shakhov model

Application: Bjorken flow

Application: Sound waves

Second-order relativistic Shakhov model

Application: Shear-diffusion coupling

Application: Ultrarelativistic hard spheres (Riemann problem)

Conclusions



Relativistic hydro playground: Heavy-ion collisions

▶ Shortly after the
collision, the system is
far-from-equilibrium.

▶ Pre-eq. dynamics
require a non-eq.
description.

▶ Strongly-interacting
QGP leaves imprints of
thermalization and
collectivity in final-state
observables. [Venaruzzo, PhD Thesis, 2011]



Hydro vs Kinetic theory
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[Ambrus,, Bazzanini, Gabbana, Simeoni, Succi,
Nature Comput. Sci. 2 (2022) 641]

▶ Hydro employed in HIC modelling, but it breaks down far from eq.
▶ Kinetic theory overcomes this limitation, but realistic simulations are

expensive due to C[f ]. AMPT: He, Edmonds, Lin, Liu, Molnar, Wang [PLB 753 (2016) 506]
BAMPS: Greif, Greiner, Schenke, Schlichting, Xu [PRD 96 (2017) 091504]

▶ RTA: C[f ] = − Ek
τR

(fk − f0k) ⇒ 1 − 2 o.m. faster than BAMPS.
VEA, Busuioc, Fotakis, Gallmeister, Greiner [PRD 104 (2021) 094022]

▶ τR fixes the IR limit of RTA by matching e.g. η to that of C[f ] ⇒
good agreement with BAMPS.

https://doi.org/10.1038/s43588-022-00333-x


Anderson-Witting model
▶ The Anderson & Witting RTA reads [Anderson, Witting, Physica 74 (1974) 466]

kµ∂µfk = CAW[f ], CAW[f ] = −Ek

τR
(fk − f0k), (1)

where Ek = kµuµ, and τR is the relaxation time.
▶ The macroscopic quantities Nµ and T µν are obtained from fk via

Nµ =
∫

dK kµ fk, T µν =
∫

dK kµkνfk, (2)

where dK = g d3k/[k0(2π)3] and g is the degeneracy factor.
▶ f0k describes a fictitious local thermodynamic equilibrium, for which

Nµ
0 = n0uµ, T µν

0 = ϵ0uµuν − P0∆µν , (3)

with ∆µν = gµν − uµuν .
▶ Imposing ∂µNµ = ∂νT µν = 0 requires Landau matching:

n = n0, ϵ = ϵ0, T µ
νuν = ϵuµ. (4)

▶ The AW model retains from C[f ] the property of driving fk towards
f0k, on a timescale τR.

httsp://doi.org/10.1016/0031-8914(74)90355-3


Chapman-Enskog expansion
▶ We are now interested to obtain constitutive relations for the

non-equilibrium quantities

Nµ − Nµ
0 = V µ, T µν − T µν

0 = −Π∆µν + πµν . (5)

▶ Employing the Chapman-Enskog procedure gives

δfk ≡ fk − f0k ≃ − τR

Ek
kµ∂µf0k= −f0kf̃0k

[
E2

kβ̇ − Ekα̇

+ β
3 (m2 − E2

k)θ + k⟨µ⟩(βEku̇µ + Ek∇µβ − ∇µα) + βk⟨µkν⟩σµν

]
,

with f̃0k = 1 − af0k, α = βµ, θ = ∂µuµ and σµν = ∇⟨µuν⟩.
▶ Taking appropriate moments gives

Π = −ζRθ, V µ = κR∇µα, πµν = 2ηRσµν , (6)

where ζR, κR and ηR are given by

ζR = m2

3 τRα
(0)
0 , κR = τRα

(1)
0 , ηR = τRα

(2)
0 . (7)

where α
(ℓ)
0 are τR-independent thermodynamic functions.



QGP Transport coefficients
▶ Bayesian estimation shows that η/s and ζ/s can be parametrized as

J. E. Bernhard, J. S. Moreland, S. A. Bass, Nature Phys. 15 (2019) 1113

η

s
= (η/s)min + (η/s)slope(T − Tc)

(
T

Tc

)(η/s)crv

, (8)

ζ

s
= (ζ/s)max ×

[
1 +

(
T − Tpeak

(ζ/s)width

)2
]−1

. (9)
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▶ RTA allows, e.g. η to be
specified by setting

τR = η

α
(2)
0

,

however, ζ/η is fixed
uniquely by

ζ

η
= m2α

(0)
0

3α
(2)
0

,

which does not resemble the (ζ/η) in the QGP.



