Thermalization in the Caldeira-Leggett Model

C.Greiner, H. v. Hees, T. Neidig and J. Rais

Institut für theoretische Physik,
Universität Frankfurt am Main,
2nd Workshop of the Network NA7-HF-QGP of the European program "STRONG-2020" HFHF Theory Retreat 2023 in Giardini Naxos, Sicily, Italy

October 3, 2023

Table of Contents

(1) Bound State Formation in HIC's
(2) Open Quantum Systems - General Introduction
(3) Caldeira-Leggett Model
(4) Feynman-Vernon: Influence Functional
(5) Part I: Caldeira-Leggett Master Equation for a Harmonic Oscillator
(6) Analytical Solutions of the Harmonic Oscillator
(7) Results of the Analytic Solution
(8) Decoherence
(9) Part II: Application on Model with Bound State
(10) Ansatz and Numerical Solution
(11) Evolution of $\rho(t)$

Bound State Formation in HIC's

Hadronic bound states form in high-energy heavy-ion collisions

- bound states can be formed and destroyed during specific stages of evolution of the medium
- two important kinds of bound states: heavy quarkonia ($J / \Psi, \Upsilon$ and excited states) and (anti-)deuterons (d, \bar{d}); other light nuclei
- 'snowballs in hell': light nuclei appear in the statistical hadronization model at chemical freeze-out temperature ($\sim 150 \mathrm{MeV}$), while binding energy much lower (Deuteron ~ 2.3 MeV)
- $c \bar{c} \leftrightarrow J / \Psi g(\pi), b \bar{b} \leftrightarrow \Upsilon g(\pi), p n \leftrightarrow d \pi(\gamma), \bar{p} \bar{n} \leftrightarrow \bar{d} \pi(\gamma)$
- Focus on Deuteron, because properly
 described in qm scattering theory in 1-D
- Consider Deuteron as system particle in language of open quantum systems

Equilibration time? Thermalization?

Open Quantum Systems, Dissipative Systems and Irreversibility

Starting point: $\mathrm{i} \dot{\rho}_{S}=\left[H, \rho_{S}\right], \rho_{S}$: reduced density matrix

Total System
$\left(\mathcal{H}_{T}, \rho_{T}, H_{T}\right)$
QM closed systems are invariant under time-reversal + forces derived from a potential

Introducing irreversibility:

- phenomenological equation (e.g. Langevin, Fokker-Planck)
- system-plus-reservoir approach
- modifications of e.o.m. (non-linear Schrödinger equations)

D.o.f. in open quantum system not taken into account explicitly, but effect on the observable macroscopic system.
- environment causes slowing down of motion, described by friction force $\sim v(t), p(t)$
- even if $\langle v(t)\rangle=0$, the system fulfils rapidly-fluctuating (Brownian) motion, described by $\mathcal{F}(t)$, fluctuation force

Additional assumption (with equipartition theorem):

> Final state of system is in thermal equilibrium

Caldeira-Leggett Model as a System-Plus-Reservoir Approach

Caldeira-Leggett-Model: System-to-bath-coupling, (bath: infinitely many d.o.f.) via harmonic oscillators

$$
\begin{aligned}
& H=H_{S}+H_{R}+H_{I}, \quad H_{S}=\frac{p^{2}}{2 m}+V(x) \\
& H_{R}=\sum_{i=1}^{N}\left(\frac{p_{i}^{2}}{2 m_{i}}+\frac{1}{2} m_{i} \omega_{i}^{2} q_{i}^{2}\right) \\
& H_{I}=-x \sum_{i} c_{i} q_{i}+\Delta V(x)
\end{aligned}
$$

$\Delta V(x)$: "shift of systems potential", " frequency renormalization".
Leads to a coupled set of e.o.m. (classical)

$$
\begin{aligned}
& m \ddot{x}(t)+m \omega_{0}^{2} x(t)-\sum_{i=1}^{N} c_{i}\left(q_{i}(t)-\frac{c_{i}}{m_{i} \omega_{i}^{2}} x(t)\right)=0 \\
& m_{i} \ddot{q}_{i}(t)+m_{i} \omega_{i}^{2} q_{i}(t)-c_{i} x(t)=0
\end{aligned}
$$

