

Interplay between core and corona from small to large colliding systems

Y. Kanakubo et al., Phys. Rev. C 105 (2022) 2, 024905 Y. Kanakubo et al., Phys. Rev. C 106 (2022) 5, 054908

Yuuka Kanakubo^{1,2}

¹ University of Jyväskylä, Centre of Excellence in Quark Matter

Collaborators: Yasuki Tachibana^{2,3}, Tetsufumi Hirano² ² Sophia University, ³Akita International University

QGP study via relativistic heavy-ion collisions

Extraction of properties from direct comparisons with data

QGP signals in small colliding systems

In high-multiplicity small systems (pp, pA)...

Thermal strange hadron productions Hydro-like collectivity

(d) CMS N \ge 110, 1.0GeV/c<p_<3.0GeV/c

Challenge to interpret the universal behavior from pp to AA

... within a single dynamical framework?

2K⁰ ⊕ ⊕_{@@}

 $\Lambda + \overline{\Lambda} (\times 2)$

E⁻ + Ξ ⁺(×6)

 $O^{-} + \overline{O}^{+} (\times 16)$

Dynamical Core-Corona Initialisation framework

Core-corona: K. Werner, Phys. Rev. Lett. 98 (2007) 152301

18)

Kanakub

Kanaku

Dynamical Core-Corona Initialization model 2

Y. Kanakubo et al., Phys. Rev. C 105 (2022) 2, 024905

Model flowchart of DCCI2

Y. Kanakubo et al., Phys. Rev. C 105 (2022) 2, 024905

30 Sep 2023, Sicily, Italy, STRONG-HFHF-2023

Dynamical initialization framework

New framework to dynamically generate initial condition

M. Okai *et al.*, Phys.Rev.C 95 (2017) 5, 054914 C. Shen and B. Schenke, Phys.Rev.C 97 (2018) 2, 024907

Energy-momentum conservation in fluid + parton

$$J^{\nu} \to -\sum_{i} \frac{dp_{i}^{\nu}(t)}{dt} G(x - x_{i}(t))$$

= "energy-momentum of partons"

"Sources of fluids"

Dynamical core-corona picture

Multiple scatterings among partons -> partial equilibration

$$\frac{dp_i^{\mu}}{d\tau} = -\sum_{j}^{N_{\text{scat}}} \rho_{i,j} \sigma_{i,j} |v_{\text{rel},i,j}| p_i^{\mu}$$

Defined at a co-moving frame with $\eta_{s,i}$

Energy-momentum deposition

of scatterings with partons (non-equilibrated and equilibrated)

Low p_T and/or dense region High p_T and/or dilute region

Core (fluids) Corona (partons)

Dynamical core-corona initialization

Energy-loss of partons $\rightarrow \partial_{\mu} T^{\mu\nu}_{\text{fluid}} = J^{\nu}_{\text{parton}}$ Jet-quenching + medium response

Energy budget in dynamical core-corona initialization Dynamical energy conversion from initial partons (corona) to fluids (core) PbPb pp

- Starting from vacuum $T^{\mu\nu} = \mathbf{0}$ for fluids
- Dynamical conversion of energy-momentum from corona to core

Attempt to realize equilibration process phenomenologically

Result 1

Need both core and corona in both pp and AA!

Y. Kanakubo et al., Phys. Rev. C 105 (2022) 2, 024905

Input: Ω/π ratio from pp to PbPb Fixing parameters to control fraction of core/corona

Interplay between... QGP hydro (core) & String frag. (corona) Multiplicity dependence of Ω/π \checkmark **Forcing equilibration of the**

system according to Ω/π

2023

Fraction of core and corona in pp and PbPb

(2017)

539

ú

Nature Phys

Collaboration),

(ALICE

a/

et

Adam

Fraction of core and corona in pp and PbPb

K. Aamodt et al., (ALICE Collaboration), Phys. Rev. Lett. 106 032301 (2011)

Need both equilibrated and non-equilibrated matter in both pp and AA

30 Sep 2023, Sicily, Italy, STRONG-HFHF-2023

30 Sep 2023, Sicily, Italy, STRONG-HFHF-2023

Hadron chemistry (Ω/π , Ξ/π ...): strong candidates for global analysis Both equilibrated and non-equilibrated not only in pp but also in AA

Result 2

Solution \mathbf{A}^{\prime} Be careful with corona correction at low p_T in AA!

