Outline

- 1. Introduction
- Chiral phase transition and critical endpoint ✓
- Color superconductivity
- 4. Inhomogeneous chiral phases

INHOMOGENEOUS CHIRAL PHASES

Analogy:

- CSC = quark-quark pairing
 - favored for equal Fermi momenta
 - stressed by unequal densities

Analogy:

- CSC = quark-quark pairing
 - favored for equal Fermi momenta
 - stressed by unequal densities
 - tradeoff: spatially varying diquark condensate
 - excess quarks in regions of low $\langle qq \rangle$

Analogy:

- CSC = quark-quark pairing
 - favored for equal Fermi momenta
 - stressed by unequal densities
 - tradeoff: spatially varying diquark condensate
 - excess quarks in regions of low $\langle qq \rangle$
- χ SB = quark-antiquark pairing
 - favored for vanishing Fermi momenta
 - stressed by nonzero densities
 - tradeoff: spatially varying chiral condensate
 - quarks in regions of low $\langle \bar{q}q \rangle$

Highlight example

chiral phase transition in the NJL model [D. Nickel, PRD (2009)]

October 4, 2023 | Michael Buballa | 4

Highlight example

chiral phase transition in the NJL model [D. Nickel, PRD (2009)]

- first-order phase boundary completely covered by the inhomogeneous phase
- all phase boundaries second order (mean-field artifact?)
- ► tricritical point → Lifshitz point [Nickel, PRL (2009)]

- 1960s:
 - spin-density waves in nuclear matter (Overhauser)
- 1970s 1990s:
 - p-wave pion condensation (Migdal)
 - chiral density wave (Dautry, Nyman)
 - Skyrme crystals (Goldhaber, Manton)
- after 2000:
 - 1+1 D Gross-Neveu model (Thies et al.)
 - quarkyonic matter (Kojo, McLerran, Pisarski, ...)

- 1960s:
 - spin-density waves in nuclear matter (Overhauser)
- 1970s 1990s:
 - p-wave pion condensation (Migdal)
 - chiral density wave (Dautry, Nyman)
 - Skyrme crystals (Goldhaber, Manton)
- after 2000:
 - 1+1 D Gross-Neveu model (Thies et al.)
 - quarkyonic matter (Kojo, McLerran, Pisarski, ...)

- 1960s:
 - spin-density waves in nuclear matter (Overhauser)
- 1970s 1990s:
 - p-wave pion condensation (Migdal)
 - chiral density wave (Dautry, Nyman)
 - Skyrme crystals (Goldhaber, Manton)
- after 2000:
 - 1+1 D Gross-Neveu model (Thies et al.)
 - quarkyonic matter (Kojo, McLerran, Pisarski, ...)

1960s:

- spin-density waves in nuclear matter (Overhauser)
- 1970s 1990s:
 - p-wave pion condensation (Migdal)
 - chiral density wave (Dautry, Nyman)
 - Skyrme crystals (Goldhaber, Manton)
- after 2000:
 - 1+1 D Gross-Neveu model (Thies et al.)
 - quarkyonic matter (Kojo, McLerran, Pisarski, ...)

► Lagrangian:

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi + G\left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\vec{\tau}\psi)^2\right]$$

► Lagrangian:

$$\mathcal{L}=\bar{\psi}(i\partial\!\!\!/-m)\psi+G\left[(\bar{\psi}\psi)^2+(\bar{\psi}i\gamma_5\vec{\tau}\psi)^2\right]$$

► bosonize: $\sigma(x) = \bar{\psi}(x)\psi(x)$, $\vec{\pi}(x) = \bar{\psi}(x)i\gamma_5\vec{\tau}\psi(x)$

$$\Rightarrow \quad \mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m + 2G (\sigma + i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \right) \psi - G \left(\sigma^2 + \vec{\pi}^2 \right)$$

► Lagrangian:

$$\mathcal{L} = \bar{\psi}(i\partial\!\!\!/ - m)\psi + G\left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\vec{\tau}\psi)^2\right]$$

► bosonize: $\sigma(x) = \bar{\psi}(x)\psi(x), \quad \vec{\pi}(x) = \bar{\psi}(x)i\gamma_5\vec{\tau}\psi(x)$

$$\Rightarrow \quad \mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m + 2G (\sigma + i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \right) \psi - G \left(\sigma^2 + \vec{\pi}^2 \right)$$

mean-field approximation:

$$\sigma(\mathbf{x}) \rightarrow \langle \sigma(\mathbf{x}) \rangle \equiv S(\vec{\mathbf{x}}), \quad \pi_a(\mathbf{x}) \rightarrow \langle \pi_a(\mathbf{x}) \rangle \equiv P(\vec{\mathbf{x}}) \, \delta_{a3}$$

- $S(\vec{x}), P(\vec{x})$ time independent classical fields
- retain space dependence !

► Lagrangian:

$$\mathcal{L} = \bar{\psi}(i\partial\!\!\!/ - m)\psi + G\left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\vec{\tau}\psi)^2\right]$$

► bosonize: $\sigma(x) = \bar{\psi}(x)\psi(x), \quad \vec{\pi}(x) = \bar{\psi}(x)i\gamma_5\vec{\tau}\psi(x)$

$$\Rightarrow \quad \mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m + 2G (\sigma + i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \right) \psi - G \left(\sigma^2 + \vec{\pi}^2 \right)$$

mean-field approximation:

$$\sigma(\mathbf{x}) \to \langle \sigma(\mathbf{x}) \rangle \equiv \mathbf{S}(\vec{\mathbf{x}}), \quad \pi_{\mathbf{a}}(\mathbf{x}) \to \langle \pi_{\mathbf{a}}(\mathbf{x}) \rangle \equiv \mathbf{P}(\vec{\mathbf{x}}) \, \delta_{\mathbf{a}3}$$

- $S(\vec{x})$, $P(\vec{x})$ time independent classical fields
- retain space dependence !
- mean-field thermodynamic potential:

$$\Omega_{MF}(T,\mu) = -\frac{T}{V} \ln \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left(\int_{x \in [0,\frac{1}{T}] \times V} (\mathscr{L}_{MF} + \mu\bar{\psi}\gamma^{0}\psi)\right)$$

October 4, 2023 | Michael Buballa | 6

mean-field Lagrangian:

$$\mathcal{L}_{MF} = \bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x) - G\left[\mathcal{S}^2(\vec{x}) + \mathcal{P}^2(\vec{x})\right]$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!

mean-field Lagrangian:

$$\mathcal{L}_{MF} = \bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x) - G\left[\mathcal{S}^2(\vec{x}) + \mathcal{P}^2(\vec{x})\right]$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!
- inverse dressed propagator:

$$\mathcal{S}^{-1}(x) \,=\, i\partial \!\!\!/ - m + 2G\left(\mathcal{S}(\vec{x}) + i\gamma_5\tau_3 P(\vec{x})\right) \,\equiv\, \gamma^0 \,\left(i\partial_0 - H_{MF}\right)$$

mean-field Lagrangian:

$$\mathcal{L}_{MF} = \bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x) - G\left[\mathcal{S}^2(\vec{x}) + \mathcal{P}^2(\vec{x})\right]$$

• bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!