Feynman-Vernon Influence Functional

A technique to solve the Liouville-von Neumann equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \rho(t)=-\mathrm{i}[H, \rho(t)] \quad \rightarrow \quad \rho(t)=e^{-\mathrm{i} H t} \rho(t=0) e^{\mathrm{i} H t}
$$

Starting point Schrödinger equation:
$|\psi(t)\rangle=e^{-\mathrm{i} H t}|\psi(0)\rangle,\langle x \mid \psi(t)\rangle=\int \mathrm{d} x^{\prime} G\left(x, t ; x^{\prime}, t^{\prime}=0\right)\left\langle x^{\prime} \mid \psi(0)\right\rangle$,
where $G\left(x, t, x^{\prime}, t^{\prime}=0\right) \equiv\langle x| e^{-i H t}\left|x^{\prime}\right\rangle$, the propagator.
"Vernon" Hamilton operator (open quantum system)

$$
H \equiv H_{S}+H_{B}+H_{S B} \quad \leftrightarrow \quad S_{\text {total }}=S_{S}[q]+S_{B}[x]+S_{S B}[q x]
$$

Assume: system dof's q and bath dof's $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
Density matrix $\rho(t)$ in spatial coordinates

$$
\begin{gathered}
\langle x, q| \rho(t)\left|q^{\prime}, x^{\prime}\right\rangle=\int \mathrm{d} q_{0} \mathrm{~d} q_{0}^{\prime} \mathrm{d} x_{0} \mathrm{~d} x_{0}^{\prime}\langle x, q| e^{-\mathrm{i} H t}\left|q_{0} x_{0}\right\rangle\left\langle x_{0} q_{0}\right| \rho(t=0)\left|q_{0}^{\prime} x_{0}^{\prime}\right\rangle \\
\times\left\langle x_{0}^{\prime} q_{0}^{\prime}\right| e^{\mathrm{i} H t}\left|q^{\prime} x^{\prime}\right\rangle
\end{gathered}
$$

Feynman-Vernon Influence Functional

Assume $\quad \rho(t)=\rho_{S} \otimes \rho_{B}$
Trace out bath variables reduced density matrix \rightarrow partial trace: $\rho_{S}=\operatorname{Tr}_{B} \rho$

$$
\langle q| \rho_{S}(t)\left|q^{\prime}\right\rangle=\int \mathrm{d} q_{0} \mathrm{~d} q_{0}^{\prime}\left\langle q_{0}\right| \rho_{S}(0)\left|q_{0}^{\prime}\right\rangle \int_{q_{0}}^{q} \mathcal{D} q \int_{q_{0}^{\prime}}^{q^{\prime}} \mathcal{D}^{*} q^{\prime} \exp \left[\mathrm{i}\left(S[q]-S\left[q^{\prime}\right]\right)\right] \mathcal{F}\left[q\left(t^{\prime}\right), q^{\prime}\left(t^{\prime}\right)\right]
$$

with

$$
\mathcal{F}\left[q\left(t^{\prime}\right), q^{\prime}\left(t^{\prime}\right)\right]=\int \mathrm{d} x_{0} \mathrm{~d} x_{0}^{\prime} \mathrm{d} x\left\langle x_{0}\right| \rho_{B}\left|x_{0}^{\prime}\right\rangle \times \int_{x_{0}}^{x} \mathcal{D} x \int_{x_{0}^{\prime}}^{x} \mathcal{D}^{*} x^{\prime} \operatorname{expi}\left[(S[x]+S[q x])-\left(S\left[x^{\prime}\right]+S\left[q^{\prime} x^{\prime}\right]\right)\right]
$$

From stat. mech. $\rho_{B}=\frac{e^{-\beta H_{B}}}{Z}, Z=\operatorname{Tr} e^{-\beta H_{B}}=\frac{1}{2 \sinh \beta \Omega / 2}$,

$$
\langle x| \rho_{B}\left|x^{\prime}\right\rangle=\frac{1}{Z} \sqrt{\frac{M \Omega}{2 \pi \sinh \Omega \beta}} \exp \left[\frac{-M \Omega}{2 \sinh \beta \Omega}\left[\left(x^{2}+x^{\prime 2}\right) \cosh \beta \Omega-2 x x^{\prime}\right]\right]
$$

