Outline

1. Introduction
2. Chiral phase transition and critical endpoint
3. Color superconductivity
4. Inhomogeneous chiral phases

COLOR SUPERCONDUCTIVITY

Why (color) superconductivity?
 - Cooper instabilities

Why (color) superconductivity?
 - Cooper instabilities

- Noninteracting fermions at $T=0$:
- Particles at the Fermi surface can be created at the Fermi surface with no free-energy cost.

Why (color) superconductivity?
 - Cooper instabilities

- Noninteracting fermions at $T=0$:
- Particles at the Fermi surface can be created at the Fermi surface with no free-energy cost.
- Add (arbitrarily small) attraction:
- Fermi surface unstable against pair creation ("Cooper pairs")

Why (color) superconductivity?
 - Cooper instabilities

- Noninteracting fermions at $T=0$:
- Particles at the Fermi surface can be created at the Fermi surface with no free-energy cost.
- Add (arbitrarily small) attraction:
- Fermi surface unstable against pair creation ("Cooper pairs")
- Bose condensation of the Cooper pairs

Why (color) superconductivity?
 - Cooper instabilities

- Noninteracting fermions at $T=0$:
- Particles at the Fermi surface can be created at the Fermi surface with no free-energy cost.
- Add (arbitrarily small) attraction:
- Fermi surface unstable against pair creation ("Cooper pairs")
- Bose condensation of the Cooper pairs

\rightarrow rearrangement of the Fermi surface
\rightarrow gaps

Why (color) superconductivity?
 - Cooper instabilities

- Noninteracting fermions at $T=0$:
- Particles at the Fermi surface can be created at the Fermi surface with no free-energy cost.
- Add (arbitrarily small) attraction:
- Fermi surface unstable against pair creation ("Cooper pairs")
- Bose condensation of the Cooper pairs

\rightarrow rearrangement of the Fermi surface
\rightarrow gaps
- BCS pairing:
- pairs with vanishing total momentum: $\vec{p}^{(1)}=-\vec{p}^{(2)}$
- each partner close to the Fermi surface

\rightarrow works only if $p_{F}^{(1)} \approx p_{F}^{(2)}$

Diquark condensates

- QCD: attractive quark-quark interaction
\rightarrow diquark condensates: $\left\langle q_{i} \mathcal{O}_{i j} q_{j}\right\rangle$

Diquark condensates

- QCD: attractive quark-quark interaction
\rightarrow diquark condensates: $\left\langle q_{i} \mathcal{O}_{i j} q_{j}\right\rangle$
- Pauli principle:
$\mathcal{O}=\mathcal{O}_{\text {spin }} \otimes \mathcal{O}_{\text {color }} \otimes \mathcal{O}_{\text {flavor }}=$ totally antisymmetric

Diquark condensates

- QCD: attractive quark-quark interaction
\rightarrow diquark condensates: $\left\langle q_{i} \mathcal{O}_{i j} q_{j}\right\rangle$
- Pauli principle:
$\mathcal{O}=\mathcal{O}_{\text {spin }} \otimes \mathcal{O}_{\text {color }} \otimes \mathcal{O}_{\text {flavor }}=$ totally antisymmetric
- most attractive channel:
- spin 0 (= antisymmetric)
- color $\overline{3}$ (= antisymmetric)
\rightarrow antisymmetric in flavor
\rightarrow pairing between different flavors

Diquark condensates

- QCD: attractive quark-quark interaction \rightarrow diquark condensates: $\left\langle q_{i} \mathcal{O}_{i j} q_{j}\right\rangle$
- Pauli principle:
$\mathcal{O}=\mathcal{O}_{\text {spin }} \otimes \mathcal{O}_{\text {color }} \otimes \mathcal{O}_{\text {flavor }}=$ totally antisymmetric
- most attractive channel:
- spin 0 (= antisymmetric)
- color $\overline{3}$ (= antisymmetric)
\rightarrow antisymmetric in flavor
\rightarrow pairing between different flavors
- example: $\quad(\uparrow \downarrow-\downarrow \uparrow) \otimes(r g-g r) \otimes(u d-d u)$

Three-flavor systems

- Pairing patterns in flavor space:
no pairing: "normal quark matter" (NQ)
(1) ©

Three-flavor systems

- Pairing patterns in flavor space:
two-flavor superconducting (2SC) phase
(+ two analogous phases with us or ds pairing)

(s)

Three-flavor systems

- Pairing patterns in flavor space:
uSC phase
(similar: dSC phase, sSC)

Three-flavor systems

- Pairing patterns in flavor space:
color-flavor locked (CFL) phase

Three-flavor systems

- Pairing patterns in flavor space: color-flavor locked (CFL) phase

- CFL pairing (more explicitly):

$$
\begin{aligned}
(\uparrow \downarrow-\downarrow \uparrow) \otimes(& (u d-d u) \otimes(r g-g r) \\
& +(d s-s d) \otimes(g b-b g) \\
& +(s u-u s) \otimes(b r-r b))
\end{aligned}
$$

(More) formal definition of the phases

- Diquark condensates:

$$
\begin{aligned}
& (\uparrow \downarrow-\downarrow \uparrow) \otimes(u d-d u) \otimes(r g-g r) \leftrightarrow\left\langle q^{T} C \gamma_{5} \tau_{2} \lambda_{2} q\right\rangle \sim: \Delta_{2} \\
& (\uparrow \downarrow-\downarrow \uparrow) \otimes(d s-s d) \otimes(g b-b g) \leftrightarrow\left\langle q^{T} C \gamma_{5} \tau_{5} \lambda_{5} q\right\rangle \sim: \Delta_{5} \\
& (\uparrow \downarrow-\downarrow \uparrow) \otimes(s u-u s) \otimes(b r-r b) \leftrightarrow\left\langle q^{T} C \gamma_{5} \tau_{7} \lambda_{7} q\right\rangle \sim: \Delta_{7}
\end{aligned}
$$

$C=i \gamma^{2} \gamma^{0}$ charge conjugation matrix, $\quad C \gamma_{5} \rightarrow J^{P}=0^{+}$
τ_{A} : antisymmetric Gell-Mann matrices in flavor space
λ_{A} : antisymmetric Gell-Mann matrices in color space