inverse dressed propagator:

$$\mathcal{S}^{-1}(x) = i\partial \!\!\!/ - m + 2G\left(\mathcal{S}(\vec{x}) + i\gamma_5\tau_3 P(\vec{x})\right) \equiv \gamma^0 \left(i\partial_0 - H_{MF}\right)$$

effective Hamiltonian (in chiral representation):

$$H_{MF} = H_{MF}[S, P] = \begin{pmatrix} -i\vec{\sigma} \cdot \vec{\partial} & M(\vec{x}) \\ M^*(\vec{x}) & i\vec{\sigma} \cdot \vec{\partial} \end{pmatrix}$$

• constituent mass functions: $M(\vec{x}) = m - 2G[S(\vec{x}) + iP(\vec{x})]$

mean-field Lagrangian:

$$\mathcal{L}_{MF} = \bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x) - G\left[S^2(\vec{x}) + P^2(\vec{x})\right]$$

• bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!

inverse dressed propagator:

$$\mathcal{S}^{-1}(x) = i\partial \!\!\!/ - m + 2G\left(\mathcal{S}(\vec{x}) + i\gamma_5\tau_3 P(\vec{x})\right) \equiv \gamma^0 \left(i\partial_0 - H_{MF}\right)$$

effective Hamiltonian (in chiral representation):

$$H_{MF} = H_{MF}[S, P] = \begin{pmatrix} -i\vec{\sigma} \cdot \vec{\partial} & M(\vec{x}) \\ M^*(\vec{x}) & i\vec{\sigma} \cdot \vec{\partial} \end{pmatrix}$$

- constituent mass functions: $M(\vec{x}) = m 2G[S(\vec{x}) + iP(\vec{x})]$
- ► H_{MF} hermitean \Rightarrow can (in principle) be diagonalized (eigenvalues E_{λ})
- H_{MF} time-independent \Rightarrow Matsubara sum as usual

► thermodynamic potential:

$$\Omega_{MF}(T,\mu;S,P) = -\frac{T}{V} \operatorname{Tr} \ln\left(\frac{1}{T}(i\partial_0 - H_{MF} + \mu)\right) + \frac{G}{V} \int_V d^3x \left(S^2(\vec{x}) + P^2(\vec{x})\right)$$

► thermodynamic potential:

$$\Omega_{MF}(T,\mu;S,P) = -\frac{T}{V} \operatorname{Tr} \ln\left(\frac{1}{T}(i\partial_0 - H_{MF} + \mu)\right) + \frac{G}{V} \int_V d^3 x \left(S^2(\vec{x}) + P^2(\vec{x})\right)$$
$$= -\frac{1}{V} \sum_{\lambda} \left[\frac{E_{\lambda} - \mu}{2} + T \ln\left(1 + e^{\frac{E_{\lambda} - \mu}{T}}\right)\right] + \frac{1}{V} \int_V d^3 x \frac{|M(\vec{x}) - m|^2}{4G}$$

thermodynamic potential:

$$\begin{aligned} \Omega_{MF}(T,\mu;S,P) &= -\frac{T}{V} \text{Tr} \ln \left(\frac{1}{T} (i\partial_0 - H_{MF} + \mu) \right) + \frac{G}{V} \int_V d^3 x \left(S^2(\vec{x}) + P^2(\vec{x}) \right) \\ &= -\frac{1}{V} \sum_{\lambda} \left[\frac{E_{\lambda} - \mu}{2} + T \ln \left(1 + e^{\frac{E_{\lambda} - \mu}{T}} \right) \right] + \frac{1}{V} \int_V d^3 x \frac{|M(\vec{x}) - m|^2}{4G} \end{aligned}$$

- remaining tasks:
 - Calculate eigenvalue spectrum $E_{\lambda}[M(\vec{x})]$ of H_{MF} for given $M(\vec{x})$.
 - Minimize Ω_{MF} w.r.t. $M(\vec{x})$

thermodynamic potential:

$$\begin{split} \Omega_{MF}(T,\mu;S,P) &= -\frac{T}{V} \text{Tr} \ln \left(\frac{1}{T} (i\partial_0 - H_{MF} + \mu) \right) + \frac{G}{V} \int_V d^3 x \left(S^2(\vec{x}) + P^2(\vec{x}) \right) \\ &= -\frac{1}{V} \sum_{\lambda} \left[\frac{E_{\lambda} - \mu}{2} + T \ln \left(1 + e^{\frac{E_{\lambda} - \mu}{T}} \right) \right] + \frac{1}{V} \int_V d^3 x \frac{|M(\vec{x}) - m|^2}{4G} \end{split}$$

- remaining tasks:
 - Calculate eigenvalue spectrum *E_λ*[*M*(*x*)] of *H_{MF}* for given *M*(*x*).
 difficulty: *H_{MF}* is nondiagonal in momentum space
 - Minimize Ω_{MF} w.r.t. $M(\vec{x})$

thermodynamic potential:

$$\Omega_{MF}(T,\mu;S,P) = -\frac{T}{V}\operatorname{Tr} \ln\left(\frac{1}{T}(i\partial_0 - H_{MF} + \mu)\right) + \frac{G}{V}\int\limits_V d^3x \left(S^2(\vec{x}) + P^2(\vec{x})\right)$$
$$= -\frac{1}{V}\sum_{\lambda} \left[\frac{E_{\lambda} - \mu}{2} + T\ln\left(1 + e^{\frac{E_{\lambda} - \mu}{T}}\right)\right] + \frac{1}{V}\int\limits_V d^3x \frac{|M(\vec{x}) - m|^2}{4G}$$

- remaining tasks:
 - Calculate eigenvalue spectrum *E_λ*[*M*(*x*)] of *H_{MF}* for given *M*(*x*).
 difficulty: *H_{MF}* is nondiagonal in momentum space
 - Minimize Ω_{MF} w.r.t. $M(\vec{x})$

difficulty: functional minimization w.r.t. arbitrary shapes

Strategies

- Restricted ansätze for the condensate modulation
 - → minimize Ω_{MF} w.r.t. a finite number of parameters
 - ansätze for which H_{MF} can be diagonalized analytically
 - brute-force numerical diagonalization of H_{MF}
- Stability and Ginzburg-Landau anlayses
 - → investigate the stability of the homogeneous ground state w.r.t. small inhomogeneous fluctuations

Ansätze which can be diagonalized analytically

▶ popular ansatz: $M(\vec{x}) = \Delta e^{i\vec{q}\cdot\vec{x}}$ (dual) chiral density wave, "chiral spiral"

▶ popular ansatz: $M(\vec{x}) = \Delta e^{i\vec{q}\cdot\vec{x}}$ (dual) chiral density wave, "chiral spiral"

$$\Leftrightarrow \quad S(\vec{x}) = -\frac{\Delta}{2G}\cos(\vec{q}\cdot\vec{x}) , \quad P(\vec{x}) = -\frac{\Delta}{2G}\sin(\vec{q}\cdot\vec{x})$$

$$\Rightarrow \quad \mathcal{L}_{MF} = \vec{\psi} \left[i \vec{\partial} - m + 2G(S(\vec{x}) + i\gamma_5\tau_3P(\vec{x})) \right] \psi - G\left(S^2 + P^2\right)$$

$$= \vec{\psi} \left[i \vec{\partial} - \Delta \left(\cos(\vec{q}\cdot\vec{x}) + i\gamma_5\tau_3\sin(\vec{q}\cdot\vec{x})\right) \right] \psi - \frac{\Delta^2}{4G}$$

$$= \vec{\psi} \left[i \vec{\partial} - \Delta \exp\left(i\gamma_5\tau_3\vec{q}\cdot\vec{x}\right) \right] \psi - \frac{\Delta^2}{4G}$$