RTA vs BAMPS

[Ambrus,, Blaga, PRC 98 (2018) 035201]

▶ Also for UR hard spheres, (κT/η)HS ≃ 0.125, whereas
(κT/η)AW = 5/48 ≃ 0.104. DNMR, PRD 85 (2012) 114047

▶ Fixing η via τR gives good agreement with BAMPS for πµν but qµ

is not captured correctly.
▶ Aim of this work: Extend RTA with extra parameters allowing

multiple transport coefficients to be controlled independently.

https://doi.org/10.1103/PhysRevC.98.035201


Shakhov-like extension [Ambrus,, Molnár, under review]

▶ We consider a Shakhov-like extension: [Shakhov, Fluid Dyn. 3 (1968) 112]

CS[f ] = −Ek

τR
(fk − fSk), (10)

where fSk → f0k as δfk = fk − f0k → 0.

▶ In the Shakhov model, fk relaxes towards f0k on a modified path
compared to AW.

▶ The cons. eqs. ∂µNµ = ∂νT µν = 0 imply:

uµNµ = uµNµ
S , uνT µν = uνT µν

S , (11)

which allows for plenty of degrees of freedom (δn, δϵ, W µ, etc).

▶ For simplicity, we stick to the Landau matching conditions:

δn = δϵ = 0, T µνuν = ϵuµ. (12)



Shakohv-like extension
▶ Employing the Chapman-Enskog procedure gives

δfk − δfSk = − τR

Ek
kµ∂µf0k, (13)

leading to

Π − ΠS = −ζRθ, V µ − V µ
S = κR∇µα, πµν − πµν

S = 2ηRσµν .
(14)

▶ We seek to replace ζR etc by independent transport coefficients:

Π ≃ −ζSθ, V µ ≃ κS∇µα, πµν ≃ 2ηSσµν ,

ζS = τΠ

τR
ζR, κS = τV

τR
κR, ηS = τπ

τR
ηR. (15)

▶ Eq. (15) can be obtained from Eq. (14) when

ΠS = Π
(

1 − τΠ

τR

)
, V µ

S = V µ

(
1 − τV

τR

)
,

πµν
S = πµν

(
1 − τπ

τR

)
. (16)



Minimal δfSk
▶ Writing fSk = f0k + δfSk, we require:

Bulk visc. p.
Particle cons.
Energy cons.

⇒
∫

dK

 1
Ek
E2

k

 δfSk ≡

ρS;0
ρS;1
ρS;2

 =

−3ΠS/m2

0
0

 ,

Diff. current
Mom. cons.

⇒
∫

dK

(
1

Ek

)
k⟨µ⟩δfSk ≡

(
ρµ

S;0
ρµ

S;1

)
=

(
V µ

S
0

)
,

SS tens. ⇒
∫

dKk⟨µkν⟩δfk ≡ ρµν
S;0 = πµν

S , (17)

with k⟨µ⟩ = ∆µ
αkα and k⟨µkν⟩ = ∆µν

αβkαkβ irreducible tensors.
▶ The solution can be written as δfSk = f0kf̃0kSk, where

Sk = − 3Π
m2

(
1 − τR

τΠ

)
H(0)

k0 + k⟨µ⟩V
µ

(
1 − τR

τV

)
H(1)

k0

+ k⟨µkν⟩π
µν

(
1 − τR

τπ

)
H(2)

k0 . (18)

▶ H(ℓ)
k0 are polynomials in Ek satisfying (17). [DNMR, PRD 85 (2012) 114047]

https://doi.org/10.1103/PhysRevD.85.114047


Entropy production
▶ The entropy current is given by [classical stat. used for simplicity]

Sµ = −
∫

dK kµ (fk ln fk − fk) . (19)

▶ In the Shakhov model, kµ∂µf = CS[f ] and

∂µSµ = −
∫

dK CS[f ] ln fk = 1
τR

∫
dK Ek(δfk − δfSk) ln fk.