- Phases:
- NQ: $\Delta_{2}=\Delta_{5}=\Delta_{7}=0$
- 2SC: $\Delta_{2} \neq 0, \Delta_{5}=\Delta_{7}=0$
- CFL: $\Delta_{2}=\Delta_{5}=\Delta_{7} \neq 0$ (ideal case; realistic: $\Delta_{2} \approx \Delta_{5} \approx \Delta_{7} \neq 0$)

Symmetries of the 2SC phase

$$
\Delta_{2} \sim\left\langle q^{T} C \gamma_{5} \tau_{2} \lambda_{2} q\right\rangle
$$

- gauge symmetries:
- color: $q \rightarrow e^{i \theta^{\frac{\lambda}{2}} \frac{\lambda^{a}}{2}} q$ blue quarks unpaired $\Rightarrow S U(3)_{c} \rightarrow S U(2)_{c}$
$\rightarrow 5$ of the 8 gluons get a nonzero Meissner mass.
- electromagnetism: $q \rightarrow e^{i \alpha Q} q, Q=\operatorname{diag}_{f}\left(\frac{2}{3},-\frac{1}{3}\right) \quad$ broken

But there is an unbroken $U(1)$ gauge symmetry with charge $\tilde{Q}=Q-\frac{1}{2 \sqrt{3}} \lambda_{8}$.
\rightarrow color superconductor but not electromagnetic superconductor

- global symmetries:
- baryon number: $q \rightarrow e^{i \alpha} q \Rightarrow \Delta_{2} \rightarrow e^{2 i \alpha} \Delta_{2} \quad$ broken

But there is an unbroken "modified baryon number" $q \rightarrow e^{i \alpha\left(1-\sqrt{3} \lambda_{8}\right)} q$

- $S U(2)_{L} \times S U(2)_{R}$ chiral symmetry: conserved
\rightarrow same global symmetries as 2-flavor restored phase, no Goldstone bosons

Symmetries of the (ideal) CFL phase

$$
\left\langle q^{T} C \gamma_{5} \tau_{2} \lambda_{2} q\right\rangle=\left\langle q^{T} C \gamma_{5} \tau_{2} \lambda_{2} q\right\rangle=\left\langle q^{T} C \gamma_{5} \tau_{2} \lambda_{2} q\right\rangle=\Delta
$$

- color: $S U(3)_{c}$ broken completely
- chiral symmetry: $S U(3)_{L} \times S U(3)_{R}$ broken completely but:
residual $S U(3)$ under combined color-flavor rotations: $q \rightarrow e^{i \theta_{a}\left(\tau_{a}-\lambda_{a}^{T}\right)} q$
\rightarrow "color-flavor locking": $S U(3)_{c} \times S U(3)_{L} \times S U(3)_{R} \rightarrow S U(3)_{V+c}$
$\rightarrow 8$ massive gluons +8 pseudoscalar Goldstone bosons (chiral limit)
- baryon number: $U(1)$ broken $\rightarrow 1$ scalar Goldstone boson
- electromagnetism:
unbroken $U(1)$ gauge symmetry with charge $\tilde{Q}=Q-\frac{1}{2} \lambda_{3}-\frac{1}{2 \sqrt{3}} \lambda_{8}$
\rightarrow color but not electromagnetic superconductor, baryon number superfluid

Which phase is favored?
 - Realistic systems

Which phase is favored?
 - Realistic systems

- Reminder:
- Cooper instability: each partner close to the Fermi surface
- BCS pairing: $\vec{p}^{(1)}=-\vec{p}^{(2)}$
\rightarrow works only if $p_{F}^{(1)} \approx p_{F}^{(2)}$

Which phase is favored?
 - Realistic systems

- Reminder:
- Cooper instability: each partner close to the Fermi surface
- BCS pairing: $\vec{p}^{(1)}=-\vec{p}^{(2)}$
\rightarrow works only if $p_{F}^{(1)} \approx p_{F}^{(2)}$
- Quark masses: $M_{s} \gg M_{u, d} \Rightarrow$ unequal Fermi momenta $p_{F}^{(f)}=\sqrt{\mu^{2}-M_{f}^{2}}$

Which phase is favored?
 - Realistic systems

- Reminder:
- Cooper instability: each partner close to the Fermi surface
- BCS pairing: $\vec{p}^{(1)}=-\vec{p}^{(2)}$
\rightarrow works only if $p_{F}^{(1)} \approx p_{F}^{(2)}$
- Quark masses: $M_{s} \gg M_{u, d} \Rightarrow$ unequal Fermi momenta $p_{F}^{(f)}=\sqrt{\mu^{2}-M_{f}^{2}}$
- Chandrasekhar, Clogston (1962): pairing still favored if $\delta p_{F} \lesssim \frac{\Delta}{\sqrt{2}}$

Which phase is favored?
 - Realistic systems

- Reminder:
- Cooper instability: each partner close to the Fermi surface
- BCS pairing: $\vec{p}^{(1)}=-\vec{p}^{(2)}$
\rightarrow works only if $p_{F}^{(1)} \approx p_{F}^{(2)}$
- Quark masses: $M_{s} \gg M_{u, d} \Rightarrow$ unequal Fermi momenta $p_{F}^{(f)}=\sqrt{\mu^{2}-M_{f}^{2}}$
- Chandrasekhar, Clogston (1962): pairing still favored if $\delta p_{F} \lesssim \frac{\Delta}{\sqrt{2}}$
- Expected phase structure:
- $\mu \gg M_{s} \Rightarrow p_{F}^{(s)} \approx p_{F}^{(u, d)} \rightarrow \mathrm{CFL}$
- $\mu \lesssim M_{s} \Rightarrow p_{F}^{(s)} \ll p_{F}^{(u, d)} \rightarrow 2 S C$

Figure: educated guess [Rajagopal (1999)]

Which phase is favored?
 - Realistic systems

- Reminder:
- Cooper instability: each partner close to the Fermi surface
- BCS pairing: $\vec{p}^{(1)}=-\vec{p}^{(2)}$
\rightarrow works only if $p_{F}^{(1)} \approx p_{F}^{(2)}$
- Quark masses: $M_{s} \gg M_{u, d} \Rightarrow$ unequal Fermi momenta $p_{F}^{(f)}=\sqrt{\mu^{2}-M_{f}^{2}}$
- Chandrasekhar, Clogston (1962): pairing still favored if $\delta p_{F} \lesssim \frac{\Delta}{\sqrt{2}}$
- Expected phase structure:
- $\mu \gg M_{s} \Rightarrow p_{F}^{(s)} \approx p_{F}^{(u, d)} \rightarrow \mathrm{CFL}$
- $\mu \lesssim M_{s} \Rightarrow p_{F}^{(s)} \ll p_{F}^{(u, d)} \rightarrow 2 \mathrm{SC}$

