Outline

1. Introduction
2. Chiral phase transition and critical endpoint
3. Color superconductivity \checkmark
4. Inhomogeneous chiral phases

INHOMOGENEOUS CHIRAL PHASES

Why should we expect inhomogeneous chiral-symmetry breaking phases?

Why should we expect inhomogeneous chiral-symmetry breaking phases?

Analogy:

- CSC = quark-quark pairing
- favored for equal Fermi momenta
- stressed by unequal densities

Why should we expect inhomogeneous chiral-symmetry breaking phases?

Analogy:

- CSC = quark-quark pairing
- favored for equal Fermi momenta
- stressed by unequal densities
- tradeoff: spatially varying diquark condensate
- excess quarks in regions of low $\langle q q\rangle$

Why should we expect inhomogeneous chiral-symmetry breaking phases?

Analogy:

- CSC = quark-quark pairing
- favored for equal Fermi momenta
- stressed by unequal densities
- tradeoff: spatially varying diquark condensate
- excess quarks in regions of low $\langle q q\rangle$

- $\chi \mathrm{SB}=$ quark-antiquark pairing
- favored for vanishing Fermi momenta
- stressed by nonzero densities
- tradeoff: spatially varying chiral condensate
- quarks in regions of low $\langle\bar{q} q\rangle$

[Kojo et al. (2010)]

Highlight example

- chiral phase transition in the NJL model [D. Nickel, PRD (2009)]

Highlight example

- chiral phase transition in the NJL model [D. Nickel, PRD (2009)]
including inhomogeneous phase

- first-order phase boundary completely covered by the inhomogeneous phase
- all phase boundaries second order (mean-field artifact?)
- tricritical point
\rightarrow Lifshitz point
[Nickel, PRL (2009)]

Inhomogeneous chiral phases: (incomplete) historical overview

- 1960s:
- spin-density waves in nuclear matter (Overhauser)
- 1970s - 1990s:
- p-wave pion condensation (Migdal)
- chiral density wave (Dautry, Nyman)
- Skyrme crystals (Goldhaber, Manton)
- after 2000:
- 1+1 D Gross-Neveu model (Thies et al.)
- quarkyonic matter
(Kojo, McLerran, Pisarski, ...)

Inhomogeneous chiral phases: (incomplete) historical overview

- 1960s:
- spin-density waves in nuclear matter (Overhauser)
- 1970s - 1990s:
- p-wave pion condensation (Migdal)
- chiral density wave (Dautry, Nyman)
- Skyrme crystals (Goldhaber, Manton)
- after 2000:
- 1+1 D Gross-Neveu model (Thies et al.)
- quarkyonic matter (Kojo, McLerran, Pisarski, ...)

Broniowski et al. (1991)

Inhomogeneous chiral phases: (incomplete) historical overview

- 1960s:
- spin-density waves in nuclear matter (Overhauser)
- 1970s - 1990s:
- p-wave pion condensation (Migdal)
- chiral density wave (Dautry, Nyman)
- Skyrme crystals (Goldhaber, Manton)
- after 2000:
- 1+1 D Gross-Neveu model (Thies et al.)
- quarkyonic matter (Kojo, McLerran, Pisarski, ...)

Thies, Urlichs (2003)

Inhomogeneous chiral phases: (incomplete) historical overview

- 1960s:
- spin-density waves in nuclear matter (Overhauser)
- 1970s - 1990s:
- p-wave pion condensation (Migdal)
- chiral density wave (Dautry, Nyman)
- Skyrme crystals (Goldhaber, Manton)
- after 2000:
- 1+1 D Gross-Neveu model (Thies et al.)
- quarkyonic matter (Kojo, McLerran, Pisarski, ...)

Kojo et al. (2011)

NJL Model

- Lagrangian:

$$
\mathscr{L}=\bar{\psi}(i \not \partial-m) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

NJL Model

- Lagrangian:

$$
\mathscr{L}=\bar{\psi}(i \not \partial-m) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathscr{L}=\bar{\psi}\left(i \not \partial-m+2 G\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

NJL Model

- Lagrangian:

$$
\mathscr{L}=\bar{\psi}(i \not \partial-m) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathscr{L}=\bar{\psi}\left(i \not \partial-m+2 G\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

- mean-field approximation:

$$
\sigma(x) \rightarrow\langle\sigma(x)\rangle \equiv S(\vec{x}), \quad \pi_{a}(x) \rightarrow\left\langle\pi_{a}(x)\right\rangle \equiv P(\vec{x}) \delta_{a 3}
$$

- $S(\vec{x}), P(\vec{x})$ time independent classical fields
- retain space dependence!