(20)

▶ ∂µSµ difficult for generic fk.
▶ When ϕk = δfk/f0k is small, detailed manipulations lead to

∂µSµ ≃ β

ζS
Π2 − 1

κS
VµV µ + β

2ηS
πµνπµν ≥ 0. (21)

▶ Close to eq., the S-model satisfies the 2nd law of thermodynamics.
▶ Proof far from eq. unavailable even for non-rel. Shakhov!



Application: Bjorken flow
▶ Bjorken model: flow invariant under longitudinal boosts:

uµ∂µ = t

τ
∂t + z

τ
∂z, τ =

√
t2 − z2, ηs = tanh−1(z/t). (22)

▶ In Bjorken coordinates (τ, x⊥, ηs),

T µν = diag(e, PT , PT , τ−2PL),

PT = P + Π − πd

2 , PL = P + Π + πd. (23)

▶ In 2nd-order hydro, we have: [Denicol, Florkowski, Ryblewski, Strickland, PRC 90 (2014) 044905]

τ ϵ̇ + ϵ + PL = 0, (24a)

τ Π̇ +
(

δΠΠ

τΠ
+ τ

τΠ

)
Π + λΠπ

τΠ
πd = − ζ

τΠ
,

τ π̇d +
(

δππ

τπ
+ τππ

3τπ
+ τ

τπ

)
πd + 2λπΠ

3τπ
Π = − 4η

3τπ
. (24b)

▶ We employ the Shakhov model to control ζ independently from η.

https://doi.org/10.1103/PhysRevC.90.044905


Shakhov model: ζ vs. η
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▶ Choosing τR = τΠ, the Shakhov distribution becomes

fSk = f0k

[
1 + β2kµkνπµν

2(e + P )

(
1 − τΠ

τπ

)]
. (25)

▶ Left panel: τπ is fixed and τΠ is varied using the Shakhov model.
▶ Right panel: τΠ is fixed and τπ is varied using the Shakhov model.
▶ m = 1 GeV; τ0 = 0.5 fm; β−1

0 = 0.6 GeV; For τπ = 0.5 fm, 4πη/s ≃ 3.3 at τ = τ0.



Application: Sound waves
▶ We now consider an infinitesimal perturbation propagating in an

ultrarelativistic fluid at rest.
▶ Writing uµ ≃ (1, 0, 0, δv), ϵ = ϵ0 + δϵ and n = n0 + δn, we have

∂tδn + n0∂zδv + ∂zδV =0,

∂tδϵ + (ϵ0 + P0)∂zδv =0,

(ϵ0 + P0)∂tδv + ∂zδP + ∂zδπ =0,

τV ∂tδV + δV + κ∂zδα − ℓV π∂zδπ =0,

τπ∂tδπ + δπ + 4η

3 ∂zδv + 2
3ℓπV ∂zδV = 0, (26)

where δV = V z and δπ = πzz/γ2.
▶ In RTA, ℓV π = ℓπV = 0. [Ambrus,, Molnár, Rischke, PRD 106 (2022) 076005]

▶ We track the time evolution of the amplitudes

δ̃V = 2
L

∫ L

0
dz δV cos(kz), δ̃π = 2

L

∫ L

0
dz δπ sin(kz). (27)

▶ We employ the Shakhov model to control κ independently from η.

https://doi.org/10.1103/PhysRevD.106.076005


Shakhov model: κ vs. η
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▶ Setting τR = τπ, the Shakhov distribution becomes

fSk = f0k

[
1 + kµV µ

P
(βEk − 5)

(
1 − τπ

τV

)]
. (28)



Beyond first order: second-order transport coefficients?
▶ Relativistic hydrodynamics must obey causality ⇒ first-order

theories are excluded.
▶ One example is the Israel-Stewart-type hydro, by which e.g. πµν

evolves according to τππ̇⟨µν⟩ + πµν = 2ησµν + J µν + Rµν , with

J µν = 2τππ
⟨µ
λ ων⟩λ − δπππµνθ − τπππλ⟨µσ

ν⟩
λ + λπΠΠσµν

− τπV V ⟨µu̇ν⟩ + ℓπV ∇⟨µV ν⟩ + λπV V ⟨µ∇ν⟩α,

Rµν = φ6Ππµν + φ7πλ⟨µπ
ν⟩
λ + φ8V ⟨µV ν⟩. (29)

▶ In RTA, Rµν = 0.
▶ 2nd-order t.c. are

important e.g. in preeq!
▶ In conformal RTA,

δππ + τππ/3 = 38/21.
▶ Solving hydro with

δππ + τππ/3 = 31/15
gives much better
agreement with RTA!
[J.-P. Blaizot, L. Yan, PRC 104 (2021) 055201]

▶ Etc...