Figure: NJL [M. Oertel, MB (2002); MB (2005)]

NJL-model treatment of color superconductivity

- NJL-type Lagrangian: $\quad \mathscr{L}=\mathscr{L}_{0}+\mathscr{L}_{\bar{q} q}+\mathscr{L}_{q q}$
- free part:

$$
\mathscr{L}_{0}=\bar{q}(i \not \partial-\hat{m}) q, \quad \hat{m}=\operatorname{diag}_{f}\left(m_{u}, m_{d}, m_{s}\right), \quad m_{u}=m_{d}
$$

- quark-antiquark interaction:

$$
\mathscr{L}_{\bar{q} q}=G\left[\left(\bar{q} \tau^{a} q\right)^{2}+\left(\bar{q} i \gamma_{5} \tau^{a} q\right)^{2}\right]-K\left[\operatorname{det}_{f}\left(\bar{q}\left(1+\gamma_{5}\right) q\right)+\operatorname{det}_{f}\left(\bar{q}\left(1-\gamma_{5}\right) q\right)\right]
$$

- quark-quark interaction:

$$
\mathscr{L}_{q q}=H\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)+(\text { pseudoscalar })
$$

NJL-model treatment of color superconductivity

- NJL-type Lagrangian: $\mathscr{L}=\mathscr{L}_{0}+\mathscr{L}_{\bar{q} q}+\mathscr{L}_{q q}$
- free part:

$$
\mathscr{L}_{0}=\bar{q}(i \not \partial-\hat{m}) q, \quad \hat{m}=\operatorname{diag}_{f}\left(m_{u}, m_{d}, m_{s}\right), \quad m_{u}=m_{d}
$$

- quark-antiquark interaction:

$$
\mathscr{L}_{\bar{q} q}=G\left[\left(\bar{q} \tau^{a} q\right)^{2}+\left(\bar{q} i \gamma_{5} \tau^{a} q\right)^{2}\right]-K\left[\operatorname{det}_{f}\left(\bar{q}\left(1+\gamma_{5}\right) q\right)+\operatorname{det}_{f}\left(\bar{q}\left(1-\gamma_{5}\right) q\right)\right]
$$

- quark-quark interaction:

$$
\mathscr{L}_{q q}=H\left(\bar{q} i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} C \bar{q}^{T}\right)\left(q^{T} C i \gamma_{5} \tau_{A} \lambda_{A^{\prime}} q\right)+\text { (pseudoscalar) }
$$

- considered condensates:
- $\phi_{u}=\langle\bar{u} u\rangle, \quad \phi_{d}=\langle\bar{d} d\rangle, \quad \phi_{a}=\langle\bar{s} s\rangle$
\rightarrow constituent masses: $M_{u}=m_{u}-4 G \phi_{u}+2 K \phi_{d} \phi_{s}, \quad M_{d}=\ldots, \quad M_{s}=\ldots$
- gap parameters: $\Delta_{A}=-2 H\left\langle q^{T} C \gamma_{5} \tau_{A} \lambda_{A} q\right\rangle$

Nambu-Gor'kov formalism

- Mean-field approximation:

$$
\begin{aligned}
\mathscr{L}_{\mathrm{MF}} & =\bar{q}(i \not \partial-\hat{M}) q+\frac{1}{2} \Delta_{A}\left(\bar{q} \gamma_{5} \tau_{A} \lambda_{A} C \bar{q}^{T}\right)+\frac{1}{2} \Delta_{A}^{*}\left(q^{T} C \gamma_{5} \tau_{A} \lambda_{A} q\right) \\
& -2 G\left(\phi_{u}^{2}+\phi_{d}^{2}+\phi_{s}^{2}\right)+4 K \phi_{u} \phi_{d} \phi_{s}-\frac{1}{4 H} \sum_{A}\left|\Delta_{A}\right|^{2}
\end{aligned}
$$

Nambu-Gor'kov formalism

- Mean-field approximation:

$$
\begin{aligned}
\mathscr{L}_{\mathrm{MF}} & =\bar{q}(i \not \partial-\hat{M}) q+\frac{1}{2} \Delta_{A}\left(\bar{q} \gamma_{5} \tau_{A} \lambda_{A} C \bar{q}^{T}\right)+\frac{1}{2} \Delta_{A}^{*}\left(q^{T} C \gamma_{5} \tau_{A} \lambda_{A} q\right) \\
& -2 G\left(\phi_{u}^{2}+\phi_{d}^{2}+\phi_{s}^{2}\right)+4 K \phi_{u} \phi_{d} \phi_{s}-\frac{1}{4 H} \sum_{A}\left|\Delta_{A}\right|^{2}
\end{aligned}
$$

- Artificially double number of degrees of freedom:

$$
\Psi=\frac{1}{\sqrt{2}}\binom{q}{C \bar{q}^{\top}} \quad \text { "Nambu-Gor'kov spinors" }
$$

Nambu-Gor'kov formalism

- Mean-field approximation:

$$
\begin{aligned}
\mathscr{L}_{\mathrm{MF}} & =\bar{q}(i \not \partial-\hat{M}) q+\frac{1}{2} \Delta_{A}\left(\bar{q} \gamma_{5} \tau_{A} \lambda_{A} C \bar{q}^{T}\right)+\frac{1}{2} \Delta_{A}^{*}\left(q^{T} C \gamma_{5} \tau_{A} \lambda_{A} q\right) \\
& -2 G\left(\phi_{u}^{2}+\phi_{d}^{2}+\phi_{s}^{2}\right)+4 K \phi_{u} \phi_{d} \phi_{s}-\frac{1}{4 H} \sum_{A}\left|\Delta_{A}\right|^{2}
\end{aligned}
$$

- Artificially double number of degrees of freedom:

$$
\Psi=\frac{1}{\sqrt{2}}\binom{q}{C \bar{q}^{\top}} \quad \text { "Nambu-Gor'kov spinors" }
$$

$$
\Rightarrow \mathscr{L}_{\mathrm{MF}}+\mu \gamma^{0}=\bar{\psi} S^{-1} \Psi-\mathcal{V}
$$

