

# Kinetic and potential mechanisms for deuteron production in HICs

## Gabriele Coci



In collaboration with the PHQMD group: S. Gläßel, V. Kireyeu, J. Aichelin, E. Bratkovskaya, C. Blume, V. Voronyuk



GSI Helmholtzzentrum für Schwerionenforschung







FISICA E ASTRONOMIA

ETTORE MAJORANA"



#### Existing models for cluster production:

[Andronic, et al. PLB 697, 203 (2011), Nature 561, 321 (2018)]

- Statistical model: [Vovchenko et al. PLB 785, 171-174 (2018) , PLB 800, 135131 (2020)]
  - → Assumption of a globally equilibrated thermal source at mid-rapidity  $\left. \frac{dN_i}{dy} \right|_{u=0} = \frac{g_i V e^{\mu_i/T_f}}{2\pi^2} m_i^2 T_f K_2(m_i/T_f)$
  - $\rightarrow$  Parameters (V,  $T_f$ ,  $\mu_i = B_i \mu_B + S_i \mu_s + I_{3i} \mu_{13}$ ) fit to hadron multiplicities

at chemical freeze-out:  $T_f \sim T_{CFO} \sim 155 \text{ MeV} >> |E_B(d)| \sim 2 \text{ MeV}$ 

[Butler, Pearson PRL 7 (1961)]  $\rightarrow$  original nucleon coalescence for deuteron production [Scheibl, Heinz PRC 59 (1999)] [Oh, Lin, Ko PRC 80 (2009)] [Zhu, Ko, Yin PRC 92 (2015)] [Sun, Chen, Ko et al. PRC 95 4 044905 (2017), PLB 774 103 (2017), PLB 781 499 (2018)]

#### Coalescence models:

 $\rightarrow$  Spectra of light nuclei from phase-space distribution functions of nucleons  $f_{N}(x,p)$  at kinetic freeze-out. (differences: parameters ( $r_{coal}$ ,  $p_{coal}$ ), inclusion of deuteron Wigner function  $W_d(r,p)$ )

$$\frac{dN_d}{d^3\mathbf{P}_d} = g_d \int d^3\mathbf{R} \int \frac{d^3\mathbf{p}}{(2\pi)^3} \int d^3\mathbf{r} f_p(\mathbf{R} + \mathbf{r}/2, \mathbf{P}_d/2 + \mathbf{p}) f_n(\mathbf{R} - \mathbf{r}/2, \mathbf{P}_d/2 - \mathbf{p}) W_d(\mathbf{r}, \mathbf{p})$$

*"ice cubes"* 

snowba

 $B_A m_p^{A-1} \propto (1/V)^{A-1}$ 

 $\Rightarrow \text{ Experiments measure coalescence parameter } B_A \quad E_A \frac{dN_A}{d^3 \mathbf{P}_A} = B_A \left( E_p \frac{dN_p}{d^3 \mathbf{p}_p} \right)^Z \left( E_n \frac{dN_n}{d^3 \mathbf{p}_n} \right)^{A-Z} \Big|_{p_p = p_n = P_A/A} \quad E_A \frac{dN_A}{d^3 \mathbf{P}_A} \approx B_A \left( E_p \frac{dN_p}{d^3 \mathbf{p}_p} \right)^A \Big|_{p_p = P_A/A}$ 

- Effect of  $f_n = f_p$  approx. at low energy HICs [Kittiratpattana PRC 106 044905 (2022)]
- Model dependence  $\rightarrow$  important for DM observation in CRs [Blum PRD 96 103021 (2017)] ٠

[Sombun et al. PRC 99 (2019)] [Hillman et al. JPG 47 (2020) 5]

- > Both Coalescence and Thermal models provide good description of RHIC-STAR and LHC-ALICE exp. data.
- Spatial density fluctuations have been implemented in coalescence model.

```
[K.-J. Sun et al. PLB 774 103 (2017) , PLB 781 499 (2018)]
```

> However, cluster production is limited at some fixed time of HICs evolution, either chemical or kinetic freeze-out.

