

Heavy quark interaction in hot QCD matter: open charm and bottom dynamics in relativistic heavy-ion collisions

Maria Lucia Sambataro

In collaboration with: V. Minissale, S. Plumari, V. Greco

Dipartimento di Fisica e Astronomia 'E.Majorana'- Università degli Studi di Catania

INFN -Laboratori Nazionali del Sud (LNS)

Outline

Catania Quasi-Particle Model for charm quark dynamics:

 R_{AA} , v_n and their correlations \rightarrow Spatial diffusion coefficient D_s (T) of charm.

• Predictions for bottom quark

 R_{AA} , v_2 and v_3 of electrons from semileptonic B-meson decay.

- Spatial diffusion coefficient D_s (T): charm vs bottom and the infinite mass limit
- Preliminary: Extension to momentum dependent QPM
- Conclusions and new perspectives

Basic scales of charm and bottom quarks

2. A.Andronic EPJ C76 (2016), 3) R.Rapp, F.Prino J.Phys. G43 (2016)

CATANIA MODEL: QUASI-PARTICLE MODEL AND TRANSPORT THEORY

R_{AA}, V_n and V_n -V_m correlations in charm sector

Quasi Particle Model (QPM) fitting IQCD

Relativistic Boltzmann equation at finite η/s

Bulk evolution

$$p^{\mu}\partial_{\mu}f_{q}(x,p)+m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{q}(x,p)=C[f_{q},f_{g}]$$

$$p^{\mu}\partial_{\mu}f_{g}(x,p)+m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{g}(x,p)=C[f_{q},f_{g}]$$
Free-streaming
field interaction
$$\varepsilon - 3p \neq 0$$
Free-streaming
Collision term
gauged to some $\eta/s \neq 0$
Free-streaming
Collision term
$$\sigma = 0$$
Collisio

$$p^{\mu}\partial_{\mu}f_Q(x,p)=C[f_q,f_g,f_Q]$$

$$C[f_{q}, f_{g}, f_{Q}] = \frac{1}{2E_{1}} \int \frac{d^{3}p_{2}}{2E_{2}(2\pi)^{3}} \int \frac{d^{3}p_{1}'}{2E_{1}'(2\pi)^{3}} \times [f_{Q}(p_{1}')f_{q,g}(p_{2}') - f_{Q}(p_{1})f_{q,g}(p_{2})] \times |M_{(q,g) \rightarrow Q}(p_{1}p_{2} \rightarrow p_{1}'p_{2}')| \times (2\pi)^{4} \delta^{4}(p_{1}+p_{2}-p_{1}'-p_{2}')$$

Feynman diagrams at first order pQCD for HQs-bulk interaction:

Scattering matrices $M_{q,q}$ by QPM fit to IQCD thermodynamics

HADRONIZATION: hybrid Coalescence + fragmentation

For details: S. Plumari talk [29 Sept at 11.15]

Catania QPM: some prediction for charm...

Good description of

R_{AA}, V₂ at RHIC & LHC energies within error bars

0.08 0.04

Pb - Pb 5.02 TeV

0.08

v₂

0.12

0.1

0.0

0

2 3

8

p₊ (GeV/c)

9 10

0.01

0.02

0.04

v₂

0.06

correlation for hard particles wrt bulk

ALICE collaboration, *Phys.Lett.B* 813 (2021) 136054 M.L. Sambataro, et al., *Eur.Phys.J.C* 82 (2022)

Spatial diffusion coefficient of charm quark

Reviews:

- F. Prino and R. Rapp, JPG(2019)
- X. Dong and V. Greco, Prog.Part.Nucl.Phys. (2019)
- Jiaxing Zhao et al., arXiv:2005.08277

Not a model fit to IQCD data, but D_s estimate that comes from results of R_{AA} (p_T) and v_2 (p_T)

We have a probe with $\tau_{therm}\approx\tau_{QGP}$

$$\tau_{th} = \frac{M}{2\pi T^2} (2\pi T D_s) \cong 1.8 \frac{2\pi T D_s}{(T/T_c)^2} \text{ fm/c}$$

FUTURE:

- -Access low p and precision data (detector
- upgrade)
- -Better insight into hadronization
- -New observables
- -Bottom Main focus of this talk

CHARM VS BOTTOM: Ds IN THE INFINITE MASS LIMIT

Extension to bottom dynamics: R_{AA}

Hadronization with coalescence + fragmentation model

 \succ Prediction for B meson R_{AA}

R_{AA} of electrons from semileptonic B meson decay

Extension to bottom dynamics: v (n=2,3) Data from ALICE, PRL 126, 162001 (2021)

- Prediction for B meson
- electrons from semileptonic B meson decay within a coal + fragm model

No parameters changed with respect to charm dynamics

M.L. Sambataro et al., e-Print: 2304.02953

Compared to charm quark

- Efficiency of conversion of ε_2 :
- → 15% smaller for v_2 in most central collisions. → 40% smaller for v_2 at 30–50% centrality.