NJL Model

- Lagrangian:

$$
\mathscr{L}=\bar{\psi}(i \not \partial-m) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathscr{L}=\bar{\psi}\left(i \not \partial-m+2 G\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

- mean-field approximation:

$$
\sigma(x) \rightarrow\langle\sigma(x)\rangle \equiv S(\vec{x}), \quad \pi_{a}(x) \rightarrow\left\langle\pi_{a}(x)\right\rangle \equiv P(\vec{x}) \delta_{a 3}
$$

- $S(\vec{x}), P(\vec{x})$ time independent classical fields
- retain space dependence!
- mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \ln \int \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left(\int_{x \in\left[0, \frac{1}{\tau}\right] \times V}\left(\mathscr{L}_{M F}+\mu \bar{\psi} \gamma^{0} \psi\right)\right)
$$

Mean-field model

- mean-field Lagrangian:

$$
\mathscr{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G\left[S^{2}(\vec{x})+P^{2}(\vec{x})\right]
$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!

Mean-field model

- mean-field Lagrangian:

$$
\mathscr{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G\left[S^{2}(\vec{x})+P^{2}(\vec{x})\right]
$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-H_{M F}\right)
$$

Mean-field model

- mean-field Lagrangian:

$$
\mathscr{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G\left[S^{2}(\vec{x})+P^{2}(\vec{x})\right]
$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-H_{M F}\right)
$$

- effective Hamiltonian (in chiral representation):

$$
H_{M F}=H_{M F}[S, P]=\left(\begin{array}{cc}
-i \vec{\sigma} \cdot \vec{\partial} & M(\vec{x}) \\
M^{*}(\vec{x}) & i \vec{\sigma} \cdot \vec{\partial}
\end{array}\right)
$$

- constituent mass functions: $M(\vec{x})=m-2 G[S(\vec{x})+i P(\vec{x})]$

Mean-field model

- mean-field Lagrangian:

$$
\mathscr{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G\left[S^{2}(\vec{x})+P^{2}(\vec{x})\right]
$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-H_{M F}\right)
$$

- effective Hamiltonian (in chiral representation):

$$
H_{M F}=H_{M F}[S, P]=\left(\begin{array}{cc}
-i \vec{\sigma} \cdot \vec{\partial} & M(\vec{x}) \\
M^{*}(\vec{x}) & i \vec{\sigma} \cdot \vec{\partial}
\end{array}\right)
$$

- constituent mass functions: $M(\vec{x})=m-2 G[S(\vec{x})+i P(\vec{x})]$
- $H_{M F}$ hermitean \Rightarrow can (in principle) be diagonalized (eigenvalues E_{λ})
- $H_{M F}$ time-independent \Rightarrow Matsubara sum as usual

Mean-field thermodynamic potential

- thermodynamic potential:

$$
\Omega_{M F}(T, \mu ; S, P)=-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-H_{M F}+\mu\right)\right)+\frac{G}{V} \int_{V} d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

Mean-field thermodynamic potential

- thermodynamic potential:

$$
\begin{aligned}
\Omega_{M F}(T, \mu ; S, P) & =-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-H_{M F}+\mu\right)\right)+\frac{G}{V} \int_{V} d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right) \\
& =-\frac{1}{V} \sum_{\lambda}\left[\frac{E_{\lambda}-\mu}{2}+T \ln \left(1+e^{\frac{E_{\lambda}-\mu}{T}}\right)\right]+\frac{1}{V} \int_{V} d^{3} x \frac{|M(\vec{x})-m|^{2}}{4 G}
\end{aligned}
$$

Mean-field thermodynamic potential

- thermodynamic potential:

$$
\begin{aligned}
\Omega_{M F}(T, \mu ; S, P) & =-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-H_{M F}+\mu\right)\right)+\frac{G}{V} \int_{V} d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right) \\
& =-\frac{1}{V} \sum_{\lambda}\left[\frac{E_{\lambda}-\mu}{2}+T \ln \left(1+e^{\frac{E_{\lambda}-\mu}{T}}\right)\right]+\frac{1}{V} \int_{V} d^{3} x \frac{|M(\vec{x})-m|^{2}}{4 G}
\end{aligned}
$$

- remaining tasks:
- Calculate eigenvalue spectrum $E_{\lambda}[M(\vec{x})]$ of $H_{M F}$ for given $M(\vec{x})$.
- Minimize $\Omega_{M F}$ w.r.t. $M(\vec{x})$

Mean-field thermodynamic potential

- thermodynamic potential:

$$
\begin{aligned}
\Omega_{M F}(T, \mu ; S, P) & =-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-H_{M F}+\mu\right)\right)+\frac{G}{V} \int_{V} d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right) \\
& =-\frac{1}{V} \sum_{\lambda}\left[\frac{E_{\lambda}-\mu}{2}+T \ln \left(1+e^{\frac{E_{\lambda}-\mu}{T}}\right)\right]+\frac{1}{V} \int_{V} d^{3} x \frac{|M(\vec{x})-m|^{2}}{4 G}
\end{aligned}
$$