▶ popular ansatz: $M(\vec{x}) = \Delta e^{i\vec{q}\cdot\vec{x}}$ (dual) chiral density wave, "chiral spiral"

$$\begin{aligned} \Leftrightarrow \quad S(\vec{x}) &= -\frac{\Delta}{2G} \cos(\vec{q} \cdot \vec{x}) , \quad P(\vec{x}) = -\frac{\Delta}{2G} \sin(\vec{q} \cdot \vec{x}) \\ \Rightarrow \quad \mathcal{L}_{MF} &= \vec{\psi} \left[i \vec{\partial} - m + 2G(S(\vec{x}) + i\gamma_5 \tau_3 P(\vec{x})) \right] \psi - G \left(S^2 + P^2 \right) \\ &= \vec{\psi} \left[i \vec{\partial} - \Delta \left(\cos(\vec{q} \cdot \vec{x}) + i\gamma_5 \tau_3 \sin(\vec{q} \cdot \vec{x}) \right) \right] \psi - \frac{\Delta^2}{4G} \\ &= \vec{\psi} \left[i \vec{\partial} - \Delta \exp \left(i\gamma_5 \tau_3 \vec{q} \cdot \vec{x} \right) \right] \psi - \frac{\Delta^2}{4G} \end{aligned}$$

• unitary transformation: $\psi(x) = \exp\left(-\frac{i}{2}\gamma_5\tau_3\vec{q}\cdot\vec{x}\right)\psi'(x)$ [Dautry, Nyman (1979)]

$$\Rightarrow \mathcal{L}_{MF} = \bar{\psi}' \big[i \partial \!\!\!/ + \frac{1}{2} \vec{\gamma} \gamma_5 \tau_3 \cdot \boldsymbol{q} - \Delta \big] \psi' - \frac{\Delta^2}{4G}$$

no explicit \vec{x} dependence \rightarrow can be diagonalized analytically!

▶ popular ansatz: $M(\vec{x}) = \Delta e^{i\vec{q}\cdot\vec{x}}$ (dual) chiral density wave, "chiral spiral"

$$\Leftrightarrow \quad S(\vec{x}) = -\frac{\Delta}{2G}\cos(\vec{q}\cdot\vec{x}) , \quad P(\vec{x}) = -\frac{\Delta}{2G}\sin(\vec{q}\cdot\vec{x})$$

$$\Rightarrow \quad \mathcal{L}_{MF} = \bar{\psi} \left[i\partial \!\!\!/ - m + 2G(S(\vec{x}) + i\gamma_5\tau_3P(\vec{x})) \right] \psi - G\left(S^2 + P^2\right)$$

$$= \bar{\psi} \left[i\partial \!\!\!/ - \Delta \left(\cos(\vec{q}\cdot\vec{x}) + i\gamma_5\tau_3\sin(\vec{q}\cdot\vec{x})\right) \right] \psi - \frac{\Delta^2}{4G}$$

$$= \bar{\psi} \left[i\partial \!\!\!/ - \Delta \exp\left(i\gamma_5\tau_3\vec{q}\cdot\vec{x}\right) \right] \psi - \frac{\Delta^2}{4G}$$

• unitary transformation: $\psi(x) = \exp\left(-\frac{i}{2}\gamma_5\tau_3\vec{q}\cdot\vec{x}\right)\psi'(x)$ [Dautry, Nyman (1979)]

$$\Rightarrow \mathcal{L}_{MF} = \bar{\psi}' \left[i \partial \!\!\!/ + \frac{1}{2} \vec{\gamma} \gamma_5 \tau_3 \cdot \boldsymbol{q} - \Delta \right] \psi' - \frac{\Delta^2}{4G}$$

no explicit \vec{x} dependence \rightarrow can be diagonalized analytically!

• dispersion relations: $E_{\pm}^2(\vec{p}) = \vec{p}^2 + \Delta^2 + \frac{\vec{q}^2}{4} \pm \sqrt{\Delta^2 \vec{q}^2 + (\vec{q} \cdot \vec{p})^2}$

Real kink crystal

important observation: [D. Nickel, PRD (2009)]
 general problem with 1D modulations in 3+1D
 can be mapped to the 1 + 1 dimensional case

Real kink crystal

- important observation: [D. Nickel, PRD (2009)]
 general problem with 1D modulations in 3+1D
 can be mapped to the 1 + 1 dimensional case
- ► 1 + 1D solutions known analytically: [M. Thies, J. Phys. A (2006)] $M(z) = \sqrt{\nu}\Delta \operatorname{sn}(\Delta z | \nu)$ (chiral limit)
 - $sn(\xi|\nu)$: Jacobi elliptic functions
 - M(z) real \Rightarrow purely scalar "real kink cystal" (RKC)

Real kink crystal

- important observation: [D. Nickel, PRD (2009)]
 general problem with 1D modulations in 3+1D
 can be mapped to the 1 + 1 dimensional case
- ► 1 + 1D solutions known analytically: [M. Thies, J. Phys. A (2006)] $M(z) = \sqrt{\nu}\Delta \operatorname{sn}(\Delta z | \nu)$ (chiral limit)
 - $sn(\xi|\nu)$: Jacobi elliptic functions
 - M(z) real \Rightarrow purely scalar "real kink cystal" (RKC)
- remaining task:
 - minimize w.r.t. 2 parameters: Δ, ν
 - (almost) as simple as CDW, but more powerful
 - $m \neq 0$: 3 parameters

Mass functions and density profiles (T = 0)

$$\blacktriangleright M(z) = \sqrt{\nu}\Delta \operatorname{sn}(\Delta z|\nu) \rightarrow \begin{cases} \Delta \tanh(\Delta z) & \text{for } \nu \to 1 \\ \sqrt{\nu}\Delta \sin(\Delta z) & \text{for } \nu \to 0 \end{cases}$$

•
$$M(z) = \sqrt{\nu}\Delta \operatorname{sn}(\Delta z | \nu) \rightarrow \begin{cases} \Delta \tanh(\Delta z) & \text{for } \nu \to 1 \\ \sqrt{\nu}\Delta \sin(\Delta z) & \text{for } \nu \to 0 \end{cases}$$

 $M(z) \ (\mu = 345 \text{ MeV})$
 $M(z) \ (\mu = 345 \text$

•
$$M(z) = \sqrt{\nu} \Delta \operatorname{sn}(\Delta z | \nu) \quad \rightarrow \quad \langle$$

 $\begin{cases} \Delta \tanh(\Delta z) & \text{for } \nu \to 1 \\ \sqrt{\nu} \Delta \sin(\Delta z) & \text{for } \nu \to 0 \end{cases}$

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Free energy difference

[D. Nickel, PRD (2009)]

- homogeneous chirally broken
- Jacobi elliptic functions
- chiral density wave:

 $M_{CDW}(z) = M_1 \; e^{iqz}$

- soliton lattice favored, when it exists
- $\delta\Omega_{Jacobi} \approx 2\delta\Omega_{CDW} \Rightarrow CDW$ never favored

Self-bound quark matter

[M.B., S. Carignano, PRD (2013)]

1D inhomogeneous solutions:

homogeneous matter decays into domain-wall solitons

- If it was 3D: Hadronization!
- single-soliton properties:
 - $\frac{E}{N} = \mu_{c,inh} \sim 325 \text{ MeV} \Rightarrow$ "baryon" mass: $M_B = 3\frac{E}{N} \sim 975 \text{ MeV}$
 - central density: $\rho_B = \frac{1}{4\pi} M_{vac} \mu_{c,inh}^2 \sim 2.1 \rho_0$
 - ► longitudinal size: $\sqrt{\langle z^2 \rangle} = \frac{\pi}{\sqrt{12}} \frac{1}{M_{vac}} \sim .5 \text{ fm}$
- but it's only 1D modulations ...
 - → revisit chiral solitons !? [Alkofer, Reinhardt, Weigel; Goeke et al.; Ripka; ...]

