System size dependence of pre-equilibrium and applicability of hydrodynamics in heavy-ion collisions

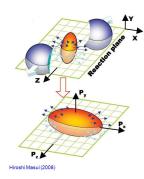
Clemens Werthmann

in Collaboration with Victor Ambrus and Sören Schlichting based on PRD 107, 094013 and PRL 130, 152301 and WiP

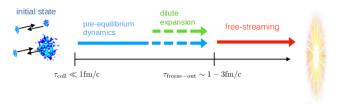
University of Wrocław

Standard modelling of heavy ion collisions

- early stage requires non-equilibrium description, but system quickly equilibrates
- strongly interacting QGP leaves imprints of thermalization and collectivity in final state observables: $\mathbf{v}_{\mathbf{n}}$, $\langle p_T \rangle$, particle yields, ...



Small systems



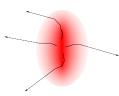
Very dilute, hydrodynamics not necessarily applicable

still collective behaviour is observed!

Nagle, Zajc Ann.Rev.Nucl.Part. 68 (2018) 211

collectivity can also be explained in kinetic theory, a microscopic description which does not rely on equilibration

interpolate between free streaming at small opacities and hydrodynamics at large opacities!



Aim

Case study in simplified kinetic theory description on full range from small to large system size with comparison to hydrodynamics for transverse flow observables

Model and Setup

microscopic description in terms of averaged on-shell phase-space distribution of massless bosons:

$$f(\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y) = \frac{(2\pi)^3}{\nu_{\text{eff}}} \frac{\mathrm{d}N}{\mathrm{d}^3 x \, \mathrm{d}^3 p} (\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y)$$

- boost invariance
- initialized with vanishing longitudinal pressure and no transverse momentum anisotropies
- time evolution: Boltzmann equation in conformal relaxation time approximation

$$p^{\mu} \partial_{\mu} f = C_{\text{RTA}}[f] = -\frac{p^{\mu} u_{\mu}}{\tau_{R}} (f - f_{\text{eq}}) , \quad \tau_{R} = 5 \frac{\eta}{s} T^{-1}$$

results will depend only on initial state and opacity

Parametric dependencies

▶ dimensionless parameter: opacity ~ "total interaction rate"

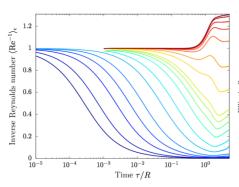
Kurkela, Wiedemann, Wu EPJC 79 (2019) 965

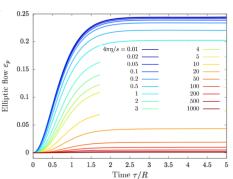
$$\hat{\gamma} = \left(5\frac{\eta}{s}\right)^{-1} \left(\frac{1}{a\pi}R\frac{\mathrm{d}E_{\perp}^{(0)}}{\mathrm{d}\eta}\right)^{1/4}$$

- encodes dependencies on viscosity, transverse size and energy scale
- \blacktriangleright our initial condition: average profiles for centrality classes of Pb+Pb at $5.02~\rm TeV$
 - Borghini, Borrell, Feld, Roch, Schlichting, Werthmann PRC 107 (2023), 034905 • for fixed profile, vary $\hat{\gamma}$ via η/s : $\hat{\gamma} \approx 11 \cdot (4\pi\eta/s)^{-1}$

30-40%

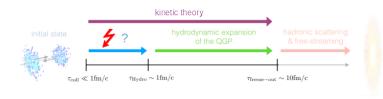
Time evolution in different systems





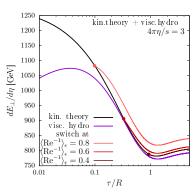
- ${\rm Re}^{-1} = \left(\frac{6\pi^{\mu\nu}\pi_{\mu\nu}}{e^2}\right)^{1/2} \ {\rm measures}$ relative size of non-equilibrium effects
 - equilibration timescale strongly depends on opacity; smaller systems take longer to equilibrate
- elliptic flow on similar timescales; continuously varying strength of response

How to compare to Hydro?



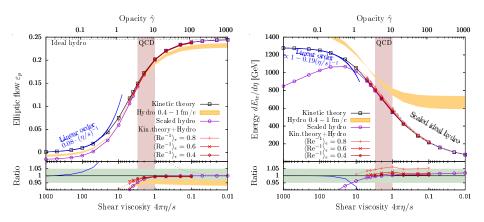
- want to find the regime where hydrodynamics agrees with kinetic theory
- caveat: even at large opacities, naive hydrodynamics does not accurately describe pre-equilibrium
 - how to find a meaningful setup to compare to?