In order to understand the microscopic origin of cluster formation a realistic description of the dynamical evolution of HICs is necessary → TRANSPORT MODELS

• In this talk:



 SMASH (hydro + transport):
 AMPT (hydro + transport):

 [D. Oliinychenko et al. PRC 99 (2019) 4, 044907 , PRC 103 (2021) 034913]
 [K.-J. Sun et al. arxiv:2106.12742, R.-Q. Wang et al. PRC 108 (2023) 3]

 [J. Staudenmaier et al. PRC 104 (2021) 3, 034908]



### Parton-Hadron Quantum Molecular Dynamics

- <u>Model</u>: A **unified n-body microscopic transport approach** for the description of HICs and **dynamical cluster formation** from low to ultra-relativistic energies.
- <u>Realization</u>: ( **PHSD** + **QMD** ) & **MST/SACA**.



#### [J. Aichelin et al. PRC 101 (2020) 044905]

Baryons described by *n*-body Wigner functions, preserve many-body correlations. J. Aichelin Phys. Rep. 202, (1991) 233 C. Hartnack, Puri, Aichelin et al. EPJ A 1, (1998)

#### **Collision Integral from PHSD**

Preactions of partons and hadrons
 W. Cassing, E. Bratkovskaya, NPA 831, (2009)
 P. Moreau, O. Soloveva, et al. PRC 100 (2019)
 deuterons in this work [G. Coci et al. PRC 108 (2023) 014902]

Identify clusters as baryons close in coordinate space.

S. Gläßel et al. PRC 105, (2022) 01498.
V. Kireyeu et al. PRC 105, (2022) 04909
V. Kireyeu et al. arxiv 2304.12019

## Cluster identification via Minimum-Spanning Tree (MST)

The Minimum Spanning Tree (MST) is a cluster recognition algorithm which is applied in the asymptotic final state.

At time snapshots MST searches for correlations of nucleons in coordinate space:

QMD&PHSD time **MST** 

[Puri, Aichelin, J.Comp. Phys. 162 (2000) 245]

[J. Aichelin Phys. Rept. 202, 233 (1991)]

1. Two baryons are part of a cluster if their distance in the cluster rest frame fulfills:  $|\vec{r_i} - \vec{r_j}| \le 4 \text{ fm}$ 



2. A baryon belongs to some cluster if it is "bound" at least to one baryon of that cluster.



## Advanced Minimum-Spanning Tree (aMST)



[G.C. et al. PRC 108 (2023) 014902, V. Kireyeu et al. arxiv 2304.23019]

- In **semiclassical** approach (as QMD) a cluster which is "bound" at time t can **spontaneously** dissolve at  $t + \Delta t$ .
  - ✓ This is a numerical artifact... we lose clusters at relativistic energies because
    - $\rightarrow$ . the sign of  $E_B$  changes:  $E_B(t) < 0 \rightarrow E_B(t + \Delta t) > 0$
    - $\rightarrow$  a single energetic nucleon escapes

Solution through Stabilization Procedure

- 1. Nucleons entering MST can be part of a cluster only after their last elastic or inelastic collision.
- 2. Only nucleons which belong to bound ( $E_B < 0$ ) clusters stay together.
- 3. Recombine nucleons into a cluster by freezing its internal degrees of freedom.
- 4. Applied after the full PHQMD "collision history" to preserve reaction dynamics.

### **Covariant Rate Formalism**

PHSD: multi-meson fusion reactions

$$m_1+m_2+...+m_n \leftrightarrow B+Bbar$$
  
 $m=\pi,\rho,\omega,... B=p,\Lambda,\Sigma,\Xi,\Omega$  (>2000 channels)

In Boltzmann Equation the Collision Integral accounts for all dissipative processes

$$p_{1,\mu}\partial_x^{\mu}f_i(x,p_1) = I_{coll}^i = \sum_n \sum_m I_{coll}^i [n \leftrightarrow m]$$

$$I_{coll}^i[n \leftrightarrow m] = \frac{1}{2} \frac{1}{N_{id}!} \sum_{\nu} \sum_{\lambda} \left(\frac{1}{(2\pi)^3}\right)^{n+m-1} \left(\prod_{j=2}^n \int \frac{d^3\vec{p}_j}{2E_j}\right) \left(\prod_{k=n+1}^{n+m} \int \frac{d^3\vec{p}_k}{2E_k}\right)$$

$$\times (2\pi)^4 \delta^4(p_1^{\mu} + \sum_{j=2}^n p_j^{\mu} - \sum_{k=1}^{n+m} p_k^{\mu}) W_{n,m}(p_1, p_j; i, \nu \mid p_k; \lambda)$$

$$\times \left[\prod_{k=n+1}^{n+m} f_k(x, p_k) - f_i(x, p_1) \prod_{j=2}^n f_j(x, p_j)\right]$$