- inverse NG propagator: $S^{-1}=\left(\begin{array}{cc}i \not \partial-\hat{M}+\mu \gamma^{0} & \sum_{A} \Delta_{A} \gamma_{5} \tau_{A} \lambda_{A} \\ -\sum_{A} \Delta_{A}^{*} \gamma_{5} \tau_{A} \lambda_{A} & i \not \partial-\hat{M}-\mu \gamma^{0}\end{array}\right)$
- "potential": $\mathcal{V}=2 G\left(\phi_{U}^{2}+\phi_{d}^{2}+\phi_{S}^{2}\right)-4 K \phi_{u} \phi_{d} \phi_{S}+\frac{1}{4 H} \sum_{A}\left|\Delta_{A}\right|^{2}$

Thermodynamic potential

- Mean-field Lagrangian: $\mathscr{L}_{\text {MF }}+\mu \gamma^{0}=\bar{\Psi} S^{-1} \Psi-\mathcal{V}$

$$
\Rightarrow \Omega(T, \mu)=-\frac{1}{2} \frac{T}{V} \operatorname{Tr} \ln \frac{S^{-1}}{T}+\mathcal{V}
$$

Thermodynamic potential

- Mean-field Lagrangian: $\mathscr{L}_{\text {MF }}+\mu \gamma^{0}=\bar{\Psi} S^{-1} \Psi-\mathcal{V}$

$$
\Rightarrow \Omega(T, \mu)=-\frac{1}{2} \frac{T}{V} \mathbf{T r} \ln \frac{S^{-1}}{T}+\mathcal{V}=-\frac{1}{2} T \sum_{n} \int \frac{d^{3} k}{(2 \pi)^{3}} \ln \operatorname{det}\left(\frac{1}{T} S^{-1}\left(i \omega_{n}, \vec{k}\right)\right)+\mathcal{V}
$$

Thermodynamic potential

- Mean-field Lagrangian: $\mathscr{L}_{\text {MF }}+\mu \gamma^{0}=\bar{\Psi} S^{-1} \Psi-\mathcal{V}$

$$
\Rightarrow \Omega(T, \mu)=-\frac{1}{2} \frac{T}{V} \mathbf{T r} \ln \frac{S^{-1}}{T}+\mathcal{V}=-\frac{1}{2} T \sum_{n} \int \frac{d^{3} k}{(2 \pi)^{3}} \ln \operatorname{det}\left(\frac{1}{T} S^{-1}\left(i \omega_{n}, \vec{k}\right)\right)+\mathcal{V}
$$

- Result after turning out the Matsubara sum:

$$
\Omega(T, \mu)=-\frac{1}{2} \sum_{\lambda} \int \frac{d^{3} k}{(2 \pi)^{3}}\left\{\frac{\left|E_{\lambda}\right|}{2}+T \ln \left(1+e^{-\left|E_{\lambda}\right| / T}\right)\right\}+\mathcal{V}
$$

- effective Dirac Hamiltonian: $S^{-1}=\gamma^{0}\left(i \omega_{n}-H\right)$
- dispersion relations: $E_{\lambda}(\vec{k})=$ eigenvalues of H

Thermodynamic potential

- Mean-field Lagrangian: $\mathscr{L}_{\mathrm{MF}}+\mu \gamma^{0}=\bar{\Psi} S^{-1} \Psi-\mathcal{V}$

$$
\Rightarrow \Omega(T, \mu)=-\frac{1}{2} \frac{T}{V} \mathbf{T r} \ln \frac{S^{-1}}{T}+\mathcal{V}=-\frac{1}{2} T \sum_{n} \int \frac{d^{3} k}{(2 \pi)^{3}} \ln \operatorname{det}\left(\frac{1}{T} S^{-1}\left(i \omega_{n}, \vec{k}\right)\right)+\mathcal{V}
$$

- Result after turning out the Matsubara sum:

$$
\Omega(T, \mu)=-\frac{1}{2} \sum_{\lambda} \int \frac{d^{3} k}{(2 \pi)^{3}}\left\{\frac{\left|E_{\lambda}\right|}{2}+T \ln \left(1+e^{-\left|E_{\lambda}\right| / T}\right)\right\}+\mathcal{V}
$$

- effective Dirac Hamiltonian: $S^{-1}=\gamma^{0}\left(i \omega_{n}-H\right)$
- dispersion relations: $E_{\lambda}(\vec{k})=$ eigenvalues of H
- Dimension: $2(\mathrm{NG}) \times 4($ Dirac $) \times N_{f} \times N_{c}$
- $N_{f}=2$: 48 eigenvalues
- $N_{f}=3: 72$ eigenvalues
(always in pairs $\left(E_{\lambda},-E_{\lambda}\right)$)

Example 1: 2SC phase in the chiral limit

$4 \times 2 \times 3=24$ positive eigenvalues

- paired (red and green) quarks:
- $\omega_{-}(\vec{p})=\sqrt{(|\vec{p}|-\mu)^{2}+|\Delta|^{2}}$
(8 fold)
- $\omega_{+}(\vec{p})=\sqrt{(|\vec{p}|+\mu)^{2}+|\Delta|^{2}}$
(8 fold)
- unpaired (blue) quarks:

- $\epsilon_{-}(\vec{p})=||\vec{p}|-\mu| \quad(4$ fold $)$
- $\epsilon_{+}(\vec{p})=||\vec{p}|+\mu| \quad$ (4 fold)

Example 2: ideal CFL phase in the chiral limit

$4 \times 3 \times 3=36$ positive eigenvalues

- octet:
- $\omega_{8,-}(\vec{p})=\sqrt{(|\vec{p}|-\mu)^{2}+|\Delta|^{2}}$
(16 fold)
- $\omega_{8,+}(\vec{p})=\sqrt{(|\vec{p}|+\mu)^{2}+|\Delta|^{2}}$
(16 fold)
- singlet:
- $\omega_{1,-}(\vec{p})=\sqrt{(|\vec{p}|-\mu)^{2}+|2 \Delta|^{2}}$
(2 fold)
- $\omega_{1,+}(\vec{p})=\sqrt{(|\vec{p}|+\mu)^{2}+|2 \Delta|^{2}}$
(2 fold)

Phase diagram with realistic quark masses

[M. Oertel, MB (2002)]

- Most eigenvalues have to be found numerically.
- Cutoff artifacts at high μ (not only, see Hosein's talk)