- remaining tasks:
- Calculate eigenvalue spectrum $E_{\lambda}[M(\vec{x})]$ of $H_{M F}$ for given $M(\vec{x})$. difficulty: $H_{M F}$ is nondiagonal in momentum space
- Minimize $\Omega_{M F}$ w.r.t. $M(\vec{x})$

Mean-field thermodynamic potential

- thermodynamic potential:

$$
\begin{aligned}
\Omega_{M F}(T, \mu ; S, P) & =-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-H_{M F}+\mu\right)\right)+\frac{G}{V} \int_{V} d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right) \\
& =-\frac{1}{V} \sum_{\lambda}\left[\frac{E_{\lambda}-\mu}{2}+T \ln \left(1+e^{\frac{E_{\lambda}-\mu}{T}}\right)\right]+\frac{1}{V} \int_{V} d^{3} x \frac{|M(\vec{x})-m|^{2}}{4 G}
\end{aligned}
$$

- remaining tasks:
- Calculate eigenvalue spectrum $E_{\lambda}[M(\vec{x})]$ of $H_{M F}$ for given $M(\vec{x})$. difficulty: $H_{M F}$ is nondiagonal in momentum space
- Minimize $\Omega_{M F}$ w.r.t. $M(\vec{x})$ difficulty: functional minimization w.r.t. arbitrary shapes

Strategies

- Restricted ansätze for the condensate modulation
\rightarrow minimize $\Omega_{\text {MF }}$ w.r.t. a finite number of parameters
- ansätze for which $H_{M F}$ can be diagonalized analytically
- brute-force numerical diagonalization of $H_{M F}$
- Stability and Ginzburg-Landau anlayses
\rightarrow investigate the stability of the homogeneous ground state w.r.t. small inhomogeneous fluctuations

Ansätze which can be diagonalized analytically

Chiral density wave

Chiral density wave

- popular ansatz: $M(\vec{x})=\Delta e^{i \vec{q} \cdot \vec{x}} \quad$ (dual) chiral density wave, "chiral spiral"

Chiral density wave

- popular ansatz: $M(\vec{x})=\Delta e^{i \vec{q} \cdot \vec{x}} \quad$ (dual) chiral density wave, "chiral spiral"

$$
\begin{aligned}
& \Leftrightarrow S(\vec{x})=-\frac{\Delta}{2 G} \cos (\vec{q} \cdot \vec{x}), \quad P(\vec{x})=-\frac{\Delta}{2 G} \sin (\vec{q} \cdot \vec{x}) \\
& \Rightarrow \quad \mathcal{L}_{M F}=\bar{\psi}\left[i \not \partial-m+2 G\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right)\right] \psi-G\left(S^{2}+P^{2}\right) \\
&=\bar{\psi}\left[i \not \partial-\Delta\left(\cos (\vec{q} \cdot \vec{x})+i \gamma_{5} \tau_{3} \sin (\vec{q} \cdot \vec{x})\right)\right] \psi-\frac{\Delta^{2}}{4 G} \\
&=\bar{\psi}\left[i \not \partial-\Delta \exp \left(i \gamma_{5} \tau_{3} \vec{q} \cdot \vec{x}\right)\right] \psi-\frac{\Delta^{2}}{4 G}
\end{aligned}
$$

Chiral density wave

- popular ansatz: $M(\vec{x})=\Delta e^{i \vec{q} \cdot \vec{x}} \quad$ (dual) chiral density wave, "chiral spiral"

$$
\begin{aligned}
& \Leftrightarrow S(\vec{x})=-\frac{\Delta}{2 G} \cos (\vec{q} \cdot \vec{x}), \quad P(\vec{x})=-\frac{\Delta}{2 G} \sin (\vec{q} \cdot \vec{x}) \\
\Rightarrow \quad \mathcal{L}_{M F} & =\bar{\psi}\left[i \not \partial-m+2 G\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right)\right] \psi-G\left(S^{2}+P^{2}\right) \\
& =\bar{\psi}\left[i \not \partial-\Delta\left(\cos (\vec{q} \cdot \vec{x})+i \gamma_{5} \tau_{3} \sin (\vec{q} \cdot \vec{x})\right)\right] \psi-\frac{\Delta^{2}}{4 G} \\
& =\bar{\psi}\left[i \not \partial-\Delta \exp \left(i \gamma_{5} \tau_{3} \vec{q} \cdot \vec{x}\right)\right] \psi-\frac{\Delta^{2}}{4 G}
\end{aligned}
$$

- unitary transformation: $\psi(x)=\exp \left(-\frac{i}{2} \gamma_{5} \tau_{3} \vec{q} \cdot \vec{x}\right) \psi^{\prime}(x) \quad$ [Dautry, Nyman (1979)] $\Rightarrow \quad \mathcal{L}_{M F}=\bar{\psi}^{\prime}\left[i \not \partial+\frac{1}{2} \vec{\gamma} \gamma_{5} \tau_{3} \cdot q-\Delta\right] \psi^{\prime}-\frac{\Delta^{2}}{4 G}$
no explicit \vec{x} dependence \rightarrow can be diagonalized analytically!