Y. Kanakubo et al., Phys. Rev. C 106 (2022) 5, 054908

Longstanding problem in hydro

Lack of very low p_T hadron yields from hydro

J. Zimanyi *et al.*, Phys. Rev. Lett. 43, 1705 (1979);
M. Kataja and P. V. Ruuskanen, Phys. Lett. B 243, 181 (1990);
J. Sollfrank *et al.*, Z. Phys. C 52, 593 (1991);
U. Ornik and R. M. Weiner, Phys. Lett. B 263, 503 (1991);

V. Begun et al., Phys. Rev. C 90, 014906 (2014); Phys. Rev. C 90, 054912 (2014); Phys. Rev. C 91, 054909 (2015);
P. Huovinen et al., Phys. Lett. B 769, 509 (2017);
E. Grossi et al., Phys. Rev. D 104, 034025 (2021)

Non-equilibrated components ?

Fraction of core and corona vs. p_T

Charged π , PbPb 2.76 TeV, 20-40%

Low p_T : core dominance

high p_T : corona dominance

Core-corona picture

\rightarrow From low to high p_T within one framework

Fraction of core and corona vs. p_T

Charged π , PbPb 2.76 TeV, 20-40%

Very low p_T (< 1 GeV)

Slight enhancement of corona components

Non-equilibrium corrections to core (equilibrium)

Comparison with exp. data

Corona at very low p_T : possible compensation of yield

30 Sep 2023, Sicily, Italy, STRONG-HFHF-2023

Non-equilibrium contribution to collectivity in AA

Y. Kanakubo et al., Phys. Rev. C 106 (2022) 5, 054908

Summary

Dynamical core-corona initialization (DCCI2)

- Respect beam energy in initialization of QGP
- Both equilibrated and non-equilibrated matter
- \rightarrow From low to high p_T , from forward to backward, and from pp to AA

Hadron chemistry: yield ratios of strange hadrons from pp to PbPb

Quantitative analysis of QGP properties from data to model comparisons? Need both equilibrated and non-equilibrated matter in both pp and AA

1. Yields at high p_T PbPb 2.76 TeV, π^{\pm}

Need to sophisticate jet quenching in DCCI2 + Need N_{coll} scaling at high p_T ?

30 Sep 2023, Sicily, Italy, STRONG-HFHF-2023

2. Multiplicity distribution in pPB

Multiplicity in DCCI2 → controlled at initial parton generations

$$\frac{d\sigma_{2\rightarrow 2}}{dp_T^2} \propto \frac{\alpha_s^2(p_T^2)}{p_T^4} \rightarrow \frac{\alpha_s^2(p_T^2 + p_{T,0}^2)}{\left(p_T^2 + p_{T,0}^2\right)^2}$$

- \sim Infrared cutoff
- Tuning parameter in PYTHIA.
- $p_{T,0Ref} = 2.28$ GeV (default)

Smaller $p_{T,0Ref}$ \rightarrow More MPI \rightarrow More partonic productions at mid-rapidity

30 Sep 2023, Sicily, Italy, STRONG-HFHF-2023

Parameter p_{T0Ref} dependence in DCCI2

30 Sep 2023, Sicily, Italy, STRONG-HFHF-2023

Parameter p_{T0Ref} dependence in default PYTHIA

Multiplicity distribution in pPB default PYTHIA

Any dependence on some parameters related to 2nd absorptive collisions?

Difficulty: reproduction of multiplicity distribution given a fixed collision energy

Charged particle multiplicity

Difference of E_T evolution between hydro and string frag.

p_{T0Ref} : infrared cut off of 2->2 in PYTHIA

Dynamical core-corona initialization

Parameter set for PYTHIA part: almost Monash Tune

How far can we go as a naive combination of hydro and PYTHIA ...with simple starting point

Default parameter values except p_{T0Ref} in initial parton generation

$$\frac{d\sigma_{2\rightarrow 2}}{dp_T^2} \propto \frac{\alpha_s^2(p_T^2)}{p_T^4} \rightarrow \frac{\alpha_s^2(p_T^2 + p_{T,0}^2)}{\left(p_T^2 + p_{T,0}^2\right)^2}$$

 $p_{\mathrm{T0}} \sim \text{Infrared cutoff for 2} \rightarrow 2 \text{ cross section}$

Hadron vertices model in PYTHIA

S. Ferreres-Solé and T. Sjöstrand, Eur. Phys. J., vol. C78, no. 11, p. 983, 2018.

The production vertex of the hadron is taken to be the average of the two breakup vertices producing it.