Hydrodynamic setups



- scaled hydro: change initial condition in anticipation of different early time behaviour
- \blacktriangleright hybrid simulations: switching from kinetic theory to hydrodynamics after ${\rm Re}^{-1}$ has dropped to a specific value
 - later switch ⇒ more accurate results

Comparison of improved hydro schemes with kin. theory



- ightharpoonup naive hydro is off; scaled hydro accurate if $\hat{\gamma} \gtrsim 4$
- ▶ Hybrid kin. theory scheme can improve on scaled hydro at intermediate opacities
- \blacktriangleright later switching improves agreement: accurate on 5% level if ${\rm Re}^{-1} < {\rm Re}_c^{-1} \sim 0.75$

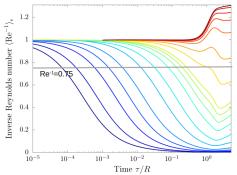
Transition between dynamical regimes

Characterize dynamics by timescales of:

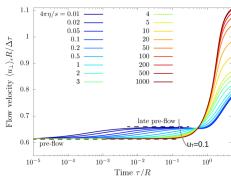
transition to hydrodynamic behaviour

and onset of transverse expansion

▶ hydro applicable for $Re^{-1} \lesssim 0.75$

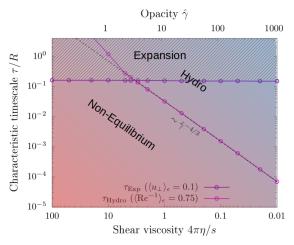


measured by buildup of flow: $u_\perp \sim 0.1$



- takes longer for smaller systems; some systems never equilibrate enough!
- almost independent of opacity: $au_{\rm Exp} \sim 0.2R$

Regime of applicability of hydrodynamics



- upper area: regime of transverse expansion
- Hydro applicable in top right corner
- ho $\hat{\gamma}\lesssim 3$: hydro does not become applicable before onset of transverse expansion!

Hydrodynamics in real collision systems

Taking the criterion of $\hat{\gamma}\gtrsim 3$ seriously, what does this mean for the applicability of hydrodynamics to "real-life" collisions?

Pb + Pb:
$$\hat{\gamma} \sim 5.7 \left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{2.78 \, \text{fm}}\right)^{1/4} \left(\frac{dE_{\perp}^{(0)}/d\eta}{1280 \, \text{GeV}}\right)^{1/4} \sim \frac{70-80\%}{2.7} - \frac{0-5\%}{9.0}$$

hydrodynamic behaviour in all but peripheral collisions

$$p+Pb:~\hat{\gamma} \sim 1.5~\left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{0.81\,\mathrm{fm}}\right)^{1/4} \left(\frac{\mathrm{d}E_{\perp}^{(0)}/\mathrm{d}\eta}{24\,\mathrm{GeV}}\right)^{1/4} \stackrel{\text{high mult.}}{\lesssim 2.7}$$

very high multiplicity events approach regime of applicability, but do not reach it

$${\rm p} + {\rm p}: \ \hat{\gamma} \sim 0.7 \ \left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{0.12\,{\rm fm}}\right)^{1/4} \left(\frac{{\rm d}E_{\perp}^{(0)}/{\rm d}\eta}{7.1\,{\rm GeV}}\right)^{1/4}$$

far from hydrodynamic behaviour

Hydrodynamics in real collision systems

Taking the criterion of $\hat{\gamma}\gtrsim 3$ seriously, what does this mean for the applicability of hydrodynamics to "real-life" collisions?