Chiral density wave

- popular ansatz: $M(\vec{x})=\Delta e^{i \vec{q} \cdot \vec{x}} \quad$ (dual) chiral density wave, "chiral spiral"

$$
\begin{aligned}
& \Leftrightarrow S(\vec{x})=-\frac{\Delta}{2 G} \cos (\vec{q} \cdot \vec{x}), \quad P(\vec{x})=-\frac{\Delta}{2 G} \sin (\vec{q} \cdot \vec{x}) \\
\Rightarrow \quad \mathcal{L}_{M F} & =\bar{\psi}\left[i \not \partial-m+2 G\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right)\right] \psi-G\left(S^{2}+P^{2}\right) \\
& =\bar{\psi}\left[i \not \partial-\Delta\left(\cos (\vec{q} \cdot \vec{x})+i \gamma_{5} \tau_{3} \sin (\vec{q} \cdot \vec{x})\right)\right] \psi-\frac{\Delta^{2}}{4 G} \\
& =\bar{\psi}\left[i \not \partial-\Delta \exp \left(i \gamma_{5} \tau_{3} \vec{q} \cdot \vec{x}\right)\right] \psi-\frac{\Delta^{2}}{4 G}
\end{aligned}
$$

- unitary transformation: $\psi(x)=\exp \left(-\frac{i}{2} \gamma_{5} \tau_{3} \vec{q} \cdot \vec{x}\right) \psi^{\prime}(x) \quad$ [Dautry, Nyman (1979)] $\Rightarrow \quad \mathcal{L}_{M F}=\bar{\psi}^{\prime}\left[i \not \partial+\frac{1}{2} \vec{\gamma} \gamma_{5} \tau_{3} \cdot q-\Delta\right] \psi^{\prime}-\frac{\Delta^{2}}{4 G}$
no explicit \vec{x} dependence \rightarrow can be diagonalized analytically!
- dispersion relations: $E_{ \pm}^{2}(\vec{p})=\vec{p}^{2}+\Delta^{2}+\frac{\vec{q}^{2}}{4} \pm \sqrt{\Delta^{2} \vec{q}^{2}+(\vec{q} \cdot \vec{p})^{2}}$

Real kink crystal

- important observation: [D. Nickel, PRD (2009)]
general problem with 1D modulations in 3+1D can be mapped to the $1+1$ dimensional case

Real kink crystal

- important observation: [D. Nickel, PRD (2009)]
general problem with 1D modulations in 3+1D can be mapped to the $1+1$ dimensional case
- $1+1 \mathrm{D}$ solutions known analytically:
[M. Thies, J. Phys. A (2006)]
$M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \quad$ (chiral limit)
- $\operatorname{sn}(\xi \mid \nu)$: Jacobi elliptic functions
- $M(z)$ real \Rightarrow purely scalar "real kink cystal" (RKC)

Real kink crystal

- important observation: [D. Nickel, PRD (2009)]
general problem with 1D modulations in 3+1D can be mapped to the $1+1$ dimensional case
- $1+1 \mathrm{D}$ solutions known analytically: [M. Thies, J. Phys. A (2006)]
$M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \quad$ (chiral limit)
- $\operatorname{sn}(\xi \mid \nu)$: Jacobi elliptic functions
- $M(z)$ real \Rightarrow purely scalar "real kink cystal" (RKC)
- remaining task:
- minimize w.r.t. 2 parameters: Δ, ν
- (almost) as simple as CDW, but more powerful
- $m \neq 0$: 3 parameters

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=307.5 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=308 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=309 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=310 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{cll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=320 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{cll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=330 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=340 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=345 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=307.5 \mathrm{MeV})$

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=308 \mathrm{MeV})$

normalized density ($\mu=308 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=309 \mathrm{MeV})$

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=320 \mathrm{MeV})$

normalized density ($\mu=320 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=330 \mathrm{MeV})$

normalized density ($\mu=330 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=340 \mathrm{MeV})$

normalized density ($\mu=340 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=345 \mathrm{MeV})$

normalized density ($\mu=345 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Free energy difference

[D. Nickel, PRD (2009)]

- homogeneous chirally broken
- Jacobi elliptic functions
- chiral density wave:
$M_{C D W}(z)=M_{1} e^{i q z}$
- soliton lattice favored, when it exists
- $\delta \Omega_{\text {Jacobi }} \approx 2 \delta \Omega_{\text {CDW }} \Rightarrow$ CDW never favored

Self-bound quark matter

[M.B., S. Carignano, PRD (2013)]

- 1D inhomogeneous solutions:
homogeneous matter decays into domain-wall solitons