inserted and solving the Gaussian path integrals leads to

$$
\begin{aligned}
\Phi\left[q_{t^{\prime}}, q_{t^{\prime}}^{\prime}\right] & =\int_{0}^{t} \mathrm{~d} t^{\prime} \int_{0}^{t^{\prime}} \mathrm{d} s\left[f\left[q_{t^{\prime}}\right]-f\left[q_{t^{\prime}}^{\prime}\right]\right]\left[L\left(t^{\prime}-s\right) f\left[q_{s}\right]-L^{*}\left(t^{\prime}-s\right) f\left[q_{s}^{\prime}\right]\right] \\
L(\tau) & =\frac{1}{2 M \Omega}\left(\operatorname{coth} \frac{\beta \Omega}{2} \cos \Omega \tau-\mathrm{i} \sin \Omega \tau\right)
\end{aligned}
$$

Caldeira-Leggett Master equation as a System-Plus-Reservoir Approach

Input: Caldeira-Leggett Hamiltonian
\rightarrow [canonical quantization,..., Fourier transformation, elimination of the environmental d.o.f., assumption of an Ohmic spectral density, high temperatures, Markovian, etc. ...]

Leads to Caldeira-Leggett master equation (Physica 121A (1983))

$$
\frac{\partial}{\partial t} \rho_{S}=\frac{1}{\mathrm{i}} \mathcal{L}_{S} \rho_{S}=\frac{1}{\mathrm{i} \hbar}\left[H_{S}^{\prime}, \rho_{S}\right]-\frac{\gamma}{\hbar}\left\{\frac{m k_{B} T}{\hbar}\left[x,\left[x, \rho_{S}\right]\right]+\frac{\mathrm{i}}{2}\left[x,\left\{p, \rho_{S}\right\}\right]\right\}
$$

\Rightarrow eq. is known to violate positivity requirement for density operator
Solution: Kossakowski - Lindblad equations

$$
\mathcal{L}\left[\rho_{S}\right]=\frac{1}{i \hbar}\left[H_{S}^{\prime}, \rho_{S}\right]+\frac{1}{2 \hbar} \sum_{i=1}^{\infty}\left(\left[V_{i} \rho_{S}, V_{i}\right]+\left[V_{i}, \rho_{S} V_{i}\right]\right)
$$

V-Operators are bounded operators on the \mathcal{H}-space of Hamiltonian, usually lin. combination of \hat{x} and \hat{p}, and guarantee positivity and norm-conservation.

However: "choice is guided by intuition" (Gao, PRL 82, 3377)

Caldeira-Leggett Master Equation for a Harmonic Oscillator

$V=\frac{m \omega_{0}^{2} x^{2}}{2}$ allows wider repertoire of CLME

$$
\mathrm{i} \frac{\partial \rho_{S}}{\partial t}=\left[\frac{p^{2}}{2}+\frac{\omega_{0}^{2} x^{2}}{2}, \rho_{S}\right]-\mathrm{i} D_{p p}\left[x,\left[x, \rho_{S}\right]\right]+\gamma\left[x,\left\{p, \rho_{S}\right\}\right]-2 \mathrm{i} D_{p x}\left[x,\left[p, \rho_{S}\right]\right]
$$

or in coordinate space, $\langle x|[\ldots]|y\rangle$

$$
\begin{aligned}
\mathrm{i} \frac{\partial}{\partial t} \rho(x, y, t)= & {\left[\frac{1}{2 m}\left(\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial^{2}}{\partial x^{2}}\right)+\frac{m \omega^{2}}{2}\left(x^{2}-y^{2}\right)-\mathrm{i} D_{p p}(x-y)^{2}\right.} \\
& \left.-\mathrm{i} \gamma(x-y)\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right)-2 D_{p x}(x-y)\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right)\right] \rho(x, y, t)
\end{aligned}
$$

where

Case	$D_{p p}$	$D_{p x}$
I; CL	$2 \gamma m k_{B} T / \hbar^{2}$	0
II; Breuer, Petruccione	$2 \gamma m k_{B} T / \hbar^{2}$	$\frac{-\gamma k_{B} T}{\hbar^{2} \Omega}$
III; Diosi	$2 \gamma m k_{B} T / \hbar^{2}$	$\frac{\Omega \gamma}{6 \pi k_{B} T}$