Second-order hydro from KT
▶ In the method of moments, second-order hydro can be derived using:

Irreducible moments of δfk: ρ
µ1···µℓ
r =

∫
dKEr

kk⟨µ1 · · · kµℓ⟩δfk.

Irreducible moments of C[f ]: C
µ1···µℓ
r =

∫
dKEr

kk⟨µ1 · · · kµℓ⟩C[f ].

Define collision matrix via C
µ1···µℓ
r−1 = −

∑
n

A(ℓ)
rn ρ

µ1···µℓ
n .

Define inverse matrix τ
(ℓ)
rn via

∑
n

τ
(ℓ)
rn A(ℓ)

nm = δrm.
▶ For example, the first-order transport coeffs. are

ζr = m2

3
∑

n

τ (0)
rn α(0)

n , κr =
∑

n

τ (1)
rn α(1)

n , ηr =
∑

n

τ (2)
rn α(2)

n .

▶ The relaxation times can be obtained via

τΠ =
∑

n

τ
(0)
0n C(0)

n , τV =
∑

n

τ
(1)
0n C(1)

n , τπ =
∑

n

τ
(2)
0n C(2)

n . (30)

▶ ...all other 2nd-order t.c. are computed using τ
(ℓ)
0n and C(ℓ)

n .
▶ Idea: Use Shakhov model to “manipulate” A(ℓ)

rn .



From RTA to Shakhov
▶ In RTA, C[f ] = − Ek

τR
δfk and [Ambrus,, Molnár, Rischke, PRD 106 (2022) 076005]

Cµ1···µℓ

r−1 = − 1
τR

ρµ1···µℓ
r ⇒ A(ℓ)

rn = δrn

τR
⇒ τ (ℓ)

rn = τRδrn. (31)

▶ In the Shakhov model, CS = − Ek
τR

[δfk − δfSk] and

Cµ1···µℓ

r−1 = − 1
τR

[ρµ1···µℓ
r − ρµ1···µℓ

S;r ], (32)

where ρµ1···µℓ

S;r are essentially arbitrary.

▶ Imposing Cµ1···µℓ

r−1 = −
∑

n A(ℓ)
rn ρµ1···µℓ

n suggests taking

ρµ1···µℓ

S;r =
∑

n

[δrn − τRA(ℓ)
rn ]ρµ1···µℓ

n , (33)

where A(ℓ)
rn is the desired collision matrix and ρµ1···µℓ

n is extracted
from fk.

▶ Problem: For a generic C[f ], A(ℓ)
rn is infinite!

https://doi.org/10.1103/PhysRevD.106.076005


Constructing Sk [VEA, D. Wagner, in prep.]

▶ Our approach is to fix a subset of ρµ1···µℓ

S;r with:
0 ≤ ℓ ≤ L = 2, −sℓ ≤ r ≤ Nℓ, (34)

where sℓ ≡ “shift” and Nℓ ≥ {2, 1, 0}.
▶ This can be achieved using the Method of Moments for

δfSk ≡ fSk − f0k ≡= f0kf̃0kSk, by setting:

Sk =
L∑

ℓ=0

Nℓ∑
n=−sℓ

ρµ1···µℓ

S;n E−sℓ

k k⟨µ1 · · · kµℓ⟩H̃
(ℓ)
k,n+sℓ

, (35)

with H̃(ℓ)
kn to be determined.

▶ Inverting the logic, ρµ1···µℓ

S;r are obtained from δfSk through

ρµ1···µℓ

S;r =
Nℓ∑

n=−sℓ

ρµ1···µℓ

S;n F̃ (ℓ)
−(r+sℓ),n+sℓ

,

F̃ (ℓ)
rn ≡ ℓ!

(2ℓ + 1)!!