Role of the strange quark mass

- NJL model: treatment of (dynamical) masses and gaps on an equal footing
$\rightarrow T$ and μ dependent quantities

Role of the strange quark mass

- NJL model: treatment of (dynamical) masses and gaps on an equal footing
$\rightarrow T$ and μ dependent quantities
$\Delta_{2} \quad \Delta_{5,7}$
- Masses:

$\rightarrow M_{s}$ large in the 2SC phase
\rightarrow stabilizes the 2SC phase
$M_{u, d} \quad M_{s}$

Role of the strange quark mass

- NJL model: treatment of (dynamical) masses and gaps on an equal footing
$\rightarrow T$ and μ dependent quantities
- Masses:

$M_{s}=m_{s}-4 G\langle\bar{s} s\rangle+2 K\langle\bar{u} u\rangle\langle\bar{d} d\rangle$
$\rightarrow M_{s}$ large in the 2SC phase
\rightarrow stabilizes the 2SC phase
- Dyson-Schwinger QCD studies [Nickel, Alkofer, Wambach (2006)]

\rightarrow gluons screened by light quarks
$\rightarrow M_{s}$ smaller in the 2SC phase
\rightarrow CFL phase favored much earlier
$M_{u, d} \quad M_{s}$
$\begin{array}{ll}\Delta_{2} & \Delta_{5,7}\end{array}$

Compact star conditions

- constraints in compact stars:
- color neutrality:

$$
n_{r}=n_{g}=n_{b}
$$

- electric neutrality: $\quad n_{Q}=\frac{2}{3} n_{u}-\frac{1}{3} n_{d}-\frac{1}{3} n_{s}-n_{e}=0$
- β equilibrium: $\quad \mu_{e}=\mu_{d}-\mu_{u} \Rightarrow n_{e} \ll n_{u, d}$

Compact star conditions

- constraints in compact stars:
- color neutrality: (minor effect)
$\left.\begin{array}{l}\text { - electric neutrality: } \\ \text { - } \beta \text { equilibrium: }\end{array}\right\} \quad \frac{2}{3} n_{u}-\frac{1}{3} n_{d}-\frac{1}{3} n_{s} \approx 0$

Compact star conditions

- constraints in compact stars:
- color neutrality: (minor effect)
$\left.\begin{array}{l}\text { - electric neutrality: } \\ \text { - } \beta \text { equilibrium: }\end{array}\right\} \quad \frac{2}{3} n_{u}-\frac{1}{3} n_{d}-\frac{1}{3} n_{s} \approx 0$
- $M_{s}>M_{u, d} \Rightarrow$ All flavors have different Fermi momenta.

Compact star conditions

- constraints in compact stars:
- color neutrality: (minor effect)
$\left.\begin{array}{l}\text { - electric neutrality: } \\ \text { - } \beta \text { equilibrium: }\end{array}\right\} \quad \frac{2}{3} n_{u}-\frac{1}{3} n_{d}-\frac{1}{3} n_{s} \approx 0$
- $M_{s}>M_{u, d} \quad \Rightarrow \quad$ All flavors have different Fermi momenta.
- Expansion in small M_{s} [Alford, Rajagopal (2002)]
\rightarrow equidistant splitting
\rightarrow no 2SC phase in compact stars

Compact star conditions

- constraints in compact stars:
- color neutrality: (minor effect)
$\left.\begin{array}{l}\text { - electric neutrality: } \\ \text { - } \beta \text { equilibrium: }\end{array}\right\} \quad \frac{2}{3} n_{u}-\frac{1}{3} n_{d}-\frac{1}{3} n_{s} \approx 0$
- $M_{s}>M_{u, d} \quad \Rightarrow \quad$ All flavors have different Fermi momenta.
- Expansion in small M_{s} [Alford, Rajagopal (2002)]
\rightarrow equidistant splitting
\rightarrow no 2SC phase in compact stars
- Large M_{s}
$\rightarrow n_{s} \approx 0, n_{d} \approx 2 n_{u} \Rightarrow p_{F}^{(d)} \approx 2^{1 / 3} p_{F}^{(u)} \approx 1.26 p_{F}^{(u)}$
\rightarrow 2SC pairing possible for strong couplings

Neutral matter: further aspects

1. role of electrons in unpaired quark matter

- two massles flavors:
neutral matter: $\frac{2}{3} n_{u}-\frac{1}{3} n_{d}-n_{e}=0$
densities at $T=0: n_{u}=\frac{\mu_{u}^{3}}{\pi^{2}}, \quad n_{d}=\frac{\mu_{d}^{3}}{\pi^{2}}, \quad n_{e}=\frac{\mu_{e}^{3}}{3 \pi^{2}}=\frac{\left(\mu_{d}-\mu_{u}\right)^{3}}{3 \pi^{2}}$
\rightarrow expectation: n_{e} very small
$\Rightarrow n_{d} \approx 2 n_{u} \Rightarrow \mu_{d} \approx 2^{1 / 3} \mu_{u} \Rightarrow n_{e} \approx \frac{1}{3}\left(2^{1 / 3}-1\right)^{3} n_{u} \approx 0.006 n_{u}$
\rightarrow expectation confirmed
- including strange quarks: n_{e} even lower
\Rightarrow electrons in electrically neutral normal quark matter negligible

2. CSC phases

- General property of (color-) super conducting matter at $T=0$: equal densities of pairing partners

2. CSC phases

- General property of (color-) super conducting matter at $T=0$: equal densities of pairing partners
- CFL: $n_{u, g}=n_{d, r}, \quad n_{u, b}=n_{s, r}, n_{d, b}=n_{s, g}, \ldots$
$\Rightarrow \quad n_{u}=n_{u, r}+n_{u, g}+n_{u, g}=n_{u, r}+n_{d, r}+n_{s, r}=n_{r}$
similarly: $n_{d}=n_{g}, \quad n_{s}=n_{b}$

2. CSC phases

- General property of (color-) super conducting matter at $T=0$: equal densities of pairing partners
- CFL: $n_{u, g}=n_{d, r}, \quad n_{u, b}=n_{s, r}, n_{d, b}=n_{s, g}, \ldots$
$\Rightarrow \quad n_{u}=n_{u, r}+n_{u, g}+n_{u, g}=n_{u, r}+n_{d, r}+n_{s, r}=n_{r}$
similarly: $n_{d}=n_{g}, \quad n_{s}=n_{b}$

\Rightarrow Color-neutral CFL matter at $T=0$ is automatically electrically neutral!