- Efficiency of conversion of ε_3 : > 30% smaller for v_3 at both 0-10% and 30-50% centralities.

From central to peripheral

- enhancement of v_2 ($\epsilon_2(0-10\%) \approx 0.13$ and $\epsilon_2(30-50\%) \approx 0.42$).
- Similar $v_3 (\epsilon_3(0-10^{-})) \approx 0.11$ and $\epsilon_3(30-50^{-})) \approx 0.21$.

$(2\pi T)D_s$: Charm quark vs Bottom quark

From D_{c} we obtain (in the 1-2T_c range):

- $T_{th}(c) \sim 5 \text{ fm/c}$
- $T_{th}^{(i)}(b) \sim 11 \text{ fm/c}$ breaking w.r.t. the relation: $T_{th}(b) = (M_b/M_c)T_{th}(c) \sim 3.3 T_{th}(c) \sim 16.5 \text{ fm/c}$

- IQCD data are in M_Q→∞, so the D_s evaluated is mass independent + quenched medium
- QPM use finite mass and includes dynamical fermions

$$D_s = \frac{T}{M \gamma} = \frac{T}{M} \tau_{th}$$

From kinetic theory is expected that: $\tau_{th}(b) / \tau_{th}(c) \approx \gamma_c / \gamma_b \approx M_b / M_c$

In QPM approach $\rightarrow D_s(c)$ is 30-40% larger than $D_s(b)$ (no mass independence)

 $M{\rightarrow}$ ∞ limit is not reached for charm

$(2\pi T)D_s$ ratios: Charm quark vs Bottom quark

fictitious super-heavy quark staying in the $\rm M_Q \rightarrow \infty$ limit

> $D_s(M_{charm})/D_s(M)$ as a function of M/M_{charm} at T_C:

Saturation scale of Ds for $M_Q \sim 8 M_{charm} \gtrsim 10 \text{ GeV}$ Ds $(M_{charm})/Ds(M \rightarrow \infty) = 1.9$ for QPM. Ds $(M_{charm})/Ds(M \rightarrow \infty) \simeq 1.4$ for pQCD.

- Ratios at fixed mass as a function of T:
 - **b/M^{*}: about 25% in all T range**
 - c/b: about 50% at $\rm T_{c}\,$ and not smaller than 30%
 - c/M*: factor 1.5-2

$(2\pi T)D_s$: Charm quark vs Bottom quark

- From D_v we obtain (in the 1-2T_v range):
- $T_{th}(c) \sim 5 \text{ fm/c}$
- $T_{th}^{(i)}(b) \sim 11 \text{ fm/c}$ breaking w.r.t. the relation: $T_{th}(b) = (M_b/M_c)T_{th}(c) \sim 3.3 T_{th}(c) \sim 16.5 \text{ fm/c}$

 IQCD data are in M_Q→∞ so D_s is mass independent

$$D_s = \frac{T}{M \gamma} = \frac{T}{M} \tau_{th}$$

• QPM use finite mass and includes dynamical fermions

From kinetic theory is expected that: $\tau_{th}(b) / \tau_{th}(c) \approx \gamma_c / \gamma_b \approx M_b / M_c$

D_s(T) from QPM in the infinite mass limit is the more pertinent to compare to IQCD simulations evaluated taking into account dynamical fermions

PRELIMINARY:

MOMENTUM DEPENDENT QPM

Going back to Quasi Particle Model (QPM)... Equation of State and Susceptibilities

Thermal masses of gluons and light quarks

N_f=2+1 Bulk: u,d,s

QPM Standard

no momentum dependence

 $g^{2}(T) = \frac{48\pi^{2}}{(11N_{c} - 2N_{f})\ln\left[\lambda\left(\frac{T}{T_{c}} - \frac{T_{s}}{T_{c}}\right)\right]^{2}} \qquad \lambda = 2.6 \\ T_{s} = 0.57 T_{c}$

S. Plumari et al, *Phys.Rev.D* 84 (2011) 094004 H. Berrehrah, PHYSICAL REVIEW C **93**, 044914 (2016)

QPM extended – momentum dependence

QPM extended – momentum dependence

We correctly reproduce both **EoS** and **quark susceptibilities** which are understimated in the standard QPM approach.