Pb + Pb:
$$\hat{\gamma} \sim 5.7 \left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{2.78 \, \mathrm{fm}}\right)^{1/4} \left(\frac{\mathrm{d}E_{\perp}^{(0)}/\mathrm{d}\eta}{1280 \, \mathrm{GeV}}\right)^{1/4} \sim \frac{70-80\%}{2.7} - \frac{0-5\%}{9.0}$$

hydrodynamic behaviour in all but peripheral collisions

O + O:
$$\hat{\gamma} \sim 2.2 \left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{1.13 \, \text{fm}}\right)^{1/4} \left(\frac{dE_{\perp}^{(0)}/d\eta}{55 \, \text{GeV}}\right)^{1/4} \sim \frac{70-80\%}{1.4} - \frac{0-5\%}{3.1}$$

probes transition region to hydrodynamic behaviour

$${
m p + Pb}: \; \hat{\gamma} \sim 1.5 \; \left({{\eta/s} \over {0.16}}
ight)^{-1} \left({{R} \over {0.81 \, {
m fm}}}
ight)^{1/4} \left({{
m d} E_{\perp}^{(0)}/{
m d} \eta \over {24 \, {
m GeV}}}
ight)^{1/4} \; {
m high \; mult.} \lesssim 2.7$$

very high multiplicity events approach regime of applicability, but do not reach it

$${\rm p} + {\rm p}: \ \hat{\gamma} \sim 0.7 \ \left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{0.12\,{\rm fm}}\right)^{1/4} \left(\frac{{\rm d}E_{\perp}^{(0)}/{\rm d}\eta}{7.1\,{\rm GeV}}\right)^{1/4}$$

far from hydrodynamic behaviour

Event-by-event initial conditions

► TRENTO initial conditions for two different collision systems

Moreland, Bernhard, Bass PRC 92 (2015) 011901(R)

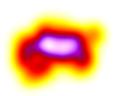
ightharpoonup pre-generated nucleon positions to account for correlations like α -clustering

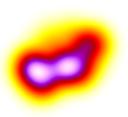
Pb+Pb 2.76 TeV

Alvioli, Drescher, Strikman PLB 680 (2009) 225

0+0 7 TeV

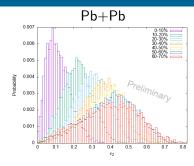
Loizides, Nagle, Steinberg SoftwareX 1-2 (2015) 13

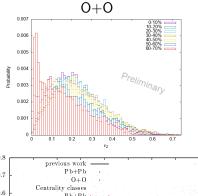




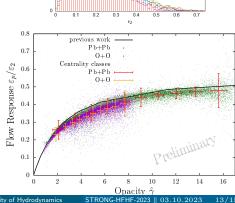
(example profiles from 20-30% centrality class)

Event-by-event flow responses

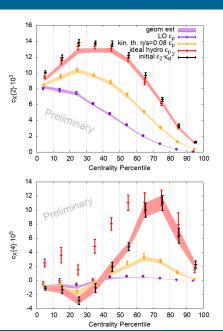




- significant difference in geometry
 - Pb+Pb: visible effect of mean geometry
 - O+O: mostly fluctuation (?)
- flow response still mostly depends on $\hat{\gamma}$

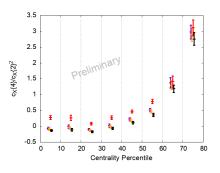


Flow cumulants in O+O



$$\langle (\epsilon_p)^n \rangle = \langle (\kappa \epsilon_2)^n \rangle = \bar{\kappa}^n \langle (\epsilon_2)^n \rangle + \dots$$

- flow fluctuations dominated by avg. response to geometry fluctuations
- ► no $\hat{\gamma}$ -dependence in ideal hydro \Rightarrow same fluctuation curve
- ratio eliminates avg. response



Summary

- kinetic theory description of transverse flow on whole range in system size
- ► comparison to hydrodynamics: accurate at 5% level if $\mathrm{Re}^{-1} \lesssim 0.75$
- ► small systems (p+p, p+Pb): transverse expansion faster than equilibration ⇒ hydro not applicable!
 - O+O covers transition regime to hydro behaviour

Outlook:

looking for observables indicating degree of hydrodynamization in event-by-event simulations

How can hydro still describe small systems?

In theoretical descriptions:

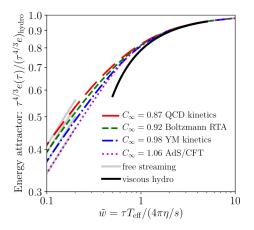
$$v_n = \kappa_{n,n} \cdot \epsilon_n$$

- ► Flow can be compared to experiment
- Response depends on the dynamical model
- Initial state geometry is poorly constrained in small systems

Varying initial condition in order to fit flow measurements will mask inaccuracies in the description of the dynamical response!

What might happen when going beyond RTA?