Analytical Solutions of the Harmonic Oscillator

CLME can be solved by Fourier transformation and taking the limit $t \rightarrow \infty$

$$
\rho(x, y, \infty)=\frac{\sqrt{\gamma} m \omega}{\hbar \sqrt{\pi} \sqrt{D_{p p}-4 \gamma m D_{p x}}} \exp \left\{-\frac{\gamma[m \omega(x+y)]^{2}}{4 \hbar^{2}\left(D_{p p}-4 \gamma m D_{p x}\right)}-\frac{D_{p p}(x-y)^{2}}{4 \gamma}\right\}
$$

To show thermalization we need $\rho_{n n}(t)$ from

$$
\begin{aligned}
& \rho(x, y, t)=\sum_{n m} \rho_{n m}(t) \phi_{n}(x) \phi_{m}(y) \\
& \phi_{n}(x) \neq \phi_{\text {initial system harm. oscillator, } \mathrm{n}(x)}
\end{aligned}
$$

To find the wave functions one starts (Homa, Bernad, Csirik, Eur. Phys. J. D (2018))

$$
\int_{-\infty}^{\infty} \rho(x, y, \infty) \phi_{n}(y) \mathrm{d} y=\epsilon_{n} \phi_{n}(x) .
$$

Is solved by $\phi_{n}(x)=H_{n}\left(x, \frac{1}{4 \sqrt{A C}}\right) \exp \left\{-2 \sqrt{A C} x^{2}\right\}$ with $\epsilon_{n}=\epsilon_{0} \epsilon^{n}$, where

$$
\epsilon_{0}=\frac{2 \sqrt{C}}{\sqrt{A}+\sqrt{C}}, \quad \epsilon=\frac{\sqrt{A}-\sqrt{C}}{\sqrt{A}+\sqrt{C}}, \quad A=\frac{D_{p p}}{4 \gamma}, \quad C=\frac{\gamma(m \omega)^{2}}{4 \hbar^{2}\left(D_{p p}-4 \gamma m D_{p x}\right)}
$$

Analytical Solutions of the Harmonic Oscillator

The model is physical if (Homa, Bernad, Lisztes, Eur. Phys. J. D (2019))

$$
A \geq C \quad \text { or } \quad \hbar^{2} \frac{D_{p p}^{2}-4 \gamma m D_{p p} D_{p x}}{\gamma^{2} m^{2} \omega^{2}} \geq 1
$$

If this inequality is not satisfied then the stationary density operator has negative eigenvalues for every odd state.

Case	$D_{p p}$	$D_{p x}$	
I; CL	$2 \gamma m k_{B} T / \hbar^{2}$	0	
II; Breuer, Petruccione	$2 \gamma m k_{B} T / \hbar^{2}$	$\frac{-\gamma k_{B} T}{\hbar^{2} \Omega}$	$T \geq \frac{\hbar \geq \frac{\hbar \omega}{2 k_{B}}}{2 k_{B} \sqrt{1+2 \gamma / \Omega}}$,
III; Diosi	$2 \gamma m k_{B} T / \hbar^{2}$	$\frac{\Omega \gamma}{6 \pi k_{B} T}$	$T \geq \frac{\hbar \omega}{2 k_{B}} \sqrt{1+\frac{2 \Omega \gamma}{3 \pi \omega^{2}}}$,
			$\hbar \Omega \gg k_{B} T \gg \hbar \omega$

Results of the Analytic Solution of the Harmonic Oscillator

- $\gamma=12 \mathrm{MeV}$, therefore

$$
\tau_{\text {rel }} \approx \frac{1}{\gamma} \approx 16-17 \mathrm{fm}
$$

- thermal fit $\sim \exp \left[-\frac{1}{T}(E-\mu)\right]$
- other parameters:

$$
\begin{aligned}
m & =470 \mathrm{MeV}, \\
\Omega & =100 \mathrm{MeV}, \\
\omega & =0.06 \mathrm{fm}^{-1}
\end{aligned}
$$

Impact of different combinations for cases I-III,

$$
\begin{aligned}
& D_{p p}=2 \gamma m k_{B} T / \hbar^{2}, \\
& D_{p x}= \begin{cases}0, & \text { case } I \\
\frac{-\gamma k_{B} T}{\hbar^{2} \Omega}, & \text { case } I I \\
\frac{\Omega \gamma}{6 \pi k_{B} T}, & \text { case } I I I\end{cases}
\end{aligned}
$$