QPM extended – **Preliminary** D_s and R_{AA}

coupling g(T)

Spatial diffusion coefficient $D_s \xrightarrow{\rightarrow}$ standard QPM standard QPM including charm extended QPM $T/T_c < 2 \xrightarrow{\rightarrow}$ strong non-perturbative behaviour near to T_c .

high T region \rightarrow the D_s reaches the pQCD limit quickly than the standard QPM.

QPM extended – **Preliminary** D_s and R_{AA}

 \rightarrow standard QPM Spatial diffusion coefficient D_s standard QPM including charm extended QPM $T/T_c < 2 \rightarrow$ strong non-perturbative behaviour near to T_c .

high T region \rightarrow the D_s reaches the pQCD limit quickly than the

QPM extended – Preliminary D_s and R_{AA}

In a static box

Initial momentum distribuction function \rightarrow FONLL for charm quark

 $R_{AA} = f_C(p, t_f) / f_C(p, t_0)$

Momentum dependent QPM approach

- Better description of recent IQCD data.
- Effects on the global χ^2 coming from the comparison to the experimental data of R_{AA} , v_n ?

Conclusions

- Extension to bottom quark dynamics: good description of R_{AA} and v₂ of electrons from semileptonic B meson decay and prediction for v₃
- Spatial diffusion coefficient D_c(T): charm vs bottom and the infinite mass limit
 - → $D_s(c)/D_s(b)$ ratio of about a factor of 1.5 at T ~ Tc and 1.3 at higher temperatures (T ~ 3 4 Tc)
 - → For the <u>charm mass scale</u>: the infinite mass limit used in IQCD is not yet reached; For the <u>bottom mass scale</u>: discrepancy of only about a 20% w.r.t. the infinite mass limit
 - → Taking into account mass scale dependence in QPM, we have satisfactory agreement with the most recent IQCD calculations that include dynamical fermions, differently from previous IQCD data in quenched approximation.
 - → Thermalization time for bottom quark: T_{th} ~ 10 12 fm/c which is about a factor of 2 larger than charm and so quite smaller than 3.3 as suggest by a simple M_O/T scaling.

Extended QPM

Good reproduction of both EoS and susceptibilities. **Preliminary for a static medium**: decrease of D_s at small T and decrease of R_{AA} at low p Perspectives: Effect on observables for realistic simulations?

Thanks for the attention!

24

Back up slides

25

Relativistic Boltzmann equation at finite η/s

Bulk evolution

 $\times (2\pi)^4 \delta^4 (p_1 + p_2 - p_1' - p_2')$

Scattering matrices $M_{q,q}$ by QPM fit to IQCD thermodynamics

Extension to higher order anisotropic flows $v_n(p_T)$

In the more peripheral collision (30-50 % centrality class) \rightarrow larger v_2 and comparable $v_3 \rightarrow v_2$ mainly generated by the geometry of overlapping region in larger centrality collision $\succ v_3$ mainly driven by the fluctuation of the triangularity of overlap region at all centrality

ESE: v_2 and spectra (20% small/large q_2)

q_2 selected $v_2(p_T)$

q_2 selected $v_2(p_T)$ ratio

Data taken from ALICE collaboration: *Phys.Lett.B* 813 (2021) 136054

> v_2 (large- q_2 /small- q_2) ≥ v_2 (unbiased) of about 50% in both 0-10% and 30-50% centrality.

M.L. Sambataro, et al., Eur. Phys. J.C 82 (2022)

Extension to higher order anisotropic flows $v_n(p_T)$

ESE technique and v_n correlations

Selection of events with the same centrality but different initial geometry on the basis of the magnitude of the second-order harmonic reduced flow vector q_2 .