2. CSC phases

- General property of (color-) super conducting matter at $T=0$: equal densities of pairing partners
- CFL: $n_{u, g}=n_{d, r}, \quad n_{u, b}=n_{s, r}, n_{d, b}=n_{s, g}, \ldots$
$\Rightarrow \quad n_{u}=n_{u, r}+n_{u, g}+n_{u, g}=n_{u, r}+n_{d, r}+n_{s, r}=n_{r}$
similarly: $n_{d}=n_{g}, \quad n_{s}=n_{b}$

\Rightarrow Color-neutral CFL matter at $T=0$ is automatically electrically neutral!
- 2SC: $n_{u, r}+n_{u, g}=n_{d, r}+n_{d, g}$
\Rightarrow electr. neutralization only by blue quarks (and electrons) \Rightarrow large $\mu_{d}-\mu_{u}$

2. CSC phases

- General property of (color-) super conducting matter at $T=0$: equal densities of pairing partners
- CFL: $n_{u, g}=n_{d, r}, n_{u, b}=n_{s, r}, n_{d, b}=n_{s, g}, \ldots$

$$
\Rightarrow \quad n_{u}=n_{u, r}+n_{u, g}+n_{u, g}=n_{u, r}+n_{d, r}+n_{s, r}=n_{r}
$$

$$
\text { similarly: } \quad n_{d}=n_{g}, \quad n_{s}=n_{b}
$$

\Rightarrow Color-neutral CFL matter at $T=0$ is automatically electrically neutral!

- 2SC: $n_{u, r}+n_{u, g}=n_{d, r}+n_{d, g}$
\Rightarrow electr. neutralization only by blue quarks (and electrons) \Rightarrow large $\mu_{d}-\mu_{u}$
$\Rightarrow \quad$ 2SC phase strongly affected by neutrality condistions

NJL model results

Phase diagram without neutrality constraints
[M. Oertel, MB (2002)]

NJL model results

Phase diagram with neutrality constraints: "strong" qq coupling ($H=G$)
[Rüster, Werth, MB, Shovkovy, Rischke, (2005)]

NJL model results

Phase diagram with neutrality constraints: "intermediate" qq coupling ($H=0.75 G$)
[Rüster, Werth, MB, Shovkovy, Rischke, (2005)]

NJL model results

Phase diagram with neutrality constraints: "intermediate" qq coupling ($H=0.75 G$)
[Rüster, Werth, MB, Shovkovy, Rischke, (2005)]

\rightarrow strong parameter dependence

Gapless color superconductors

- unequal Fermi momenta: $\quad p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
free energy

Gapless color superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- splitting of the quasiparticle modes: $\omega(\vec{p}) \rightarrow\left|\omega(\vec{p}) \pm \delta p_{F}\right|$
free energy

Gapless color superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- splitting of the quasiparticle modes: $\omega(\vec{p}) \rightarrow\left|\omega(\vec{p}) \pm \delta p_{F}\right|$
- $\delta p_{F}>\Delta \rightarrow$ gapless modes

Gapless color superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- splitting of the quasiparticle modes: $\omega(\vec{p}) \rightarrow\left|\omega(\vec{p}) \pm \delta p_{F}\right|$
- $\delta p_{F}>\Delta \rightarrow$ gapless modes
- gapless CSC phases
- unstable solution (maximum) at fixed μ_{e}
- can be most favored neutral homogeneous solution

[Shovkovy, Huang (2003)]

Gapless color superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- splitting of the quasiparticle modes: $\omega(\vec{p}) \rightarrow\left|\omega(\vec{p}) \pm \delta p_{F}\right|$
- $\delta p_{F}>\Delta \rightarrow$ gapless modes
- gapless CSC phases
- unstable solution (maximum) at fixed μ_{e}
- can be most favored neutral homogeneous solution
- Meissner effect:

$$
m_{M, a}^{2}=-\frac{1}{2} \lim _{\vec{p} \rightarrow 0}\left(g_{i j}+\frac{p_{i} p_{j}}{p^{2}}\right) \Pi_{a a}^{i j}(0, \vec{p})
$$

free energy

[Shovkovy, Huang (2003)]

Gapless color superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- splitting of the quasiparticle modes: $\omega(\vec{p}) \rightarrow\left|\omega(\vec{p}) \pm \delta p_{F}\right|$
- $\delta p_{F}>\Delta \rightarrow$ gapless modes
- gapless CSC phases
- unstable solution (maximum) at fixed μ_{e}
- can be most favored neutral homogeneous solution
- Meissner effect:

$$
m_{M, a}^{2}=-\frac{1}{2} \lim _{\vec{p} \rightarrow 0}\left(g_{i j}+\frac{p_{i} p_{j}}{p^{2}}\right) \Pi_{a a}^{i j}(0, \vec{p})
$$

free energy

[Shovkovy, Huang (2003)]

- chromomagnetic instability: $m_{M, a}^{2}<0$ for $\delta p_{F}>\left\{\begin{array}{cl}\frac{\Delta}{\sqrt{2}} & a=4, \ldots, 7 \\ \Delta & a=8\end{array}\right.$

Chromomagnetic instabilities

- Phase diagram with instability regions
[Fukushima (2005)]

Main issues

- strong parameter dependence
- unstable phases

How to reduce of the parameter dependence?

How to reduce of the parameter dependence?

1. Theoretical approaches: starting from QCD

How to reduce of the parameter dependence?

1. Theoretical approaches: starting from QCD

- Dyson-Schwinger equations:
[Nickel, Alkofer, Wambach $(2006,2008)$,
Müller, MB, Wambach $(2013,2016)]$
- phase diagram without neutrality constraints
- no cutoff artifacts at large μ
- determination of the pressure difficult

[Müller et al. (2013)]
- still strong dependence on truncations and renormalization conditions

How to reduce of the parameter dependence?

1. Theoretical approaches: starting from QCD

- Dyson-Schwinger equations:
[Nickel, Alkofer, Wambach $(2006,2008)$,
Müller, MB, Wambach $(2013,2016)]$
- phase diagram without neutrality constraints
- no cutoff artifacts at large μ
- determination of the pressure difficult

[Müller et al. (2013)]
- still strong dependence on truncations and renormalization conditions

How to reduce of the parameter dependence?