A Short Look on Decoherence

- Interaction of open quantum system with its surroundings creates correlations between the states of the system and of the environment
- Environment carries information on the open system in the form of these correlations
- Dynamical destruction of quantum coherence is called decoherence.
- Define decoherence function $\Gamma_{n m}(t) \leq 0,\left|\left\langle\phi_{n}(t) \mid \phi_{m}(t)\right\rangle\right|=\exp \left[\Gamma_{n m}(t)\right]$
- Calculation directly from path integral (Müller, Ayyar, J. Modern Phys. E, 22, 1350016 (2012)), non-Markovian, same parameters
- Showing $\rho_{0,2}(t), \rho_{0,8}(t), \rho_{2,10}(t)$
- Equilibrium after all non-diagonal elements vanish
- initial condition:

$$
\rho(x, y, 0)=\sqrt{\frac{M \omega}{\pi}} \exp \left[-\frac{M \omega}{2}\left(x^{2}+y^{2}\right)\right]
$$

Application on Model with Bound State

To mimic a bound state in 1-D, we chose

$$
V= \begin{cases}\frac{V_{0}}{\cosh ^{2}(a x)}, & x \in[-20 \mathrm{fm}, 20 \mathrm{fm}] \\ \infty, & \text { else }\end{cases}
$$

where $V_{0}=-25 \mathrm{MeV}$, and $a=1.47 \mathrm{fm}$, similar to deuteron parameters, cf. Rais, Phys. Rev. C 106, 064004 (2022)

$$
\begin{gathered}
V=\frac{V_{0}}{\cosh ^{2}(a x)}, \\
x \in[-20 \mathrm{fm}, 20 \mathrm{fm}] \text { with }
\end{gathered}
$$

- $V_{0}=-25 \mathrm{MeV}$,
- $a=1.47 \mathrm{fm}, m=938 / 2 \mathrm{MeV}$
- $V_{\text {bind }}=-2.32 \mathrm{MeV}$
- The wave functions are computed with a shooting method

Ansatz and Numerical Solution

$$
\mathrm{i} \frac{\partial}{\partial t} \rho(x, y, t)=\left[H(y)-H(x)-\mathrm{i} D_{p p}(x-y)^{2}-\mathrm{i} \gamma(x-y)\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right)\right] \rho(x, y, t)
$$

- Solved numerically by Crank-Nicholson method, to obtain $\rho(x, y, t)$ in coordinate representation.
- Here $\gamma=12 \mathrm{MeV}$, $\Omega=T=120 \mathrm{MeV}$

Evolution of $\rho(t)$

- Results can be evolved in the basis of the wave functions, but therefore do not correspond to the energy eigenvalues of the system.
- Equilibration time is too large for HIC (3-6 fm) (numerics), $1 / \gamma \approx 9 \mathrm{fm}$

- $\sim \exp \left[-\frac{1}{T}(E-\mu)\right]$ fit. Very weak damping (system still not in equilibrium!!!)
- Fitted temperature only approx. half $T_{\text {bath }}$ because of shifts in the modes
- $t_{\text {equi }}$ faster for higher T, ($\left.t_{\text {equi }}>50 f m\right)$

$\mathrm{n}=3$ Populated as Initial Condition

- Fitted temperature only approx. half $T_{\text {bath }}$ because of shifts in the modes
- $t_{\text {equi }}$ much higher, if higher state is initial condition ($t_{\text {equi }} \approx 9 \mathrm{fm}$)

Conclusions and Outlook

Conclusions:

- The CL-model is common to describe the influence of a environment with a temperature on a system
- Lindblad-Form of the CLME satisfies positivity and norm-conservation
- Further temperature-dependent extends are done in the literature
- Decomposition of density matrix not valid for constant wave functions. The modes of the wave function are changing during the interaction with the environment ($k_{n} \rightarrow k_{n}(t)$)
- Therefore thermalization can be shown only indirectly through expectation values of total energy

Outlook:

- Testing for different initial conditions
- Shift of modes k_{n} has to be understood deeper
- Testing for different Ω, γ, T, estimating critical values
- Matching with Kadanoff-Baym approach of Tim Neidig, arXiv:2308.07659