The vertex of the hadron with mass m_i

Option

flag Fragmentation:setVertices = on

Information of production vertices

30 Sep 2023, Sicily, Italy, STRONG-HFHF-2023 event[i].xProd(), event[i].yProd(), event[i].zProd(), event[i].tProd()

PbPb 2.76 TeV

Space-time distribution of direct hadrons

Double peaks of hadron vertices from core and corona before hadronic rescatterings

Space-time distribution of direct hadrons

- Short lifetime of hydro ($\sim 1~fm$) in pp
 - Direct hadrons from core and corona
 - Closely produced in space-time coordinate

Fraction of core and corona vs. p_T with PID

Core dominance up to higher p_T for heavier hadrons T. Hirano and Y. Nara, Phys. Rev. C 69, 034908 (2004). Core/corona fraction $\sim 50\%$ at $p_T \rightarrow 0$ GeV in proton spectra

Comparison with exp. data

PbPb 2.76 TeV, π^{\pm}

Corona at very low p_T : possible compensation of yield

30 Sep 2023, Sicily, Italy, STRONG-HFHF-2023

Comparison with exp. data

Corona at very low p_T : possible compensation of yield

Corona components from string modification

String modification caused by ..

- Spatial overlap of strings and medium
- Completely fluidized partons

- 1. Discard dead partons
- 2. Find hypersurface boundaries T_{sw}
- 3. Sample partons & boost with $v_{\rm fluid}$ at the boundary (recreation of color singlet)

Corona components from string modification (cont'd)

Non-thermal & thermal

Contributes as corona components

- 4. Surviving partons traverse medium
- 5. Make a pair for a parton coming out from medium
 - * $p_{T,\text{cut}}$: threshold to/not to modify a string

Corona corrections to flow

*c*₂{4} from PbPb 2.76 TeV

30 Sep 2023, Sicily, Italy, STRONG-HFHF-2023

Ω yields from e^+e^- with Monash Tune

P. Skands et al., Eur.Phys.J.C 74 (2014) 8, 3024

30 Sep 2023, Sicily, Italy, STRONG-HFHF-2023

Dynamical core-corona picture

\sim EoM with a drag force due to secondary scatterings

$$\frac{dp_i^{\mu}}{d\tau} = -\sum_{j}^{N_{\text{scat}}} \rho_{i,j} \sigma_{i,j} |v_{\text{rel},i,j}| p_i^{\mu}$$

Defined at a co-moving frame with $\eta_{s,i}$

*Note: Instant equilibration of deposited energy and momentum

- Collision criterion

 $b_{i,j} \leq \sqrt{\frac{\sigma_{i,j}}{\pi}}$

- Parametrized cross-section
- Density of partons

$$\rho_{i,j} = G(x_i - x_j)$$

G : Gaussian

of (non-equilibrated and equilibrated) partons scattered with ith parton

 $\sigma_{i,j} = \frac{\sigma_0}{s_{i,i}/[\text{GeV}^2]}$

Low
$$p_T$$
 and/or dense region
High p_T and/or dilute region

Core (fluids) Corona (non-equilibrated partons)

Effects of hadronic rescatterings

Significant suppression of yield ratios at central PbPb

✓ Captured with
 dissociation/annihilation
 of hadrons in late stage

Visible hadronic rescattering effects even in pp collisions

Corona correction in PbPb

 Mean p_T and momentum anisotropy
 → non-negligible effect of corona

Pure hydro
calculation can bring
misinterpretation of
exp. data even in PBPB

Origin of corona contribution

PbPb 2.76 TeV

Collision with constituent partons of QGP fluids

$$\frac{dp_i^{\mu}}{d\tau} = -\sum_{j}^{N_{\text{scat}}} \rho_{i,j} \sigma_{i,j} |v_{\text{rel},i,j}| p_i^{\mu}$$

Applied to both core (QGP fluids) and corona (non-equilibrated partons)

30 Sep 2023, Sicily, Italy, STRONG-HFHF-2023

QGP study with relativistic hydrodynamics

= 0

Energy-momentum conservation

Equation of state (EoS) P = P(e)

Many-body system of

Energy-momentum tensor $T^{\mu\nu}$ \rightarrow decomposed with four velocity of fluids $u^{\mu}(x)$

Lattice EoS (high T)

Hadronic resonance gas EoS (low T)

Dynamics of locally-equilibrated patches

 $\partial_{\mu}T^{\mu\nu}$

30 Sep 2023, Sicily, Italy, STRONG-HFHF-2023