1. Theoretical approaches: starting from QCD

- Dyson-Schwinger equations:
[Nickel, Alkofer, Wambach $(2006,2008)$,
Müller, MB, Wambach $(2013,2016)]$
- phase diagram without neutrality constraints
- no cutoff artifacts at large μ
- determination of the pressure difficult

[Müller et al. (2016)]
- still strong dependence on truncations and renormalization conditions

How to reduce of the parameter dependence?

1. Theoretical approaches: starting from QCD

- Dyson-Schwinger equations:
[Nickel, Alkofer, Wambach $(2006,2008)$,
Müller, MB, Wambach $(2013,2016)$]
- phase diagram without neutrality constraints
- no cutoff artifacts at large μ
- determination of the pressure difficult

[Müller et al. (2016)]
- still strong dependence on truncations and renormalization conditions
- Functional renormalization group:
[Braun, Schallmo (2022)]
- study 2SC pairing at $T=0$ by solving QCD flow equations at large $\mu \rightarrow$ very large gaps!

$$
\text { Equations al large } \mu \sim \text { very large gaps: }
$$

[Braun, Schallmo (2022)]

2. Using empirical information

2. Using empirical information

- Fitting NJL parameters to astrophysical constraints and heavy-ion data:
[Klähn, Blaschke, ... $(2006,2007,2013, \ldots)$]
- purely hadronic matter inconsistent
(see also [Annala et al. (2020)])
- vector repulsion to be stiff enough
- strong $q q$ interaction

[Klähn, Łastowiecki, Blaschke (2013)]

2. Using empirical information

- Fitting NJL parameters to astrophysical constraints and heavy-ion data:
[Klähn, Blaschke, ... $(2006,2007,2013, \ldots)$]
- purely hadronic matter inconsistent
(see also [Annala et al. (2020)])
- vector repulsion to be stiff enough
- strong $q q$ interaction
- Signals of CSC in the gravitational-wave spectrum from neutron-star mergers?

[Klähn, Łastowiecki, Blaschke (2013)]

Trapped neutrinos

- Proto-neutron stars: neutrinos trapped during the first few seconds
\rightarrow lepton number conserved
\rightarrow more electrons:

$$
\mu_{e}=\mu_{d}-\mu_{u}+\mu_{\nu}
$$

\rightarrow favors 2SC, suppresses CFL
[Steiner, Reddy, Prakash, PRD (2002)]

Trapped neutrinos

- Proto-neutron stars: neutrinos trapped during the first few seconds
\rightarrow lepton number conserved
\rightarrow more electrons:

$$
\mu_{e}=\mu_{d}-\mu_{u}+\mu_{\nu}
$$

\rightarrow favors 2SC, suppresses CFL
[Steiner, Reddy, Prakash, PRD (2002)]

[Rüster, Werth, M.B., Shovkovy, Rischke, PRD (2006)]

Trapped neutrinos

- Proto-neutron stars: neutrinos trapped during the first few seconds
\rightarrow lepton number conserved
\rightarrow more electrons:

$$
\mu_{e}=\mu_{d}-\mu_{u}+\mu_{\nu}
$$

\rightarrow favors 2SC, suppresses CFL [Steiner, Reddy, Prakash, PRD (2002)]

[Rüster, Werth, M.B., Shovkovy, Rischke, PRD (2006)]

Trapped neutrinos

- Proto-neutron stars: neutrinos trapped during the first few seconds
\rightarrow lepton number conserved
\rightarrow more electrons:

$$
\mu_{e}=\mu_{d}-\mu_{u}+\mu_{\nu}
$$

\rightarrow favors 2SC, suppresses CFL [Steiner, Reddy, Prakash, PRD (2002)]

[Rüster, Werth, M.B., Shovkovy, Rischke, PRD (2006)]

Trapped neutrinos

- Proto-neutron stars: neutrinos trapped during the first few seconds
\rightarrow lepton number conserved
\rightarrow more electrons:

$$
\mu_{e}=\mu_{d}-\mu_{u}+\mu_{\nu}
$$

\rightarrow favors 2SC, suppresses CFL [Steiner, Reddy, Prakash, PRD (2002)]

- also relevant for neutron-star mergers!

[Rüster, Werth, M.B., Shovkovy, Rischke, PRD (2006)]

Main issues

- strong parameter dependence
- unstable phases

Kaon condensation in the CFL phase

- CFL: chiral symmetry broken \rightarrow Goldstone bosons $\sim \mathcal{O}(10 \mathrm{MeV})$
[Son, Stephanov, PRD (2000)]
$>\mu_{s}^{e f f} \simeq \frac{m_{s}^{2}-m_{u}^{2}}{2 \mu} \rightarrow K^{0}$ condensation \quad [T. Schäfer, PRL (2000); Bedaque, Schäfer, NPA (2002)]
- NJL model: include pseudoscalar diquark conds. [m..., plB (2005); M.M. Forbes, PRD (2005)]

Kaon condensation in the CFL phase

- CFL: chiral symmetry broken \rightarrow Goldstone bosons $\sim \mathcal{O}(10 \mathrm{MeV})$
[Son, Stephanov, PRD (2000)]
$>\mu_{s}^{e f f} \simeq \frac{m_{s}^{2}-m_{u}^{2}}{2 \mu} \rightarrow K^{0}$ condensation \quad [T. Schäfer, PRL (2000); Bedaque, Schäfer, NPA (2002)]
- NJL model: include pseudoscalar diquark conds. [m.B., plB (2005); M.M. Forbes, PRD (2005)]
- phase diagram:

[Rüster, Werth, M.B., Shovkovy, Rischke, PRD (2005)]

[H. Basler, M.B., PRD (2010); H. Warringa (2006)]

Inhomogeneous (crystalline) superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$

Inhomogeneous (crystalline) superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- option 1: still BCS-like pairing

Inhomogeneous (crystalline) superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- option 1: still BCS-like pairing
- first equalize Fermi momenta

Inhomogeneous (crystalline) superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- option 1: still BCS-like pairing
- first equalize Fermi momenta

Inhomogeneous (crystalline) superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- option 1: still BCS-like pairing
- first equalize Fermi momenta
- then pair

Inhomogeneous (crystalline) superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- option 1: still BCS-like pairing
- first equalize Fermi momenta
- then pair