∫
dK f0kf̃0kE−2sℓ−r

k (∆αβkαkβ)ℓH̃(ℓ)
kn. (36)

▶ Imposing F̃
(ℓ)
−r,n = δrn for −sℓ ≤ r, n ≤ Nℓ ensures compatibility

with Eq. (20) and fully determines H̃(ℓ)
kn.



Shakhov collision matrix

▶ Eq. (36) ⇒ ρµ1···µℓ

S;r ̸= 0 even when r < −sℓ and r > Nℓ.

▶ ⇒ A(ℓ)
S;rn contains non-trivial entries when r < −sℓ and r > Nℓ:

A(ℓ)
rn =


1

τR
δrn A(ℓ)

<;rn 0
0 A(ℓ)

S;rn 0
0 A(ℓ)

>;rn
1

τR
δrn

 , (37)

where A(ℓ)
</>;rn correspond to r < −sℓ and r > Nℓ, respectively.

▶ These entries supplement the τ−1
R δrn structure of AW with

A(ℓ)
</>;rn = − 1

τR
F̃ (ℓ)

−(r+sℓ),n+sℓ
+

Nℓ∑
j=−sℓ

F̃ (ℓ)
−(r+sℓ),j+sℓ

A(ℓ)
S;jn. (38)



Inverse collision matrix
▶ The inverse matrix τ

(ℓ)
rn reads

τ (ℓ)
rn =

τRδrn τ
(ℓ)
<;rn 0

0 τ
(ℓ)
S;rn 0

0 τ
(ℓ)
>;rn τRδrn

 , (39)

with τ
(ℓ)
S;rn = [A(ℓ)

S;rn]−1 a finite (Nℓ + sℓ + 1)2 matrix and

τ
(ℓ)
<,>;rn = −τRF̃ (ℓ)

−(r+sℓ),n+sℓ
+

Nℓ∑
j=−sℓ

F̃ (ℓ)
−(r+sℓ),j+sℓ

τ
(ℓ)
S;jn. (40)

▶ For example, the shear viscosities ηr =
∑

n τ
(2)
rn α

(2)
n are

η−sℓ≤r≤Nℓ
=

N2∑
n=−s2

τ
(2)
S;rnα(2)

n ,

ηr,</> = τRα(2)
r +

N2∑
n=−s2

F̃ (2)
−r−s2,n+s2

(ηn − τRα(2)
n ). (41)



Tunable coefficients in the Shakhov model
▶ The t.c. depend on

τ
(0)
0,n̸=1,2 :N0 + s0 − 1 entries; C(0)

n ̸=1,2 ≡ ζn

ζ0
: N0 + s0 − 2 extra lines,

τ
(1)
0,n̸=1 :N1 + s1 entries; C(1)

n ̸=1 ≡ κn

κ0
: N1 + s1 − 1 extra lines,

τ
(2)
0n :N2 + s2 + 1 entries; C(2)

n ≡ ηn

η0
: N2 + s2 extra lines,

(42)

so in total:

2(N0 + s0 + N1 + s1 + N2 + s2) − 3 transport coefficients, (43)

plus a hidden degree of freedom given by τR.
▶ For an ultrarelativistic gas, the scalar sector is not important, leaving

in total
2(N1 + s1 + N2 + s2) transport coefficients, (44)

plus τR.



Example: shear-diffusion coupling
▶ Consider a longitudinal wave propagating along z.
▶ The linearized hydro equations for δπ ≡ πzz and δV ≡ V z read

τV ∂tδV + δV = −κ∂zδα + ℓV π∂zδπ = 0,

τπ∂tδπ + δπ = −4η

3 ∂zδv − 2
3ℓπV ∂zδV = 0, (45)

where the cross couplings read (for an UR classical gas):

ℓV π =
∑
r ̸=1

τ
(1)
0r

(
βJr+2,1

ϵ + P
− C(2)

r−1

)
, ℓπV = 2

5
∑

r

τ
(2)
0r C(1)

r+1. (46)

▶ In RTA, ℓV π = τR

(
βJ21
ϵ+P − C(2)

−1

)
and ℓπV = τRC(1)

1 both vanish:

J21 = P = 1
3ϵ, C(2)

−1 =
α

(2)
−1

α
(2)
0

= β

4 ⇒ ℓV π = 0,

κ1 = α
(1)
1 = 0, C(1)

1 = α
(1)
1

α
(1)
0

= 0 ⇒ ℓπV = 0. (47)

▶ We aim to control independently 4 t.c.: κ, η, ℓV π and ℓπV .