Two-dimensional modulations

[S. Carignano, M.B., PRD (2012)]

Two-dimensional modulations

[S. Carignano, M.B., PRD (2012)]

- no known analytical solutions
 - \rightarrow brute-force numerical diagonalization of H for a given ansatz

Two-dimensional modulations

[S. Carignano, M.B., PRD (2012)]

- no known analytical solutions
 - \rightarrow brute-force numerical diagonalization of H for a given ansatz
- consider two shapes:
 - square lattice ("egg carton")

 $M(x, y) = M\cos(Qx)\cos(Qy)$

hexagonal lattice

$$M(x,y) = \tfrac{M}{3} \left[2\cos\left(Qx\right)\cos\left(\tfrac{1}{\sqrt{3}}Qy\right) + \cos(\tfrac{2}{\sqrt{3}}Qy) \right]$$

minimize both cases numerically w.r.t. M and Q

- amplitudes and wave numbers:
 - egg carton:

hexagon:

amplitudes and wave numbers:

hexagon:

egg carton:

free-energy gain at T = 0:

amplitudes and wave numbers:

hexagon:

egg carton:

free-energy gain at T = 0:

amplitudes and wave numbers:

hexagon:

egg carton:

free-energy gain at T = 0:

amplitudes and wave numbers:

310 320 330 340 350

300

μ (MeV)

free-energy gain at T = 0:

amplitudes and wave numbers:

hexagon:

free-energy gain at T = 0:

amplitudes and wave numbers:

hexagon:

egg carton:

free-energy gain at T = 0:

amplitudes and wave numbers:

μ (MeV)

free-energy gain at T = 0:

 2d not favored over 1d in this regime

- Stability analysis:
 - Minimize Ω_{MF} w.r.t. homogeneous mean fields $\rightarrow S = \bar{S} = const.$, P = 0
 - Study effect of small inhomogeneous fluctuations $\delta S(\vec{x})$, $\delta P(\vec{x})$

- Stability analysis:
 - Minimize Ω_{MF} w.r.t. homogeneous mean fields $\rightarrow S = \bar{S} = const., P = 0$
 - Study effect of small inhomogeneous fluctuations $\delta S(\vec{x})$, $\delta P(\vec{x})$
 - → sufficient but not necessary criterion for an inhomogeneous phase
 - © instabilities w.r.t large inhomogeneous fluctuations not excluded
 - \odot no ansatz functions for $S(\vec{x})$ and $P(\vec{x})$ needed

- Stability analysis:
 - Minimize Ω_{MF} w.r.t. homogeneous mean fields $\rightarrow S = \bar{S} = const., P = 0$
 - Study effect of small inhomogeneous fluctuations $\delta S(\vec{x})$, $\delta P(\vec{x})$
 - → sufficient but not necessary criterion for an inhomogeneous phase
 - © instabilities w.r.t large inhomogeneous fluctuations not excluded
 - \odot no ansatz functions for $S(\vec{x})$ and $P(\vec{x})$ needed
 - → well suited to identify 2nd-order phase transitions

- Stability analysis:
 - Minimize Ω_{MF} w.r.t. homogeneous mean fields $\rightarrow S = \bar{S} = const., P = 0$
 - Study effect of small inhomogeneous fluctuations $\delta S(\vec{x})$, $\delta P(\vec{x})$
 - → sufficient but not necessary criterion for an inhomogeneous phase
 - © instabilities w.r.t large inhomogeneous fluctuations not excluded
 - \odot no ansatz functions for $S(\vec{x})$ and $P(\vec{x})$ needed
 - → well suited to identify 2nd-order phase transitions
- Ginzburg-Landau analysis:
 - additional expansion in small gradients $\vec{\nabla} S(\vec{x}), \vec{\nabla} P(\vec{x})$
 - best suited to identify critical and Lifshitz points

Reminder

chiral phase transition in the NJL model (chiral limit) [D. Nickel, PRD (2009)]

tricritical point
Reminder

chiral phase transition in the NJL model (chiral limit) [D. Nickel, PRD (2009)]

October 4, 2023 | Michael Buballa | 19

Reminder

chiral phase transition in the NJL model (chiral limit) [D. Nickel, PRD (2009)]

- ► tricritical point → Lifshitz point
- How was this shown? [Nickel, PRL (2009)]

October 4, 2023 | Michael Buballa | 19

Reminder

chiral phase transition in the NJL model (chiral limit) [D. Nickel, PRD (2009)]

- ► tricritical point → Lifshitz point
- How was this shown? [Nickel, PRL (2009)]
- How is it away from the chiral limit?

[MB, Carignano, PRB (2018)]

Ginzburg-Landau analysis

Simplifications:

- chiral limit m = 0 (will be relaxed later)
- P = 0 (to simplify the notation, can be included straightforwardly)
- \rightarrow order parameter $M(\vec{x}) = -2GS(\vec{x})$ ("constituent quark mass")
- $\rightarrow \Omega_{MF} = \Omega_{MF}[M]$

Ginzburg-Landau analysis

Simplifications:

- chiral limit m = 0 (will be relaxed later)
- P = 0 (to simplify the notation, can be included straightforwardly)
- \rightarrow order parameter $M(\vec{x}) = -2GS(\vec{x})$ ("constituent quark mass")

 $\rightarrow \Omega_{MF} = \Omega_{MF}[M]$

- ► Assumptions: M, $|\nabla M|$ small (holds near the LP)
 - \rightarrow expansion of the thermodynamic potential.

$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^{3}x \left\{ \alpha_{2} M^{2}(\vec{x}) + \alpha_{4,a} M^{4}(\vec{x}) + \alpha_{4,b} |\vec{\nabla} M(\vec{x})|^{2} + \dots \right\}$$

- $\alpha_n = \alpha_n(T, \mu)$: GL coefficients
- chiral symmetry: only even powers allowed
- stability: higher-order coeffs. positive

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

<u>case 1.1:</u> $\alpha_{4,a} > 0$

• 2nd-order p.t. at $\alpha_2 = 0$

<u>case 1.2:</u> *α*_{4,*a*} < 0

• 1st-order phase trans. at $\alpha_2 > 0$

 \Rightarrow tricritical point (TCP): $\alpha_2 = \alpha_{4,a} = 0$

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• <u>case 1:</u> $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

- <u>case 1.1:</u> $\alpha_{4,a} > 0$
- 2nd-order p.t. at \alpha_2 = 0

 \Rightarrow tricritical point (TCP): $\alpha_2 = \alpha_{4,a} = 0$

<u>case 1.2:</u> *α*_{4,a} < 0

• 1st-order phase trans. at $\alpha_2 > 0$

► <u>case 2:</u> α_{4,b} < 0</p>

inhomogeneous phase possible

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• <u>case 1:</u> $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