$$Gain - Loss$$

• Collision rate for hadron "i" is the number of reactions in the covariant volume  $d^4x = dt^*dV$ 

$$\begin{aligned} \frac{dN_{coll}[n(i) \to m]}{dtdV} \propto & \int \frac{d^3p_1}{2E_1} f_i(x, p_1) \int \left(\prod_{j=2}^n \frac{d^3p_j}{2E_j} f_j(x, p_j)\right) \int \left(\prod_{k=n+1}^{n+m} \frac{d^3p_k}{2E_k}\right) \\ & \times (2\pi)^4 \delta^4 \left(\sum_{j=1}^n p_j^{\mu} - \sum_{k=n+1}^{n+m} p_k^{\mu}\right) W_{n,m}(p_j; \tau(i), \nu \mid p_k; \lambda) \quad \dots \text{ similar for } \mathbf{m} \to \mathbf{n}(\mathbf{i}) \end{aligned}$$

• With n=2 initial particles, the covariant rate can be expressed in terms of the reaction cross section

$$\frac{dN_{coll}[1(d) + 2 \to 3 + 4]}{dtdV} \propto \frac{1}{(2\pi)^6} \int \frac{d^3p_1}{2E_1} f_1(x, p_1) \int \frac{d^3p_2}{2E_2} f_2(x, p_2) \times \int \frac{d^3p_3}{(2\pi)^3 2E_3} \int \frac{d^3p_4}{(2\pi)^3 2E_4} W_{2,2}(p_1, p_2; p_3, p_4)(2\pi)^4 \,\delta^4(p_1 + p_2 - p_3 - p_4) \longrightarrow 4E_1 E_2 v_{rel} \sigma_{2,2}(\sqrt{s})$$

Using test-particle ansatz for *f(x,p)* the collision integral is numerically solved dividing the coordinate space in cells of volume ΔV<sub>cell</sub> where the reaction rate at each time step Δt are sampled stochastically with probability:

$$\frac{\Delta N_{coll}[1(d) + 2 \to 3 + 4]}{\Delta N_1 \Delta N_2} = P_{2,2}(\sqrt{s}) = v_{rel}\sigma_{2,2}(\sqrt{s})\frac{\Delta t}{\Delta V_{cell}}$$

Similarly... 
$$\frac{\Delta N_{coll}[1(d) + 2 \rightarrow 3 + 4 + 5]}{\Delta N_1 \Delta N_2} = P_{2,3}(\sqrt{s}) = v_{rel}\sigma_{2,3}(\sqrt{s})\frac{\Delta t}{\Delta V_{cell}}$$

•  $\Delta t \rightarrow 0$ ,  $\Delta v_{cell} \rightarrow 0$  convergence to exact solution



[Lang, Babovsky, Cassing, Mosel, Reusch and Weber, J. Comp. Phys., vol. 106, no. 2, (1993)] [Xu and Greiner PRC v. 71, (2005)]

### **Covariant Rate Formalism for kinetic deuterons**

• With n > 2 initial particles, the covariant rate cannot be expressed in terms of the reaction cross section

$$\frac{dN_{coll}[3+4+5\to 1(d)+2]}{dtdV} = \int \left(\prod_{k=3}^{5} \frac{d^3p_k}{(2\pi)^3 2E_k} f_k(x,p_k)\right) \times \int \frac{d^3p_1}{(2\pi)^3 2E_1} \int \frac{d^3p_2}{(2\pi)^3 2E_2} W_{3,2}(p_3,p_4,p_5;p_1,p_2)(2\pi)^4 \,\delta(p_1+p_2-p_3-p_4-p_5)$$

• With the ASSUMPTION for the TRANSITION AMPLITUDE:  $W(\sqrt{s})$  + detailed balance

the covariant rate can be still expressed in terms of the **collision probability**. With test-particle ansatz:

$$\frac{\Delta N_{coll}[3+4+5 \to 1(d)+2]}{\Delta N_3 \Delta N_4 \Delta N_5} = P_{3,2}(\sqrt{s})$$
 [W. Cassing NPA 700 (2002) 618]





### **Kinetic deuterons in PHQMD**

number of deuteron:

**<u>RHIC BES energy Vs = 7.7 GeV:</u>** 

- Hierarchy due to large  $\pi$  abundance  $\pi$ +N+N  $\leftrightarrow \pi$ +d >> N+p+n  $\leftrightarrow$  N+d
- $\pi$ +N+N  $\leftrightarrow \pi$ +d without chargeexchange (same as in SMASH)
- Inclusion of all channels enhances deuteron yield ~ 50%.
- p<sub>T</sub> slope is not affected.