Example: shear-diffusion coupling
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▶ We use (N1, N2, s1, s2) = (1, 0, 0, 1) with A(1)
S = 1/τR and

A(2)
S = 1

τπH(H + LV πLπV )

(
H − LπV

β
4 (HLV π + LπV )

− 4
β LπV H + LπV

)
,

(48)
allowing ℓV π and ℓπV to be controlled independently via

LV π = 4
βτV

ℓV π, LπV = 5β

8τπ
ℓπV , H = 5η

4τπP
. (49)

▶ λ = 1 fm; T0 = 1 GeV, µ0 = 0 ⇒ n0 = 212.04 fm−3 ⇒ σ = 1.2676/βη ≃ 3.7 mb.



Ultrarelativistic hard spheres (URHS)

▶ The t.c. of the URHS model are: [D. Wagner, A. Palermo, VEA, PRD 106 (2022) 016013]

[D. Wagner, VEA, E. Molnár, arXiv: 2309.09335]

κσ τV [λmfp] δV V [τV ] ℓV π[τV ] = τV π [τV ] λV V [τV ] λV π[τV ]
0.15892 2.0838 1 0.028371β 0.89862 0.069273β

ησβ τπ [λmfp] δππ [τπ ] ℓπV [τπ ] τπV [τπ ] τππ [τπ ] λπV [τπ ]
1.2676 1.6557 4/3 −0.56960/β −2.2784/β 1.6945 0.20503/β

▶ The t.c. of RTA with ηR = ηHS are
κσ τV [λmfp] δV V [τV ] ℓV π[τV ] = τV π[τV ] λV V [τV ] λV π[τV ]

0.13204 1.5845 1 0 3/5 β/16

ησβ τπ [λmfp] δππ [τπ ] ℓπV [τπ ] τπV [τπ ] τππ [τπ ] λπV [τπ ]
1.2676 1.5845 4/3 0 0 10/7 0

▶ RTA-HS mismatch for almost all coefficients, except δV V = τV and
δππ = 4τπ/3, which are fixed for an UR gas.

▶ To align all transport coefficients, we need 11 parameters!



Various (N1, N2, s1, s2) models

▶ A Shakhov model with parameters (N1, N2, s1, s2) provides
2(N1 + N2 + s1 + s2).

▶ To test the effect of various t.c., we employed several models:
▶ AW: τR is used to fix ηR = ηHS.
▶ (1001): discussed previously, fixes (κ, η, ℓV π, ℓπV )
▶ (1012): has 2 × 4 = 8 free entries and fixes everything except λV V

and λV π.
▶ (2101): has 2 × 4 = 8 free entries and fixes everything except λV V

and λV π.



Sod shock tube: Comparison to BAMPS [Bouras et al, PRC 82 (2010) 024910]
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▶ In the frame of the Sod shock tube, we considered a comparison to
BAMPS for hard-sphere interactions.

▶ Using τR to tune η, shear comes out well with AW and Shakhov.
▶ For diffusion: 1001 ≡ first-order Shakhov underestimates peak.
▶ Higher-order (2101) Shakhov required to tune 2nd order t. coeffs.

http://dx.doi.org/10.1103/PhysRevC.82.024910


Sod shock tube: Comparison to BAMPS [DNBMXRG, PRD 89 (2014) 074005]
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▶ In the heat-flow problem (const. initial λ, pressure jump), again
higher-order 2101 Shahkov required.

http://dx.doi.org/10.1103/PhysRevD.89.074005


Conclusions

▶ Shakhov model generalized for the relativistic Anderson-Witting
RTA, allowing ζ, κ and η to be controlled independently.

▶ Numerical simulations of the Bjorken flow and of sound waves
damping confirmed that the model is robust.

▶ Extending the Shakhov model allows 2nd-order t. coeffs. to be
controlled ⇒ agreement with BAMPS in Sod shock tube.