- If it was 3D: Hadronization!
- single-soliton properties:
- $\frac{E}{N}=\mu_{c, \text { inh }} \sim 325 \mathrm{MeV} \Rightarrow$ "baryon" mass: $M_{B}=3 \frac{\mathrm{E}}{N} \sim 975 \mathrm{MeV}$
- central density: $\rho_{B}=\frac{1}{4 \pi} M_{\text {vac }} \mu_{c, \text {,hh }}^{2} \sim 2.1 \rho_{0}$
- longitudinal size: $\sqrt{\left\langle Z^{2}\right\rangle}=\frac{\pi}{\sqrt{12}} \frac{1}{M_{\text {vac }}} \sim .5 \mathrm{fm}$
- but it's only 1D modulations ...
\rightarrow revisit chiral solitons !? [Alkofer, Reinhardt, Weigel; Goeke et al.; Ripka; ...]

Two-dimensional modulations

[S. Carignano, M.B., PRD (2012)]

Two-dimensional modulations

[S. Carignano, M.B., PRD (2012)]

- no known analytical solutions
$\rightarrow \quad$ brute-force numerical diagonalization of H for a given ansatz

Two-dimensional modulations

[S. Carignano, M.B., PRD (2012)]

- no known analytical solutions
$\rightarrow \quad$ brute-force numerical diagonalization of H for a given ansatz
- consider two shapes:
- square lattice ("egg carton")

$$
M(x, y)=M \cos (Q x) \cos (Q y)
$$

- hexagonal lattice

$$
M(x, y)=\frac{M}{3}\left[2 \cos (Q x) \cos \left(\frac{1}{\sqrt{3}} Q y\right)+\cos \left(\frac{2}{\sqrt{3}} Q y\right)\right]
$$

- minimize both cases numerically w.r.t. M and Q

Two-dimensional modulations: results

- amplitudes and wave numbers:
- egg carton:

- hexagon:

Two-dimensional modulations: results

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

- 2d not favored over 1d in this regime

Stability and Ginzburg-Landau analyses

Stability and Ginzburg-Landau analyses

General idea:

- Stability analysis:
- Minimize Ω_{MF} w.r.t. homogeneous mean fields $\rightarrow S=\bar{S}=$ const., $P=0$
- Study effect of small inhomogeneous fluctuations $\delta S(\vec{x}), \delta P(\vec{x})$

Stability and Ginzburg-Landau analyses

General idea:

- Stability analysis:
- Minimize Ω_{MF} w.r.t. homogeneous mean fields $\rightarrow S=\bar{S}=$ const., $P=0$
- Study effect of small inhomogeneous fluctuations $\delta S(\vec{x}), \delta P(\vec{x})$
\rightarrow sufficient but not necessary criterion for an inhomogeneous phase
(ㄷ) instabilities w.r.t large inhomogeneous fluctuations not excluded
© no ansatz functions for $S(\vec{x})$ and $P(\vec{x})$ needed

Stability and Ginzburg-Landau analyses

General idea:

- Stability analysis:
- Minimize Ω_{MF} w.r.t. homogeneous mean fields $\rightarrow S=\bar{S}=$ const., $P=0$
- Study effect of small inhomogeneous fluctuations $\delta S(\vec{x}), \delta P(\vec{x})$
\rightarrow sufficient but not necessary criterion for an inhomogeneous phase
(ㄷ) instabilities w.r.t large inhomogeneous fluctuations not excluded
© no ansatz functions for $S(\vec{x})$ and $P(\vec{x})$ needed
\rightarrow well suited to identify 2 nd-order phase transitions

Stability and Ginzburg-Landau analyses

General idea:

- Stability analysis:
- Minimize Ω_{MF} w.r.t. homogeneous mean fields $\rightarrow S=\bar{S}=$ const., $P=0$
- Study effect of small inhomogeneous fluctuations $\delta S(\vec{x}), \delta P(\vec{x})$
\rightarrow sufficient but not necessary criterion for an inhomogeneous phase
(ㄷ) instabilities w.r.t large inhomogeneous fluctuations not excluded
(3) no ansatz functions for $S(\vec{x})$ and $P(\vec{x})$ needed
\rightarrow well suited to identify 2 nd-order phase transitions
- Ginzburg-Landau analysis:
- additional expansion in small gradients $\vec{\nabla} S(\vec{x}), \vec{\nabla} P(\vec{x})$
- best suited to identify critical and Lifshitz points

Reminder

- chiral phase transition in the NJL model (chiral limit) [D. Nickel, PRD (2009)]

Reminder

- chiral phase transition in the NJL model (chiral limit) [D. Nickel, PRD (2009)]

- tricritical point \rightarrow Lifshitz point

Reminder

- chiral phase transition in the NJL model (chiral limit) [D. Nickel, PRD (2009)]
including inhomogeneous phase

- tricritical point \rightarrow Lifshitz point
- How was this shown? [Nickel, PRL (2009)]