- <u>case 1.1:</u> $\alpha_{4,a} > 0$
- 2nd-order p.t. at \alpha_2 = 0

 \Rightarrow tricritical point (TCP): $\alpha_2 = \alpha_{4,a} = 0$

<u>case 1.2:</u> *α*_{4,a} < 0

• 1st-order phase trans. at $\alpha_2 > 0$

► <u>case 2:</u> α_{4,b} < 0</p>

- inhomogeneous phase possible
- P 2nd-order phase boundary inhom. restored: α_{4,b} < 0, α₂ > 0 finite wavelength, amplitude → 0

• GL expansion:
$$\Omega[M] = \Omega[0] + \frac{1}{V} \int_{V} d^3x \left\{ \alpha_2 M^2 + \alpha_{4,a} M^4 + \alpha_{4,b} |\vec{\nabla}M|^2 + \dots \right\}$$

• case 1: $\alpha_{4,b} > 0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

case 1.1:
$$\alpha_{4,a} > 0$$

 \Rightarrow tricritical point (TCP): $\alpha_2 = \alpha_{4,a} = 0$

<u>case 1.2:</u> *α*_{4,a} < 0

• 1st-order phase trans. at $\alpha_2 > 0$

► <u>case 2:</u> α_{4,b} < 0</p>

- inhomogeneous phase possible Lifshitz point (LP): $\alpha_2 = \alpha_{4,b} = 0$
- P 2nd-order phase boundary inhom. restored: α_{4,b} < 0, α₂ > 0 finite wavelength, amplitude → 0

Away from the chiral limit

- $m \neq 0$: no chirally restored solution M = 0
 - \rightarrow expand about a priory unknown constant mass M_0 :

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_1 \delta M + \alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

- ▶ small parameters: $\delta M(\vec{x}) \equiv M(\vec{x}) M_0$, $|\nabla \delta M(\vec{x})|$
- GL coefficients: $\alpha_j = \alpha_j(T, \mu, M_0)$
- odd powers allowed
- require M₀ = extremum of Ω at given T and μ

 $\Rightarrow \alpha_1(T, \mu, M_0) = 0 \rightarrow M_0 = M_0(T, \mu)$ (= homogeneous gap equation)

► GL expansion:

 $\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$

► GL expansion:

 $\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous

> no restored phase, but 1st-order ph. trans. between different minima possible

► GL expansion:

 $\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous

- no restored phase, but 1st-order ph. trans. between different minima possible
- 2 minima + 1 maximum \rightarrow 1 minimum

 \Rightarrow critical endpoint (CEP): $\alpha_2 = \alpha_3 = 0$

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous

- no restored phase, but 1st-order ph. trans. between different minima possible
- 2 minima + 1 maximum \rightarrow 1 minimum

 \Rightarrow critical endpoint (CEP): $\alpha_2 = \alpha_3 = 0$

▶ spinodals: left: $\alpha_2 = 0$, $\alpha_3 < 0$, right: $\alpha_2 = 0$, $\alpha_3 > 0$,

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous

CEP: $\alpha_2 = \alpha_3 = 0$

• case 2: $\alpha_{4,b} < 0 \Rightarrow$ inhomogeneous phases possible

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• case 1: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous

CEP:
$$\alpha_2 = \alpha_3 = 0$$

• <u>case 2</u>: $\alpha_{4,b} < 0 \Rightarrow$ inhomogeneous phases possible

▶ strictly: only two phases – homogeneous and inhomogeneous \Rightarrow no LP

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous CEP: $\alpha_2 = \alpha_3 = 0$

• <u>case 2</u>: $\alpha_{4,b} < 0 \Rightarrow$ inhomogeneous phases possible

- $\blacktriangleright\,$ strictly: only two phases homogeneous and inhomogeneous $\,\,\Rightarrow\,$ no LP
- ► There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the *inhomogeneous* part of $M(\vec{x})$ goes to zero

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous CEP: $\alpha_2 = \alpha_3 = 0$

• <u>case 2</u>: $\alpha_{4,b} < 0 \Rightarrow$ inhomogeneous phases possible

- $\blacktriangleright\,$ strictly: only two phases homogeneous and inhomogeneous $\,\,\Rightarrow\,$ no LP
- ► There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the *inhomogeneous* part of $M(\vec{x})$ goes to zero
- M_0 homogeneous ground state $\Rightarrow \delta M(\vec{x}) \rightarrow 0$ along this phase boundary

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous CEP: $\alpha_2 = \alpha_3 = 0$

• <u>case 2</u>: $\alpha_{4,b} < 0 \Rightarrow$ inhomogeneous phases possible

- strictly: only two phases homogeneous and inhomogeneous \Rightarrow no LP
- ► There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the *inhomogeneous* part of M(x) goes to zero
- M_0 homogeneous ground state $\Rightarrow \delta M(\vec{x}) \rightarrow 0$ along this phase boundary
- in general: $\nabla \delta M(\vec{x}) \neq 0$ along this phase boundary

 \Rightarrow as in the chiral limit: $\alpha_{4,b} < 0, \alpha_2 > 0$

► GL expansion:

$$\Omega[M] = \Omega[M_0] + \frac{1}{V} \int d^3x \left(\alpha_2 \delta M^2 + \alpha_3 \delta M^3 + \alpha_{4,a} \delta M^4 + \alpha_{4,b} (\nabla \delta M)^2 + \dots \right)$$

• <u>case 1</u>: $\alpha_{4,b} > 0 \Rightarrow$ homogeneous CEP: $\alpha_2 = \alpha_3 = 0$

• <u>case 2</u>: $\alpha_{4,b} < 0 \Rightarrow$ inhomogeneous phases possible

- strictly: only two phases homogeneous and inhomogeneous \Rightarrow no LP
- There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the *inhomogeneous* part of M(x) goes to zero
- M_0 homogeneous ground state $\Rightarrow \delta M(\vec{x}) \rightarrow 0$ along this phase boundary
- in general: $\nabla \delta M(\vec{x}) \neq 0$ along this phase boundary

 \Rightarrow as in the chiral limit: $\alpha_{4,b} < 0, \alpha_2 > 0$

 \rightarrow pseudo Lifshitz point (PLP): $\alpha_2 = \alpha_{4,b} = 0$

Summarizing: GL analysis of critical and Lifshitz points

- chiral limit (m = 0):
 - expansion about M = 0
 - TCP: α₂ = α_{4,a} = 0
 - LP: α₂ = α_{4,b} = 0
- away from the chiral limit $(m \neq 0)$:
 - expansion about $M_0(T, \mu)$ solving $\alpha_1(T, \mu, M_0) = 0$
 - CEP: α₂ = α₃ = 0
 - PLP: $\alpha_2 = \alpha_{4,b} = 0$

► NJL mean-field thermodynamic potential:

$$\Omega_{MF}(T,\mu) = -\frac{\tau}{V} \text{Tr} \log\left(\frac{S^{-1}}{T}\right) + G \frac{1}{V} \int d^3x \left(S^2(\vec{x}) + P^2(\vec{x})\right)$$