- more complex kernels will introduce further parameter dependence, but opacity dependence might still be "leading order approximation"
- in Bjorken flow, equilibration happens in very similar ways across different model descriptions:



Giacalone, Mazeliauskas, Schlichting, PRL 123 (2019) 262301

Early time longitudinal cooling and scaled hydro

evolution of τe :

Kinetic Theory

Naive Hydro

Scaled Hydro

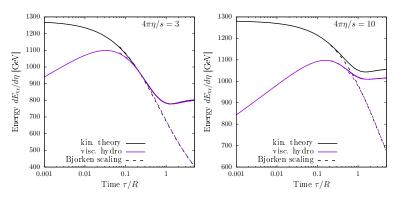
$$\tau = 3 \cdot 10^{-6} \text{fm}$$

$$\tau = 8 \cdot 10^{-4} \text{fm}$$
 (times for $4\pi \eta/s = 0.05$)
Range of Applicability of Hydrodynamics

$$\tau = 3 \cdot 10^{-3} \mathrm{fm}$$

Initializing on the local attractor

accuracy depends on timescale separation of pre-equilibrium and transv. expansion

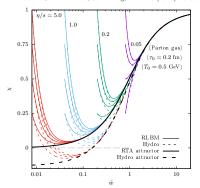


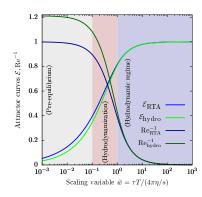
Bjorken flow attractor

- longitudinal boost-invariant Bjorken flow exhibits universal behaviour
- time evolution curves converge to an attractor curve when expressed via the scaling variable $\tilde{w}=\frac{T\tau}{4\pi\eta/s}$
 - ⇒ expressed via universal scaling functions

$$\chi(\tilde{w}) = p_L/p_T, \quad \mathcal{E}(\tilde{w}) \propto \tau^{4/3} e, \quad f_{E_{\perp}}(\tilde{w}) \propto \tau^{1/3} \frac{dE_{\perp}}{dy}, \dots$$

Giacalone, Mazeliauskas, Schlichting, PRL 123 (2019) 262301

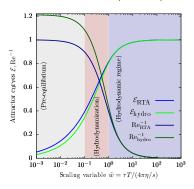


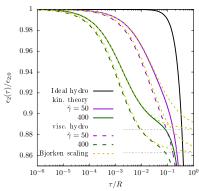


Ambruș, Bazzanini, Gabbana, Simeoni, Succi, Tripicione, arXiv:2201.09277

Early time eccentricity decrease

- $ightharpoonup au \ll R$: no transverse expansion, system locally behaves like 0+1D Bjorken flow
 - universal attractor curve scaling in the variable $\tilde{w}(\tau, \mathbf{x}_{\perp}) = \frac{T(\tau, \mathbf{x}_{\perp})\tau}{4\pi\eta/s}$ Giacalone, Mazeliauskas. Schlichting, PRL 123 (2019) 262301
 - $\tilde{w} \gg 1$: $\tau^{4/3}e = \text{const.}$, $\tau^{1/3}\frac{dE_{\perp}}{dy} = \text{const.}$
 - $\tilde{w} \ll 1$: model dependent power law $au^{4/3} e \sim \tilde{w}^{\gamma}$





inhomogeneous cooling changes energy density profile

Early Time Bjorken Scaling

Bjorken flow universal attractor curve in scaling variable $\tilde{w}(\tau,\mathbf{x}_\perp) = \frac{T(\tau,\mathbf{x}_\perp)\tau}{4\pi\eta/s}$:

$$\begin{split} \epsilon(\tau)\tau^{4/3} &= (4\pi\eta/s)^{4/9}a^{1/9}(\epsilon\tau)_0^{8/9} \ C_\infty \ \mathcal{E}(\tilde{w}) \ , \\ \tau^{1/3} &\frac{\mathrm{d}E_\perp}{d^2\mathbf{x}_\perp \mathrm{d}\eta} = (4\pi\eta/s)^{4/9}a^{1/9}(\epsilon\tau)_0^{8/9} \ C_\infty \ f_{E_\perp}(\tilde{w}) \end{split}$$