Reminder

- chiral phase transition in the NJL model (chiral limit) [D. Nickel, PRD (2009)]
including inhomogeneous phase

- tricritical point \rightarrow Lifshitz point
- How was this shown? [Nickel, PRL (2009)]
- How is it away from the chiral limit?
[MB, Carignano, PRB (2018)]

Ginzburg-Landau analysis

- Simplifications:
- chiral limit $m=0$ (will be relaxed later)
- $P=0$ (to simplify the notation, can be included straightforwardly)
\rightarrow order parameter $M(\vec{x})=-2 G S(\vec{x}) \quad$ ("constituent quark mass")
$\rightarrow \Omega_{M F}=\Omega_{M F}[M]$

Ginzburg-Landau analysis

- Simplifications:
- chiral limit $m=0$ (will be relaxed later)
- $P=0$ (to simplify the notation, can be included straightforwardly)
\rightarrow order parameter $M(\vec{x})=-2 G S(\vec{x}) \quad$ ("constituent quark mass")
$\rightarrow \Omega_{M F}=\Omega_{M F}[M]$
- Assumptions: $M,|\nabla M|$ small (holds near the LP)
\rightarrow expansion of the thermodynamic potential.

$$
\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}(\vec{x})+\alpha_{4, a} M^{4}(\vec{x})+\alpha_{4, b}|\vec{\nabla} M(\vec{x})|^{2}+\ldots\right\}
$$

- $\alpha_{n}=\alpha_{n}(T, \mu)$: GL coefficients
- chiral symmetry: only even powers allowed
- stability: higher-order coeffs. positive

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- $\alpha_{2}>0 \Rightarrow$ restored phase

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- $\alpha_{2}<0 \Rightarrow$ hom. broken phase

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$

case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$

case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$

case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$

$\Rightarrow \quad$ tricritical point (TCP): $\quad \alpha_{2}=\alpha_{4, a}=0$

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$
\Rightarrow tricritical point (TCP): $\quad \alpha_{2}=\alpha_{4, a}=0$
case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$
- case 2: $\alpha_{4, b}<0$
- inhomogeneous phase possible

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$
\Rightarrow tricritical point (TCP): $\quad \alpha_{2}=\alpha_{4, a}=0$
case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$
- case 2: $\alpha_{4, b}<0$
- inhomogeneous phase possible
- 2nd-order phase boundary inhom. - restored: $\alpha_{4, b}<0, \alpha_{2}>0$ finite wavelength, amplitude $\rightarrow 0$

Tricritical and Lifshitz point

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2} M^{2}+\alpha_{4, a} M^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$
\Rightarrow tricritical point (TCP): $\quad \alpha_{2}=\alpha_{4, a}=0$
case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$
- case 2: $\alpha_{4, b}<0$
- inhomogeneous phase possible

Lifshitz point (LP): $\quad \alpha_{2}=\alpha_{4, b}=0$

- 2nd-order phase boundary inhom. - restored: $\alpha_{4, b}<0, \alpha_{2}>0$ finite wavelength, amplitude $\rightarrow 0$

Away from the chiral limit

- $m \neq 0$: no chirally restored solution $M=0$
\rightarrow expand about a priory unknown constant mass M_{0} :

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{1} \delta M+\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- small parameters: $\delta M(\vec{x}) \equiv M(\vec{x})-M_{0}, \quad|\nabla \delta M(\vec{x})|$
- GL coefficients: $\alpha_{j}=\alpha_{j}\left(T, \mu, M_{0}\right)$
- odd powers allowed
- require $M_{0}=$ extremum of Ω at given T and μ

$$
\Rightarrow \alpha_{1}\left(T, \mu, M_{0}\right)=0 \quad \rightarrow \quad M_{0}=M_{0}(T, \mu) \quad \text { (= homogeneous gap equation) }
$$

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

- no restored phase, but 1st-order ph. trans. between different minima possible

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

- no restored phase, but 1st-order ph. trans. between different minima possible
- 2 minima +1 maximum $\rightarrow 1$ minimum

$$
\Rightarrow \quad \text { critical endpoint (CEP): } \quad \alpha_{2}=\alpha_{3}=0
$$

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

- no restored phase, but 1st-order ph. trans. between different minima possible
- 2 minima +1 maximum $\rightarrow 1$ minimum

$$
\Rightarrow \quad \text { critical endpoint (CEP): } \quad \alpha_{2}=\alpha_{3}=0
$$

- spinodals: left: $\alpha_{2}=0, \alpha_{3}<0$, right: $\alpha_{2}=0, \alpha_{3}>0$,

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous CEP: $\quad \alpha_{2}=\alpha_{3}=0$
- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

CEP: $\quad \alpha_{2}=\alpha_{3}=0$

- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible
- strictly: only two phases - homogeneous and inhomogeneous \Rightarrow no LP