NJL mean-field thermodynamic potential:

$$\Omega_{MF}(T,\mu) = -\frac{T}{V} \operatorname{Tr} \log \left(\frac{S^{-1}}{T} \right) + G \frac{1}{V} \int d^3x \, \left(S^2(\vec{x}) + P^2(\vec{x}) \right)$$

► again assume P = 0 \rightarrow $M(\vec{x}) = m - 2GS(\vec{x}) \equiv M_0 + \delta M(\vec{x})$

NJL mean-field thermodynamic potential:

$$\Omega_{MF}(T,\mu) = -\frac{\tau}{V} \operatorname{Tr} \log\left(\frac{S^{-1}}{T}\right) + G \frac{1}{V} \int d^3x \, \left(S^2(\vec{x}) + P^2(\vec{x})\right)$$

► again assume P = 0 \rightarrow $M(\vec{x}) = m - 2GS(\vec{x}) \equiv M_0 + \delta M(\vec{x})$

$$\Rightarrow \quad \Omega_{MF} = -\frac{T}{V} \operatorname{Tr} \log(S_0^{-1} - \delta M) + \frac{1}{V} \int_V d^3 x \, \frac{(M_0 - m + \delta M(\vec{x}))^2}{4G}$$

► $S_0^{-1}(x) = i\partial + \mu\gamma^0 - M_0$ inverse propagator of a free fermion with mass M_0

NJL mean-field thermodynamic potential:

$$\Omega_{MF}(T,\mu) = -\frac{T}{V} \operatorname{Tr} \log\left(\frac{S^{-1}}{T}\right) + G \frac{1}{V} \int d^3x \, \left(S^2(\vec{x}) + P^2(\vec{x})\right)$$

► again assume P = 0 \rightarrow $M(\vec{x}) = m - 2GS(\vec{x}) \equiv M_0 + \delta M(\vec{x})$

$$\Rightarrow \quad \Omega_{MF} = -\frac{T}{V} \operatorname{Tr} \log(S_0^{-1} - \delta M) + \frac{1}{V} \int_V d^3 x \, \frac{(M_0 - m + \delta M(\vec{x}))^2}{4G}$$

- ► $S_0^{-1}(x) = i\partial + \mu\gamma^0 M_0$ inverse propagator of a free fermion with mass M_0
- expand logarithm:

$$\log(S_0^{-1} - \delta M) = \log(S_0^{-1}) + \log(1 - S_0 \delta M) = \log(S_0^{-1}) - \sum_{n=1}^{\infty} \frac{1}{n} (S_0 \delta M)^n$$

• Thermodynamic potential: $\Omega_{MF} = \sum_{n=0}^{\infty} \Omega^{(n)}$

 $\Omega^{(n)}$: contribution of order $(\delta M)^n$:

$$\begin{split} \Omega^{(0)} &= -\frac{T}{V} \operatorname{Tr} \, \log S_0^{-1} \, + \, \frac{1}{V} \int_{V} d^3 x \, \frac{(M_0 - m)^2}{4G} \\ \Omega^{(1)} &= \frac{T}{V} \operatorname{Tr} \, (S_0 \delta M) \, + \, \frac{M_0 - m}{2G} \, \frac{1}{V} \int_{V} d^3 x \, \delta M(\vec{x}) \, , \\ \Omega^{(2)} &= \frac{1}{2} \frac{T}{V} \operatorname{Tr} \, (S_0 \delta M)^2 \, + \, \frac{1}{4G} \, \frac{1}{V} \int_{V} d^3 x \, \delta M^2(\vec{x}) \, , \\ \Omega^{(n)} &= \frac{1}{n} \frac{T}{V} \operatorname{Tr} \, (S_0 \delta M)^n \quad \text{for } n \geq 3. \end{split}$$

functional trace:

$$\mathbf{Tr} \left(S_0 \delta M\right)^n = 2N_c \int \prod_{i=1}^n d^4 x_i \operatorname{tr}_{\mathsf{D}} \left[S_0(x_n, x_1) \delta M(\vec{x}_1) S_0(x_1, x_2) \delta M(\vec{x}_2) \dots S_0(x_{n-1}, x_n) \delta M(\vec{x}_n)\right]$$
Determination of the GL coefficients

functional trace:

$$\mathbf{Tr} \left(S_0 \delta M\right)^n = 2N_c \int \prod_{i=1}^n d^4 x_i \operatorname{tr}_{\mathsf{D}} \left[S_0(x_n, x_1) \delta M(\vec{x}_1) S_0(x_1, x_2) \delta M(\vec{x}_2) \dots S_0(x_{n-1}, x_n) \delta M(\vec{x}_n)\right]$$

- ► gradient expansion: $\delta M(\vec{x}_i) = \delta M(\vec{x}_1) + \nabla M(\vec{x}_1) \cdot (\vec{x}_i \vec{x}_1) + ...$
 - $\Rightarrow \quad \Omega^{(n)} = \sum_{j=0}^{\infty} \Omega^{(n,j)} \ , \quad j = \text{number of gradients}$

Determination of the GL coefficients

functional trace:

$$\mathbf{Tr} \left(S_0 \delta M\right)^n = 2N_c \int \prod_{i=1}^n d^4 x_i \operatorname{tr}_{\mathsf{D}} \left[S_0(x_n, x_1) \delta M(\vec{x}_1) S_0(x_1, x_2) \delta M(\vec{x}_2) \dots S_0(x_{n-1}, x_n) \delta M(\vec{x}_n)\right]$$

► gradient expansion: $\delta M(\vec{x}_i) = \delta M(\vec{x}_1) + \nabla M(\vec{x}_1) \cdot (\vec{x}_i - \vec{x}_1) + \dots$

$$\Rightarrow \quad \Omega^{(n)} = \sum_{j=0}^{\infty} \Omega^{(n,j)} , \quad j = \text{number of gradients}$$

- ► final steps:
 - Insert momentum-space rep. of the free propagators S₀ and turn out all but one d⁴x_i integrals.
 - Compare results with GL expansion of Ω_{MF} to read off the GL coefficients.

Resulting coefficients:

$$\begin{split} \alpha_1 &= \frac{M_0 - m}{2G} + M_0 F_1 \,, \qquad \alpha_2 = \frac{1}{4G} + \frac{1}{2} F_1 + M_0^2 F_2 \,, \qquad \alpha_3 = M_0 \left(F_2 + \frac{4}{3} M_0^2 F_3 \right) \,, \\ \alpha_{4,a} &= \frac{1}{4} F_2 + 2M_0^2 F_3 + 2M_0^4 F_4 \,, \qquad \alpha_{4,b} = \frac{1}{4} F_2 + \frac{1}{3} M_0^2 F_3 \end{split}$$

•
$$F_n = 8N_c \int \frac{d^3p}{(2\pi)^3} T \sum_j \frac{1}{[(i\omega_j + \mu)^2 - \bar{p}^2 - M_0^2]^n}, \quad \omega_j = (2j+1)\pi T$$

Resulting coefficients:

$$\begin{split} \alpha_1 &= \frac{M_0 - m}{2G} + M_0 F_1 \,, \qquad \alpha_2 = \frac{1}{4G} + \frac{1}{2} F_1 + M_0^2 F_2 \,, \qquad \alpha_3 = M_0 \left(F_2 + \frac{4}{3} M_0^2 F_3 \right) \,, \\ \alpha_{4,a} &= \frac{1}{4} F_2 + 2M_0^2 F_3 + 2M_0^4 F_4 \,, \qquad \alpha_{4,b} = \frac{1}{4} F_2 + \frac{1}{3} M_0^2 F_3 \end{split}$$