▶ This work was supported through a grant of the Ministry of
Research, Innovation and Digitization, CNCS - UEFISCDI, project
number PN-III-P1-1.1-TE-2021-1707, within PNCDI III.



Appendix



First-order model
▶ Specifically, H(ℓ)

k0 must satisfy:∫
dK f0k

 1
Ek
E2

k

 H(0)
k0 =

1
0
0

 ,

1
3

∫
dK f0k

(
1

Ek

)
(∆αβkαkβ)H(1)

k0 =
(

1
0

)
,

2
15

∫
dK f0k(∆αβkαkβ)2H(2)

k0 = 1. (50)

▶ The lowest-order polynomials satisfying these relations are

H(0)
k0 = G33 − G23Ek + G22E2

k
J00G33 − J10G23 + J20G22

,

H(1)
k0 = J31Ek − J41

J21J41 − J2
31

, H(2)
k0 = 1

2J42
, (51)

where Gnm = Jn0Jm0 − Jn−1,0Jm+1,0, while

Jnq = (−1)q

(2q + 1)!!

∫
dK En−2q

k
(
∆αβkαkβ

)q
f0k. (52)



Sound waves: linear modes
▶ Inserting A(t, x) = A0 +

∫ ∞
−∞ dk

∑
ω e−i(ωt−kz)δAω(k) gives

−3 ω
k 4P0 0 0 0

1 − 4ω
k P0 1 0 0

0 4η
3 − i

k − ω
k τπ 0 ℓπV

0 n0 0 − ω
k 1

− 3κ
P0

0 −ℓV π
4κ
n0

− i
k − ω

k τV




δPω(k)
δvω(k)
δπω(k)
δnω(k)
δVω(k)

 = 0.

▶ Thanks to ℓV π = ℓπV = 0, the shear and diffusion sectors decouple:

(k2 − 3ω2)(1 − iωτπ) − ik2ω

P0
η =0, ω(1 − iωτV ) + 4ik2

n0
κ =0.

▶ The shear and diffusion modes are:

ω±
a = ±|k|cs;a − iξa, ωη = −iξη; ω±

κ = −iξ±
κ ,

cs;a ≃ 1√
3

, ξa ≃ k2η

6P0
, ξη ≃ 1

τπ
− k2η

3P0
,

ξ−
κ ≃ 4k2κ

n0
, ξ+

κ ≃ 1
τV

− 4k2κ

n0
. (53)



Solution

▶ At initial time, n(0, z) = n0 + δn0 cos(kz) and v(0, z) = δv0 sin(kz).
▶ The approximate solution is [Ambrus,, PRC 97 (2018) 024914.]

δ̃V ≃ 4kκδn0

τV n0

e−ξ+
κ t − e−ξ−

κ t

ξ+
κ − ξ−

κ
,

δ̃π ≃ −4η

3 δv0

{
e−ξat

[
cos(kcst) − ξa

kcs
sin(kcst)

]
− e−t/τπ

}
.

(54)

https://doi.org/10.1103/PhysRevC.97.024914


Arbitrary Shakhov matrix
▶ The model can be extended to control 2nd-order transport coeffs..
▶ Systematic extensions can be obtained by writing in general

Sk =
∞∑

ℓ=0

Nℓ∑
n=−sℓ

ρµ1···µℓ

S;n E−sℓ

k k⟨µ1 · · · kµℓ⟩H̃
(ℓ)
k,n+sℓ

, (55)

where Nℓ ≡ expansion order and sℓ ≡ basis-shift allowing to access
negative-order moments.

▶ The Shakhov irreducible moments are taken as

ρµ1···µℓ

S;r =
Nℓ∑

n=−sℓ

(
δrn − τRA(ℓ)

S;rn

)
ρµ1···µℓ

n . (56)

with arbitrary entries A(ℓ)
S;rn defined for −sℓ ≤ r, n ≤ Nℓ.

▶ The irreducible moments Cµ1···µℓ

S;r−1 of the collision term can be
written as

Cµ1···µℓ

S;r−1 = −
∑

n

A(ℓ)
rn ρµ1···µℓ

n , A(ℓ)
rn =


1

τR
δrn A(ℓ)

<;rn 0
0 A(ℓ)

S;rn 0
0 A(ℓ)

>;rn
1

τR
δrn

 .

(57)
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