M.L. Sambataro, et al., Eur. Phys. J.C 82 (2022)

0.08 0.04

Pb - Pb 5.02 TeV

0.08

v₂

0.12

0.1

0.0

0

2 3

8

p₊ (GeV/c)

9 10

0.01

0.02

0.04

v₂

0.06

correlation for hard particles wrt bulk

ALICE collaboration, *Phys.Lett.B* 813 (2021) 136054 M.L. Sambataro, et al., *Eur.Phys.J.C* 82 (2022)

Extension to higher order anisotropic flows $v_n(p_T)$

ESE technique and v_n correlations

Selection of events with the same centrality but different initial geometry on the basis of the magnitude of the second-order harmonic reduced flow vector q_2 .

M.L. Sambataro, et al., Eur. Phys. J.C 82

ESE: $v_n - v_m$ correlations

M.L. Sambataro, et al., *Eur.Phys.J.C* 82 (2022)

Charged particles 0.07 v₂ ALICE centrality 15-20 % 0.06 v OPM Catania v₄ ALICE 0.05 v, QPM Catania >⁼0.04⊦ 0.03 0.02 0.01 0 0.05 0.1 V_2

Correlations between the ε_n and ε_m present in the initial geometry \rightarrow correlations between flow harmonics different orders, i.e. correlations v_n and v_m

- Good description of v_{n-m} correlation for bulk
- Prediction for similar correlation for hard particles
- Correlation for D mesons provide insights on the interaction

Plumari et al, Phys.Lett.B 805 (2020) 135460

Predictions for D mesons

Data taken from: S. Mohapatra Nucl. Phys. A 956 (2016) 59-66

Data taken from: S. Mohapatra Nucl. Phys. A 956 (2016) 59-66

D meson: Impact of large Λ_c production on R_{AA}

 $D_s(T)$ of charm quark that reproduces R_{AA} and v_2 gives good description of

- > Impact of Λ_c/D^0
- > Triangular flow $v_3(p_T)$.
- \succ q_2 selected anisotropic flow and spectra.

> With the same coalescence plus fragmentation model we describe the Λ_c/D^0

S. Plumari, et al., Eur. Phys. J. C78 no. 4, (2018) 348

Numerical solution of Boltzmann Equation

Use Test-Particle Method to sample the phase space distribution function

 $f(\vec{x}, \vec{p}, t) = \omega \sum_{i=1}^{N_{test}} \delta^{(3)}(\vec{x} - \vec{r}_i(t)) \delta^{(3)}(\vec{p} - \vec{p}_i(t))$

 \mathbf{F}_{i} solution of Boltzmann eq. $\rightarrow\,$ Test particles solve classical Hamilton eq. of motion

$$\begin{cases} \vec{p}_i(t + \Delta t) = \vec{p}_i(t - \Delta t) + 2\Delta t \cdot \left(\frac{\partial \vec{p}_i}{\partial t}\right)_{coll} \\ \vec{r}_i(t + \Delta t) = \vec{r}_i(t - \Delta t) - 2\Delta t \cdot \left[\frac{\vec{p}_i(t)}{E_i(t)}\right] \end{cases}$$

Collision Integral mapped through a Stochastic Al

$$P_{22} = \frac{\Delta N_{coll}^{2 \to 2}}{\Delta N_1 \Delta N_2} = v_{rel} \sigma_{22} \frac{\Delta t}{\Delta^3 x}$$

 $\Delta t \square 0$ and $\Delta^3 x \square 0$: exact solution

Final phase-space of HQ + bulk parton scattering sampled according to $|M_{QCD}|^2 \square$ code test through simulations in a "box"

[Scardina, Colonna, Plumari, and Greco PLB v.724, 296 (2013)] [Xu and Greiner PRC v. 71, (2005)]

Hybrid Hadronization Model for HQs

COALESCENCE: Formula developed for the light sector [Greco, Ko, Levai PRL 90 (2003)]

FRAGMENTATION: HQs that do not undergo to Coalescence

$$\frac{dN_H}{d^2 \boldsymbol{P}_T} = \sum_f \int dz \frac{dN_f}{d^2 p_T} \frac{D_{f \to H}(z)}{z^2}$$

We use Peterson parametrization: $D_H(z) \propto \left[z \left(1 - \frac{1}{z} - \frac{\epsilon_c}{1-z} \right)^2 \right]^{-1}$ Peterson et al. PRD 27 (1983) 105

Parameter ε_{1} tuned to reproduce *D* and *B* meson spectra in pp collisions.