•
$$F_n = 8N_c \int \frac{d^3p}{(2\pi)^3} T \sum_j \frac{1}{[(i\omega_j + \mu)^2 - \vec{p}^2 - M_0^2]^n}, \quad \omega_j = (2j+1)\pi T$$

- ► chiral limit:
 - $m = 0 \Rightarrow M_0 = 0$ solves gap equation $\alpha_1 = 0$
 - $M_0 = 0 \Rightarrow \alpha_3 = 0$ (no odd powers)
 - $M_0 = 0 \Rightarrow \alpha_{4,a} = \alpha_{4,b} \Rightarrow \text{TCP} = \text{LP}$ [Nickel, PRL (2009)]

Resulting coefficients:

$$\begin{split} \alpha_1 &= \frac{M_0 - m}{2G} + M_0 F_1 \,, \qquad \alpha_2 = \frac{1}{4G} + \frac{1}{2} F_1 + M_0^2 F_2 \,, \qquad \alpha_3 = M_0 \left(F_2 + \frac{4}{3} M_0^2 F_3 \right) \,, \\ \alpha_{4,a} &= \frac{1}{4} F_2 + 2M_0^2 F_3 + 2M_0^4 F_4 \,, \qquad \alpha_{4,b} = \frac{1}{4} F_2 + \frac{1}{3} M_0^2 F_3 \end{split}$$

•
$$F_n = 8N_c \int \frac{d^3p}{(2\pi)^3} T \sum_j \frac{1}{[(i\omega_j + \mu)^2 - \vec{p}^2 - M_0^2]^n}, \quad \omega_j = (2j+1)\pi T$$

towards the chiral limit:

►
$$M_0 \rightarrow 0 \Rightarrow \alpha_3, \alpha_{4ba}, \alpha_{4,b} \propto F_2 \Rightarrow \mathsf{CEP} \rightarrow \mathsf{TCP} = \mathsf{LP}$$

Resulting coefficients:

$$\begin{split} \alpha_1 &= \frac{M_0 - m}{2G} + M_0 F_1 \,, \qquad \alpha_2 = \frac{1}{4G} + \frac{1}{2} F_1 + M_0^2 F_2 \,, \qquad \alpha_3 = M_0 \left(F_2 + \frac{4}{3} M_0^2 F_3 \right) \,, \\ \alpha_{4,a} &= \frac{1}{4} F_2 + 2M_0^2 F_3 + 2M_0^4 F_4 \,, \qquad \alpha_{4,b} = \frac{1}{4} F_2 + \frac{1}{3} M_0^2 F_3 \end{split}$$

•
$$F_n = 8N_c \int \frac{d^3p}{(2\pi)^3} T \sum_j \frac{1}{[(i\omega_j + \mu)^2 - \vec{p}^2 - M_0^2]^n}, \quad \omega_j = (2j+1)\pi T$$

► away from the chiral limit:

•
$$M_0 \neq 0 \Rightarrow \alpha_3 = 4M_0\alpha_{4,b} \Rightarrow \mathsf{CEP} = \mathsf{PLP}$$

Resulting coefficients:

$$\begin{split} \alpha_1 &= \frac{M_0 - m}{2G} + M_0 F_1 \,, \qquad \alpha_2 = \frac{1}{4G} + \frac{1}{2} F_1 + M_0^2 F_2 \,, \qquad \alpha_3 = M_0 \left(F_2 + \frac{4}{3} M_0^2 F_3 \right) \,, \\ \alpha_{4,a} &= \frac{1}{4} F_2 + 2M_0^2 F_3 + 2M_0^4 F_4 \,, \qquad \alpha_{4,b} = \frac{1}{4} F_2 + \frac{1}{3} M_0^2 F_3 \end{split}$$

•
$$F_n = 8N_c \int \frac{d^3p}{(2\pi)^3} T \sum_j \frac{1}{[(\omega_j + \mu)^2 - \vec{p}^2 - M_0^2]^n}, \quad \omega_j = (2j+1)\pi T$$

- away from the chiral limit:
 - $M_0 \neq 0 \Rightarrow \alpha_3 = 4M_0\alpha_{4,b} \Rightarrow \text{CEP} = \text{PLP}$

The CEP coincides with the PLP!

Results:

	chiral limit	explicitly broken
NJL model		
QM model		

	chiral limit	explicitly broken
NJL model	LP = TCP	
	[Nickel, PRL (2009)]	
QM model		

	chiral limit	explicitly broken
NJL model	LP = TCP	
	[Nickel, PRL (2009)]	
	LP = TCP	
QM model	if $m_{\sigma} = 2\bar{M}$	
	[MB, Carignano, Schaefer, PRD (2014)]	

	chiral limit	explicitly broken
NJL model	LP = TCP	PLP = CEP
	[Nickel, PRL (2009)]	[MB, Carignano, PLB (2019)]
	LP = TCP	
QM model	if $m_{\sigma} = 2\bar{M}$	
	[MB, Carignano, Schaefer, PRD (2014)]	

	chiral limit	explicitly broken
NJL model	LP = TCP	PLP = CEP
	[Nickel, PRL (2009)]	[MB, Carignano, PLB (2019)]
	LP = TCP	PLP = CEP
QM model	if $m_{\sigma} = 2\bar{M}$	if $m_{\sigma} = 2\bar{M}$ in the chiral limit
	[MB, Carignano, Schaefer, PRD (2014)]	[MB, Carignano, Kurth EPJST (2020)]

	chiral limit	explicitly broken
NJL model	LP = TCP	PLP = CEP
	[Nickel, PRL (2009)]	[MB, Carignano, PLB (2019)]
	LP = TCP	PLP = CEP
QM model	if $m_{\sigma} = 2\bar{M}$	if $m_{\sigma} = 2\bar{M}$ in the chiral limit
	[MB, Carignano, Schaefer, PRD (2014)]	[MB, Carignano, Kurth EPJST (2020)]

Model results, but independent of model parameters

	chiral limit	explicitly broken
NJL model	LP = TCP	PLP = CEP
	[Nickel, PRL (2009)]	[MB, Carignano, PLB (2019)]
	LP = TCP	PLP = CEP
QM model	if $m_{\sigma} = 2\bar{M}$	if $m_{\sigma} = 2\bar{M}$ in the chiral limit
	[MB, Carignano, Schaefer, PRD (2014)]	[MB, Carignano, Kurth EPJST (2020)]

- Model results, but independent of model parameters
- → Model predictions of an inhomogeneous phase should be taken as seriously as those of a CEP!