#### GSI SIS energy √s < 3GeV :

- Baryonic dominated matter.
- Enhancement due to inclusion of isospin channels is negligible.



### Modelling finite-size effects in kinetic mechanism

In QM the deuteron is a broad p-n bound system. It is reasonable to assume that, as soon as a deuteron is formed, it is immediately destroyed in high density regions.



### Modelling finite-size effects in kinetic mechanism

QM properties of deuteron must be also in momentum space  $\rightarrow$  momentum correlations of pn-pairs





#### PHQMD results: combine two dynamical processes

Kinetic with finite-size effects + aMST bound (E<sub>B</sub><0) A=2 , Z=1 clusters = Total deuteron production

- Avoid **double counting** → kinetic deuterons are not identified as MST clusters.
- Study the impact finite-size "scenarios" at different collision energies and compare with experimental data.





Kinetic with both finite-size effects + Potential = Total contribution → Good description of mid-rapidity STAR data



• Comparison with d observables at SIS, AGS, SPS in

[G.C. et al. PRC 108 (2023) 014902, V. Kireyeu et al. arxiv 2304.23019]

• The potential mechanism is larger than the kinetic production at all energies !

#### Summary:

#### "Kinetic" mechanism



Hadronic reactions for deuteron formation/disintegration are implemented in PHQMD transport approach with inclusion of full *"isospin decomposition"*.

#### $\rightarrow$ enhancement of d production at RHIC BES.

Quantum properties of the deuteron can be captured by finite-size effects, modeled by the excluded-volume condition in coordinate space and by the projection of the relative momentum of the interacting pn-pair on the Deuteron Wave-Function in momentum space.

 $\rightarrow$  kinetic production strongly reduced.

 $\rightarrow$  target/projectile sensitive to different finite-size effects.

#### "Potential" mechanism

□ In PHQMD clusters produced **dynamically by potential interaction** among nucleons are identified by **Minimum-Spanning-Tree (MST)** algorithm.

□ Within the novel advanced MST (aMST) procedure "bound" (E<sub>B</sub> <0) clusters are kept stable during the entire evolution of relativistic HICs.</p>

### Thank you for your attention!

 $\pi^{\pm,0} + p + n \leftrightarrow \pi^{\pm,0} + d$  $\pi^{-} + p + p \leftrightarrow \pi^{0} + d$  $\pi^{+} + n + n \leftrightarrow \pi^{0} + d$  $\pi^{0} + p + p \leftrightarrow \pi^{+} + d$  $\pi^{0} + n + n \leftrightarrow \pi^{-} + d$ 



dN/dy

# **Backup Slides**

### QMD propagation

Equation of Motions (EoM) derived from generalized Ritz variational principle

[Feldmeier NPA 515 (1990)]

[Aichelin Phys. Rept. 202 (1991)]

$$\delta \int_{t_1}^{t_2} dt \left\langle \psi(t) \right| i \frac{d}{dt} - H \left| \psi(t) \right\rangle = 0$$

 $\psi(t)$  is the quantum wavefunction for the N-particles system.

- Assume  $\psi(t) = \prod_{i=1}^{N} \psi(\mathbf{r_i}, \mathbf{r_{i0}}, \mathbf{p_i}, \mathbf{p_{i0}}, t)$  (neglect N-antisymmetrization) Ansatz  $\psi(\mathbf{r_i}, \mathbf{r_{i0}}, \mathbf{p_{i0}}, t) = Ce^{-\frac{1}{4L^2} \left(\mathbf{r_i} \mathbf{r_{i0}}(t) \frac{\mathbf{p_{i0}}(t) \cdot t}{m}\right)^2} e^{i\mathbf{p_{i0}}(t) \cdot (\mathbf{r_i} \mathbf{r_{i0}}(t))} e^{-i\frac{\mathbf{p_{i0}}(t)^2}{2m}t}$

The single particle "trial" wavefunction has gaussian shape with constant width L  $\sim$  2 fm.

$$\dot{\mathbf{r_{i0}}} = \frac{\partial \langle H \rangle}{\partial \mathbf{p_{i0}}} \quad \dot{\mathbf{p_{i0}}} = -\frac{\partial \langle H \rangle}{\partial \mathbf{r_{i0}}}$$