Plumari, Minissale, Das, Coci, Greco, EPJ C 78 (2018) no.4

QPM with $N_f = 2 + 1 + 1$ including charm

Recently, new lattice results for the equation of state of QCD with 2+1+1 dynamical flavors have become available. Therefore, we extend our QPM approach for $N_f = 2 + 1$ to $N_f = 2 + 1 + 1$ where the charm quark is included.

QCD matter workshop (2021).

QPM extended – momentum dependence

Dyson-Schwinger studies in the vacuum \rightarrow following the model developed by PHSD group

$$M_{g}(T,\mu_{q},p) = \left(\frac{3}{2}\right) \left(\frac{g^{2}(T^{\star}/T_{c}(\mu_{q}))}{6} \left[\left(N_{c} + \frac{1}{2}N_{f}\right)T^{2} + \frac{N_{c}}{2}\sum\frac{\mu_{q}^{2}}{\pi^{2}}\right] \left[\frac{1}{1 + \Lambda_{g}(T_{c}(\mu_{q})/T^{\star})p^{2}}\right]\right)^{1/2} + m_{\chi g}$$

$$M_{q,\tilde{q}}(T,\mu_{q},p) = \left(\frac{N_{c}^{2} - 1}{8N_{c}}g^{2}(T^{\star}/T_{c}(\mu_{q}))\left[T^{2} + \frac{\mu_{q}^{2}}{\pi^{2}}\right] \left[\frac{1}{1 + \Lambda_{q}(T_{c}(\mu_{q})/T^{\star})p^{2}}\right]^{1/2} + m_{\chi g}$$
Momentum dependent factors

QPM extended – coupling and drag coefficient

 $0,155 < T < 0,4 \, GeV$

 $0,4 < T < 1 \, GeV$

Coupling $g(T) \rightarrow$ standard QPM vs extended QPM

- Large enhancement at low T
- **Comparable value** at high T with a discrepancy

Drag and D_s in QPM extended

Drag coefficient → standard QPM standard QPM including charm extended QPM

- **Increase** at low T consistent with the large enhancement of the coupling in the same T region
- Decrease at high T

Spatial diffusion coefficient D_s

 $T/T_c < 2 \rightarrow$ strong non-perturbative behaviour near to T_c .

high T region \rightarrow the D_s reaches the pQCD limit quickly than the standard QPM.

DQPM Dynamical Quasi-particle Model

In order to determinate the parton masses and widths within the DQPM approach, the analytical expression of the dynamical quasi-particle entropy density s_{DQP} is fitted to the IQCD entropy density s_{IQCD} determined numerically: $s^{DQP} = -\sum_{i=g,q,\bar{q}} \int \frac{\partial n_{B/F,F}}{2\pi (2\pi)^3} \frac{\partial n_{B/F,F}}{\partial T} \times (\mathcal{I}ln(-\Delta_i^{-1}) + \mathcal{I}\Pi_i \mathcal{R} \Delta_i)$

Quasi-particle contribution interaction

contribution

The **spectral functions** within DQPM approach describe the variation of parton masses as a function of the medium properties with result that these spectral functions are no longer δ functions in the invariant mass squared (as in the case for bare masses) but related to the imaginary part of the trace of the effective propagator $D_{\nu\mu}$ and to the partonic self-energies $\Sigma_{\nu\mu}$ as:

41

$$S(p) \propto \mathcal{I} D^{\mu}_{\mu}(p) \propto \frac{\mathcal{I} \Sigma^{\mu}_{\mu}(p)}{[p^2 - \mathcal{R} \Sigma^{\mu}_{\mu}(p)]^2 + [\mathcal{I} \Sigma^{\mu}_{\mu}(p)]^2}$$

2 Self energy

Preliminary: Off-shell BOX CALCULATION FOR CHARM → static medium evolution of charm quark distribuction function

- $T > T_c$ slower dynamics
- $T \rightarrow T_c$ the increase in the drag coefficient leads to a faster evolution

Preliminary: Nuclear modification factor *R*_{AA}

$$R_{AA} = f_C(p, t_f) / f_C(p, t_0)$$

Initial momentum distribuction function \rightarrow FONLL for charm quark

Momentum dependent QPM approach

- Better description of recent IQCD data.
- Effects on the global χ^2 coming from the comparison to the experimental data of R_{AA} , v_n ?