Stability analysis

Stability analysis

► as before:

Expand the thermodynamic potential in powers of small fluctuations δM around the most stable homogeneous solution M_0

• Contributions of order $(\delta M)^n$:

$$\Omega^{(0)} = -\frac{T}{V} \operatorname{Tr} \log S_0^{-1} + \frac{1}{V} \int_{V} d^3 x \, \frac{(M_0 - m)^2}{4G}$$
$$\Omega^{(1)} = \frac{T}{V} \operatorname{Tr} (S_0 \delta M) + \frac{M_0 - m}{2G} \frac{1}{V} \int_{V} d^3 x \, \delta M(\vec{x})$$
$$\Omega^{(2)} = \frac{1}{2} \frac{T}{V} \operatorname{Tr} (S_0 \delta M)^2 + \frac{1}{4G} \frac{1}{V} \int_{V} d^3 x \, \delta M^2(\vec{x})$$
$$\Omega^{(n>3)} = \frac{1}{n} \frac{T}{V} \operatorname{Tr} (S_0 \delta M)^n$$

Stability analysis

► as before:

Expand the thermodynamic potential in powers of small fluctuations δM around the most stable homogeneous solution M_0

• Contributions of order $(\delta M)^n$:

 $\Omega^{(0)}$ not relevant in the following

 $\Omega^{(1)} = 0$ by the gap equation

$$\Omega^{(2)} = \frac{1}{2} \frac{T}{V} \operatorname{Tr} (S_0 \delta M)^2 + \frac{1}{4G} \frac{1}{V} \int_V d^3 x \ \delta M^2(\vec{x})$$

 $\Omega^{(n>3)}$ not relevant in the following

Quadratic contribution

$$\blacktriangleright \ \Omega^{(2)} = \frac{1}{2} \frac{T}{V} \operatorname{Tr} \left(S_0 \delta M \right)^2 + \frac{1}{4G} \frac{1}{V} \int_V d^3 x \ \delta M^2(\vec{x})$$

- functional trace:
 - **Tr** $(S_0 \delta M)^2 = 2N_c \int d^4x \, d^4x' \, \text{tr}_D \Big[S_0(x, x') \, \delta M(\vec{x}) \, S_0(x', x) \, \delta M(\vec{x}) \Big]$

Quadratic contribution

$$\blacktriangleright \ \Omega^{(2)} = \frac{1}{2} \frac{T}{V} \operatorname{Tr} \left(S_0 \delta M \right)^2 + \frac{1}{4G} \frac{1}{V} \int_V d^3 x \ \delta M^2(\vec{x})$$

- functional trace:
 - **Tr** $(S_0 \delta M)^2 = 2N_c \int d^4x \, d^4x' \, \text{tr}_D \Big[S_0(x, x') \, \delta M(\vec{x}) \, S_0(x', x) \, \delta M(\vec{x}) \Big]$
- ► Evaluate in momentum space without gradient expansion:

$$\Omega^{(2)} = \frac{1}{2V} \int \frac{d^3q}{(2\pi)^3} |\delta M(\vec{q})|^2 \Gamma_S^{-1}(q)$$

• $\Gamma_S^{-1}(q) \propto \text{ inverse sigma propagator at } q = \begin{pmatrix} 0 \\ \vec{q} \end{pmatrix}$

$$= \times + \times \times + \dots = \times + \times +$$

• unstable region: $\Gamma_S^{-1}(q) < 0$

Quadratic contribution

•
$$\Omega^{(2)} = \frac{1}{2} \frac{T}{V} \operatorname{Tr} (S_0 \delta M)^2 + \frac{1}{4G} \frac{1}{V} \int_V d^3 x \, \delta M^2(\vec{x})$$

- functional trace:
 - **Tr** $(S_0 \delta M)^2 = 2N_c \int d^4x \, d^4x' \, \text{tr}_D \Big[S_0(x, x') \, \delta M(\vec{x}) \, S_0(x', x) \, \delta M(\vec{x}) \Big]$
- ► Evaluate in momentum space without gradient expansion:

$$\Omega^{(2)} = \frac{1}{2V} \int \frac{d^3q}{(2\pi)^3} |\delta M(\vec{q})|^2 \Gamma_S^{-1}(q)$$

► $\Gamma_S^{-1}(q) \propto \text{ inverse sigma propagator at } q = \begin{pmatrix} 0 \\ \vec{a} \end{pmatrix}$

• unstable region: $\Gamma_{S}^{-1}(q) < 0$

• including pseudoscalar fluctuations δP :

analogous expressions involving $\Gamma_P^{-1}(q) \propto$ inverse pion propagator

Example

 inverse meson propagators for m = 10 MeV, T = 10 MeV, μ = 344 MeV: [MB, S. Carignano, PLB (2018)]

▶ blue: $\Gamma_P^{-1} \rightarrow$ stable w.r.t. δP

Phasediagram

[MB, S. Carignano, PLB (2018)]

dominant instability in the scalar channel

Phasediagram

[MB, S. Carignano, PLB (2018)]

- orange region: RKC favored
- instability region < RKC region (not shown)
 - "right phase" boundaries agree
 - stability analysis misses instabilites in the homogeneous broken regime w.r.t. large fluctuations

dominant instability in the scalar channel

from [Koenigstein et al. (2022)]

1 + 1 dim Gross-Neveu model:

 inhomogeneous phase in the renormalized limit [Thies et al.]

[MB, Kurth, Wagner Winstel; PRD (2021)]

- 1 + 1 dim Gross-Neveu model:
 - inhomogeneous phase in the renormalized limit [Thies et al.]
- 2 + 1 dim Gross-Neveu model:
 - IP for finite Λ
 - disappears for $\Lambda \to \infty$

[MB, Kurth, Wagner Winstel; PRD (2021)]

Then how about 3 + 1 dim GN /NJL ?

- ▶ non-renormalizable → cutoff must be kept finite
- strong regulator dependecies [Pannullo, Wagner, Winstel PoS LATTICE2022]
- ▶ No IP in GN with $2 \le d < 3 \varepsilon$ spatial dimensions [Pannullo, PRD (2023)]

1 + 1 dim Gross-Neveu model:

- inhomogeneous phase in the renormalized limit [Thies et al.]
- 2 + 1 dim Gross-Neveu model:
 - IP for finite Λ
 - disappears for $\Lambda \to \infty$

1 + 1 dim Gross-Neveu model:

2 + 1 dim Gross-Neveu model:

disappears for $\Lambda \to \infty$

IP for finite Λ

inhomogeneous phase in the

renormalized limit [Thies et al.]

[MB, Kurth, Wagner Winstel; PRD (2021)]

Then how about 3 + 1 dim GN /NJL ?

- ▶ non-renormalizable → cutoff must be kept finite
- strong regulator dependecies [Pannullo, Wagner, Winstel PoS LATTICE2022]
- ▶ No IP in GN with 2 ≤ d < 3 ε spatial dimensions [Pannullo, PRD (2023)]
- ► 3 + 1 dim QM model:

IP survives $\Lambda \to \infty$, but potential not bounded from below

But maybe the cutoff contains some physics ...

But maybe the cutoff contains some physics ... Does the cutoff mimic asymptotic freedom?

- But maybe the cutoff contains some physics ... Does the cutoff mimic asymptotic freedom?
- Indications of an inhomogeneous chiral phase in QCD from DSEs (CDW-like ansatz)
 [D. Müller et al., PLB (2013)]

- But maybe the cutoff contains some physics ... Does the cutoff mimic asymptotic freedom?
- Indications of an inhomogeneous chiral phase in QCD from DSEs (CDW-like ansatz)
 [D. Müller et al., PLB (2013)]
- Ongoing work towards a QCD stability analysis [Motta et al., arXiv:2306.09749]
 - ightarrow Theo Motta's talk on Tuesday

Conclusion

- Chiral models can give us hints about interesting features of the QCD phase diagram:
 - the critical endpoint
 - color-superconducting phases
 - inhomogeneous phases
 - **۱**...
- They are not suited for quantitative predictions of them, but they have inspired more sophisticated (QCD based) investigations and are useful benchmarks for them.