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

$$
\text { CEP: } \quad \alpha_{2}=\alpha_{3}=0
$$

- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible
- strictly: only two phases - homogeneous and inhomogeneous \Rightarrow no LP
- There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the inhomogeneous part of $M(\vec{x})$ goes to zero

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

$$
\text { CEP: } \quad \alpha_{2}=\alpha_{3}=0
$$

- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible
- strictly: only two phases - homogeneous and inhomogeneous \Rightarrow no LP
- There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the inhomogeneous part of $M(\vec{x})$ goes to zero
- M_{0} homogeneous ground state $\Rightarrow \delta M(\vec{x}) \rightarrow 0$ along this phase boundary

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous CEP: $\quad \alpha_{2}=\alpha_{3}=0$
- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible
- strictly: only two phases - homogeneous and inhomogeneous \Rightarrow no LP
- There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the inhomogeneous part of $M(\vec{x})$ goes to zero
- M_{0} homogeneous ground state $\Rightarrow \delta M(\vec{x}) \rightarrow 0$ along this phase boundary
- in general: $\nabla \delta M(\vec{x}) \neq 0$ along this phase boundary
\Rightarrow as in the chiral limit: $\quad \alpha_{4, b}<0, \alpha_{2}>0$

CEP and pseudo Lifshitz point

- GL expansion:
$\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

CEP: $\quad \alpha_{2}=\alpha_{3}=0$

- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible
- strictly: only two phases - homogeneous and inhomogeneous \Rightarrow no LP
- There can be a 2nd-order transition between inhom. and hom. phase where the amplitude of the inhomogeneous part of $M(\vec{x})$ goes to zero
- M_{0} homogeneous ground state $\Rightarrow \delta M(\vec{x}) \rightarrow 0$ along this phase boundary
- in general: $\nabla \delta M(\vec{x}) \neq 0$ along this phase boundary
\Rightarrow as in the chiral limit: $\quad \alpha_{4, b}<0, \alpha_{2}>0$
\rightarrow pseudo Lifshitz point (PLP): $\quad \alpha_{2}=\alpha_{4, b}=0$

Summarizing:
 GL analysis of critical and Lifshitz points

- chiral limit ($m=0$):
- expansion about $M=0$
- TCP: $\alpha_{2}=\alpha_{4, a}=0$
- LP: $\alpha_{2}=\alpha_{4, b}=0$
- away from the chiral limit $(m \neq 0)$:
- expansion about $M_{0}(T, \mu)$ solving $\alpha_{1}\left(T, \mu, M_{0}\right)=0$
- CEP: $\alpha_{2}=\alpha_{3}=0$
- PLP: $\alpha_{2}=\alpha_{4, b}=0$

Determination of the GL coefficients

Determination of the GL coefficients

- NJL mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(\frac{S^{-1}}{T}\right)+G \frac{1}{V} \int d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

Determination of the GL coefficients

- NJL mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(\frac{S^{-1}}{T}\right)+G \frac{1}{V} \int d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

- again assume $P=0 \quad \rightarrow \quad M(\vec{x})=m-2 G S(\vec{x}) \equiv M_{0}+\delta M(\vec{x})$

Determination of the GL coefficients

- NJL mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(\frac{S^{-1}}{T}\right)+G \frac{1}{V} \int d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

- again assume $P=0 \quad \rightarrow \quad M(\vec{x})=m-2 G S(\vec{x}) \equiv M_{0}+\delta M(\vec{x})$
$\Rightarrow \quad \Omega_{M F}=-\frac{T}{V} \operatorname{Tr} \log \left(S_{0}^{-1}-\delta M\right)+\frac{1}{V} \int_{V} d^{3} x \frac{\left(M_{0}-m+\delta M(\bar{x})\right)^{2}}{4 G}$
- $S_{0}^{-1}(x)=i \not \partial+\mu \gamma^{0}-M_{0} \quad$ inverse propagator of a free fermion with mass M_{0}

Determination of the GL coefficients

- NJL mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(\frac{S^{-1}}{T}\right)+G \frac{1}{V} \int d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

- again assume $P=0 \quad \rightarrow \quad M(\vec{x})=m-2 G S(\vec{x}) \equiv M_{0}+\delta M(\vec{x})$
$\Rightarrow \quad \Omega_{M F}=-\frac{T}{V} \operatorname{Tr} \log \left(S_{0}^{-1}-\delta M\right)+\frac{1}{V} \int_{V} d^{3} x \frac{\left(M_{0}-m+\delta M(\bar{x})\right)^{2}}{4 G}$
- $S_{0}^{-1}(x)=i \not \partial+\mu \gamma^{0}-M_{0} \quad$ inverse propagator of a free fermion with mass M_{0}
- expand logarithm:

$$
\log \left(S_{0}^{-1}-\delta M\right)=\log \left(S_{0}^{-1}\right)+\log \left(1-S_{0} \delta M\right)=\log \left(S_{0}^{-1}\right)-\sum_{n=1}^{\infty} \frac{1}{n}\left(S_{0} \delta M\right)^{n}
$$