- using $\epsilon = aT^4$, recast first eq. into self consistency eq. for \tilde{w}
- lacktriangle use this togehter with initial cond. for ϵau to relate differentials of $\mathrm{d} ilde{w}$ and $\mathrm{d}x_{\perp}$
- lacktriangle integrate second equation to find scaling of ${
 m d}E_{\perp}/{
 m d}\eta$
- use $\frac{(4\pi\eta/s)^4a}{dE_\perp^0/d\eta} = \frac{1}{\pi} \left(\frac{4\pi}{5\hat{\gamma}}\right)^4$ to identify $\hat{\gamma}$

$$\begin{split} \frac{dE_{\perp}/d\eta}{dE_{\perp}^{0}/d\eta} &= \frac{9}{2} \; \left(\frac{4\pi}{5\hat{\gamma}}\right)^{4} \; \left(\frac{R}{\tau}\right)^{3} \int_{0}^{\tilde{w}(\tau,\mathbf{x}_{\perp}=0)} \frac{\tilde{w}^{3}d\tilde{w}}{\mathcal{E}(\tilde{w})} \left[1 - \frac{\tilde{w}}{4} \frac{\mathcal{E}'(\tilde{w})}{\mathcal{E}(\tilde{w})}\right] \; f_{E_{\perp}}(\tilde{w}) \; , \\ \tilde{w}(\tau,\mathbf{x}_{\perp}=0) &= \left(\frac{5\hat{\gamma}}{4\pi}\right)^{8/9} \left(\frac{\tau}{R}\right)^{2/3} \left[C_{\infty}\mathcal{E}(\tilde{w})\right]^{1/4} \end{split}$$

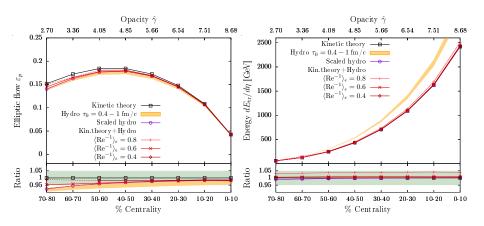
Limits of this scaling law:

$$\hat{\gamma} \left(\frac{\tau}{R} \right)^{3/4} \ll 1 \Rightarrow \tilde{w} \ll 1 \ \Rightarrow \ \mathcal{E}(\tilde{w}) \approx f_{E_{\perp}}(\tilde{w}) \approx C_{\infty}^{-1} \tilde{w}^{4/9} \ \Rightarrow \ \frac{dE_{\perp}/d\eta}{dE^0/d\eta} = 1$$

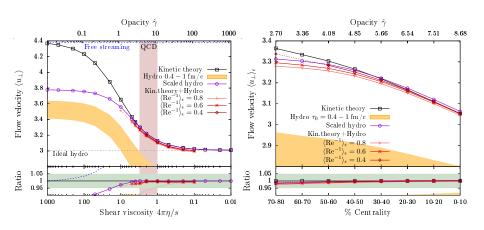
$$\hat{\gamma}^{3/4} \left(\frac{\tau}{R} \right) \gg 1 \implies \tilde{w} \gg 1 \implies \mathcal{E}(\tilde{w}) \approx 1, f_{E_{\perp}} \approx \frac{\pi}{4}$$

$$\Rightarrow \frac{dE_{\perp}/d\eta}{dE_{\parallel}^{0}/d\eta} = \frac{9\pi}{32} \left(\frac{4\pi}{5\hat{\gamma}} \right)^{4/9} \left(\frac{R}{\tau} \right)^{1/3} C_{\infty}$$

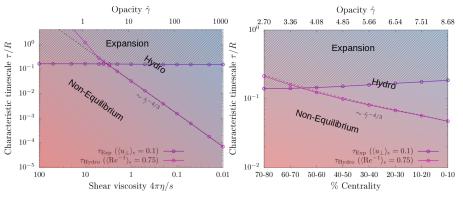
Centrality dependence



Transverse flow velocity



Hydrodynamization in viscosity and centrality dependence



- \blacktriangleright transverse expansion sets in at $\tau_{\perp} \sim 0.2R$, independent of opacity
- ▶ Hydro appicable when $Re^{-1} < Re_c^{-1} \sim 0.75$ after timescale

$$\tau_{\rm Hydro}/R \approx 1.53 \; \hat{\gamma}^{-4/3} \; \left[(\mathsf{Re}_c^{-1})^{-3/2} - 1.21 (\mathsf{Re}_c^{-1})^{0.7} \right]$$

• hydrodynamization before transv. Expansion for $\hat{\gamma} \gtrsim 3$