Inhomogeneous (crystalline) superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- option 1: still BCS-like pairing
- first equalize Fermi momenta
- then pair
- favored if $\delta p_{F} \lesssim \frac{\Delta}{\sqrt{2}}$ [Chandrasekhar, Clogston (1962)]

Inhomogeneous (crystalline) superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- option 1: still BCS-like pairing
- first equalize Fermi momenta
- then pair
- favored if $\delta p_{F} \lesssim \frac{\Delta}{\sqrt{2}}$ [Chandrasekhar, Clogston (1962)]

- option 2: pairs with nonzero total momentum $\rightarrow p_{F}^{a} \neq p_{F}^{b}$ no problem

Inhomogeneous (crystalline) superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- option 1: still BCS-like pairing
- first equalize Fermi momenta
- then pair
- favored if $\delta p_{F} \lesssim \frac{\Delta}{\sqrt{2}}$ [Chandrasekhar, Clogston (1962)]

- option 2: pairs with nonzero total momentum $\rightarrow p_{F}^{a} \neq p_{F}^{b}$ no problem
- FF: [P. Fulde, R.A. Ferrell, Phys. Rev., 1964]
- single plane wave, $\langle q(\vec{x}) q(\vec{x})\rangle \sim \Delta e^{2 i \vec{q} \cdot \vec{x}}$ for fixed \vec{q}
- disfavored by phase space

Inhomogeneous (crystalline) superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- option 1: still BCS-like pairing
- first equalize Fermi momenta
- then pair
- favored if $\delta p_{F} \lesssim \frac{\Delta}{\sqrt{2}}$ [Chandrasekhar, Clogston (1962)]

- option 2: pairs with nonzero total momentum $\rightarrow p_{F}^{a} \neq p_{F}^{b}$ no problem
- FF: [P. Fulde, R.A. Ferrell, Phys. Rev., 1964]
- single plane wave, $\langle q(\vec{x}) q(\vec{x})\rangle \sim \Delta e^{2 i \vec{q} \cdot \vec{x}}$ for fixed \vec{q}
- disfavored by phase space
- LO: [Larkin, Ovchinnikov, Zh. Eksp. Teor. Fiz., 1964]

- multiple plane waves (e.g., $\cos (2 \vec{q} \cdot \vec{x}))$

Inhomogeneous (crystalline) superconductors

- unequal Fermi momenta: $p_{F}^{a, b}=\bar{p}_{F} \pm \delta p_{F}$
- option 1: still BCS-like pairing
- first equalize Fermi momenta
- then pair
- favored if $\delta p_{F} \lesssim \frac{\Delta}{\sqrt{2}}$ [Chandrasekhar, Clogston (1962)]

- option 2: pairs with nonzero total momentum $\rightarrow p_{F}^{a} \neq p_{F}^{b}$ no problem
- FF: [P. Fulde, R.A. Ferrell, Phys. Rev., 1964]
- single plane wave, $\langle q(\vec{x}) q(\vec{x})\rangle \sim \Delta e^{2 i \vec{q} \cdot \vec{x}}$ for fixed \vec{q}
- disfavored by phase space
- LO: [Larkin, Ovchinnikov, Zh. Eksp. Teor. Fiz., 1964]

- multiple plane waves (e.g., $\cos (2 \vec{q} \cdot \vec{x}))$
- chromomagnetic instabilities = instabilities towards LOFF phases in CSC? [Giannakis, Ren; Giannakis, Hou, Ren, PLB (2005)]

LOFF phases in color superconductivity

- Review: [Anglani et al., Rev. Mod. Phys. (2014)])
- Most works in literature:
- single plane wave (FF)
e.g., [Alford, Bowers, Rajagopal (2001), Sedrakian, Rischke (2009)]
- superposition of several plane waves with different directions, but equal wave lengths (mostly Ginzburg-Landau analyses)
e.g., [Bowers, Rajagopal (2002), Casalbuoni et al. (2006)]
- Alternative framework:

[Rajagopal, Sharma, PRD (2006)]
[D. Nickel, M.B., PRD (2009)]
- NJL model for inhomogeneous pairing
- superimpose different wave lengths

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{\top}(\vec{x}) C \gamma_{5} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{\top}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{\top}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$
- free-energy gain:

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{\top}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$
- free-energy gain:

- inhomogenous solutions favored in a certain window!

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{\top}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$
- free-energy gain:

- inhomogenous solutions favored in a certain window!

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{\top}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$
- free-energy gain:

- BCS
- inhomogenous solutions favored in a certain window!

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{\top}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$
- free-energy gain:

- BCS \rightarrow solitonic
- inhomogenous solutions favored in a certain window!

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{\top}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$
- free-energy gain:

- BCS \rightarrow solitonic
- inhomogenous solutions favored in a certain window!

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{T}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$
- free-energy gain:

- BCS \rightarrow solitonic
- inhomogenous solutions favored in a certain window!

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{\top}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$
- free-energy gain:

- BCS \rightarrow solitonic \rightarrow sinusoidal
- inhomogenous solutions favored in a certain window!

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{\top}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$
- free-energy gain:

- BCS \rightarrow solitonic \rightarrow sinusoidal
- inhomogenous solutions favored in a certain window!

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{\top}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$
- free-energy gain:

- BCS \rightarrow solitonic \rightarrow sinusoidal
- inhomogenous solutions favored in a certain window!

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{\top}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$
- free-energy gain:

- BCS \rightarrow solitonic \rightarrow sinusoidal
- inhomogenous solutions favored in a certain window!

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\quad \Delta(\vec{x}) \propto\left\langle q^{\top}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$
- free-energy gain:

- BCS \rightarrow solitonic \rightarrow sinusoidal
- inhomogenous solutions favored in a certain window!

NJL-model for LO phases

[D. Nickel, M.B., PRD (2009)]

- space dependent mean-fields: $\Delta(\vec{x}) \propto\left\langle q^{T}(\vec{x}) C_{\gamma_{5}} \tau_{2} \lambda_{2} q(\vec{x})\right\rangle$
- simplifications:
- two fermion species with $\mu_{i}=\bar{\mu} \pm \delta \mu$
- 1-dim periodic ansatz: $\Delta(\vec{x})=\sum_{k} \Delta_{k} e^{2 i k q z}$
- free-energy gain:

favored gap functions:

- BCS \rightarrow solitonic \rightarrow sinusoidal \rightarrow normal
- inhomogenous solutions favored in a certain window!