- EoM for the "classical" centers in coordinate and momentum space ( $r_{i0}(t)$ ,  $p_{i0}(t)$ ).
- Expectation value of the quantum Hamiltonian:  $\langle H \rangle = \sum_{i} \langle H_i \rangle = \sum_{i} (\langle T_i \rangle + \sum_{i \neq i} \langle V_{i,j} \rangle)$

### QMD interaction and EoS

$$\langle H \rangle = \sum_{i} \langle H_i \rangle = \sum_{i} (\sqrt{p_{i,0}^2 + m_i^2} - m_i) + \sum_{i} \sum_{j \neq i} \langle V_{i,j} \rangle$$

The two-body potential is composed by a Coulomb term + local Skyrme type interaction ٠

$$\begin{split} V_{i,j} &= V_{Coul}(\mathbf{r_{i}}, \mathbf{r_{j}}) + V_{Skyrme}(\mathbf{r_{i}}, \mathbf{r_{j}}) \\ &= \frac{1}{2} \frac{Z_{i} Z_{j} e^{2}}{|\mathbf{r_{i}} - \mathbf{r_{j}}|} + \frac{t_{1}}{2} \delta(\mathbf{r_{i}} - \mathbf{r_{j}}) + \frac{t_{2}}{\gamma + 1} \rho(\mathbf{r_{i}}, \mathbf{r_{i,0}}, \mathbf{r_{j}}, \mathbf{r_{j0}}, t) \end{split}$$

The expectation value of the Skyrme term is replaced by a "static" density dependent expression ٠



→ Relativistic corrections to QMD [J. Aichelin et al. PRC 101 (2020) 044905]

٠



### Kinetic mechanism: cross sections

• Hadronic reactions for  $\pi$ +d and N+d scattering characterized by inclusive cross sections  $\sigma_{peak} \approx 200 \text{ mb}$ .

[Kapusta PRC 21 4 (1979)]

- Inverse reactions X+N+N  $\rightarrow$  X+d (X= $\pi$ ,N with X catalyzer) important for d formation in HICs.
- At relativistic HICs  $\pi$ -catalysis >> N-catalysis due to large  $\pi$  abundance . [Oliinychenko et al. PRC 99 (2019)]



### Modelling finite-size effects in kinetic mechanism





- Deuteron production near target/projectile rapidity compared to mid-rapidity happens at later time.
- Projection on pn-pair relative momentum suppresses deuterons more effectively than excluded-volume at |y|>1
   → Finite-size effects are sensitive to different phase-space regions !



Kinetic with finite-size effects + Potential = Total deuteron production → Good description of mid-rapidity NA49 data

#### N-body phase-space integrals

 $R_2\left(\sqrt{s}, m_1, m_2\right) = \frac{\sqrt{\lambda(s, m_1^2, m_2^2)}}{8\pi s} \qquad \lambda(s, m_1^2, m_2^2) = \left(s - m_1^2 - m_2^2\right)^2 - 4m_1^2 m_2^2$ 

| $m_3m_4m_5$ | $a_1$    | $a_2$    | $x = 2 - a_2$ | $a_3$    | $a_4$    |
|-------------|----------|----------|---------------|----------|----------|
| $\piNN$     | 0.000249 | 1.847779 | 0.152221      | 0.071509 | 9.973413 |
| NNN         | 0.000350 | 1.781741 | 0.218259      | 0.052836 | 4.221995 |

[Byckling, Kajantie Particle Kinematics]

- Other deuteron reactions tested in the "box".
- $p+n+N \leftrightarrow d+N$  comparison with SMASH cross section. [J. Staudenmaier et al. PRC 104 034908 (2021)]
- Agreement with analytic solutions from corresponding rate equations.



[G.C. et al. PRC 108 (2023)]

Binding Energy Distribution  $dN/dE_B$  of potential deuterons as function of  $E_B/A$  with A=2:

- <u>Before stabilization procedure</u>
- After stabilization procedure  $\rightarrow$  the average  $\langle E_B/A \rangle$  reproduces  $E_B(d)/A \sim -1.1$  MeV
- Select stable "bound" (E<sub>B</sub> < 0) clusters

Itested also for t, <sup>3</sup>He, <sup>4</sup>He, <sup>4</sup>Li using Weizsäcker semi empirical mass formula for the expected E<sub>B</sub>/A.