Determination of the GL coefficients

- Thermodynamic potential: $\quad \Omega_{M F}=\sum_{n=0}^{\infty} \Omega^{(n)}$
$\Omega^{(n)}:$ contribution of order $(\delta M)^{n}$:

$$
\begin{aligned}
& \Omega^{(0)}=-\frac{T}{V} \operatorname{Tr} \log S_{0}^{-1}+\frac{1}{V} \int_{V} d^{3} x \frac{\left(M_{0}-m\right)^{2}}{4 G} \\
& \Omega^{(1)}=\frac{T}{V} \operatorname{Tr}\left(S_{0} \delta M\right)+\frac{M_{0}-m}{2 G} \frac{1}{V} \int_{V} d^{3} x \delta M(\vec{x}), \\
& \Omega^{(2)}=\frac{1}{2} \frac{T}{V} \operatorname{Tr}\left(S_{0} \delta M\right)^{2}+\frac{1}{4 G} \frac{1}{V} \int_{V} d^{3} x \delta M^{2}(\vec{x}), \\
& \Omega^{(n)}=\frac{1}{n} \frac{T}{V} \operatorname{Tr}\left(S_{0} \delta M\right)^{n} \quad \text { for } n \geq 3 .
\end{aligned}
$$

Determination of the GL coefficients

- functional trace:

$$
\operatorname{Tr}\left(S_{0} \delta M\right)^{n}=2 N_{c} \int \prod_{i=1}^{n} d^{4} x_{i} \operatorname{tr}_{0}\left[S_{0}\left(x_{n}, x_{1}\right) \delta M\left(\vec{x}_{1}\right) S_{0}\left(x_{1}, x_{2}\right) \delta M\left(\vec{x}_{2}\right) \ldots S_{0}\left(x_{n-1}, x_{n}\right) \delta M\left(\vec{x}_{n}\right)\right]
$$

Determination of the GL coefficients

- functional trace:
$\operatorname{Tr}\left(S_{0} \delta M\right)^{n}=2 N_{c} \int \prod_{i=1}^{n} d^{4} x_{i} \operatorname{tr}_{\mathrm{D}}\left[S_{0}\left(x_{n}, x_{1}\right) \delta M\left(\vec{x}_{1}\right) S_{0}\left(x_{1}, x_{2}\right) \delta M\left(\vec{x}_{2}\right) \ldots S_{0}\left(x_{n-1}, x_{n}\right) \delta M\left(\vec{x}_{n}\right)\right]$
- gradient expansion: $\quad \delta M\left(\vec{x}_{i}\right)=\delta M\left(\vec{x}_{1}\right)+\nabla M\left(\vec{x}_{1}\right) \cdot\left(\vec{x}_{i}-\vec{x}_{1}\right)+\ldots$
$\Rightarrow \quad \Omega^{(n)}=\sum_{j=0}^{\infty} \Omega^{(n, j)}, \quad j=$ number of gradients

Determination of the GL coefficients

- functional trace:
$\operatorname{Tr}\left(S_{0} \delta M\right)^{n}=2 N_{c} \int \prod_{i=1}^{n} d^{4} x_{i} \operatorname{tr}\left[S_{0}\left(x_{n}, x_{1}\right) \delta M\left(\vec{x}_{1}\right) S_{0}\left(x_{1}, x_{2}\right) \delta M\left(\vec{x}_{2}\right) \ldots S_{0}\left(x_{n-1}, x_{n}\right) \delta M\left(\vec{x}_{n}\right)\right]$
- gradient expansion: $\delta M\left(\vec{x}_{i}\right)=\delta M\left(\vec{x}_{1}\right)+\nabla M\left(\vec{x}_{1}\right) \cdot\left(\vec{x}_{i}-\vec{x}_{1}\right)+\ldots$
$\Rightarrow \quad \Omega^{(n)}=\sum_{j=0}^{\infty} \Omega^{(n, j)}, \quad j=$ number of gradients
- final steps:
- Insert momentum-space rep. of the free propagators S_{0} and turn out all but one $d^{4} x_{i}$ integrals.
- Compare results with GL expansion of $\Omega_{M F}$ to read off the GL coefficients.

GL coefficients: results

- Resulting coefficients:

$$
\begin{aligned}
& \alpha_{1}=\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
& \alpha_{4, a}=\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3} \\
& F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(\omega \omega_{j}+\mu\right)^{2}-\vec{\rho}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T
\end{aligned}
$$

GL coefficients: results

- Resulting coefficients:

$$
\begin{aligned}
& \alpha_{1}=\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
& \alpha_{4, a}=\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3} \\
& F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(\omega \omega_{j}+\mu\right)^{2}-\vec{\rho}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T
\end{aligned}
$$

- chiral limit:
- $m=0 \Rightarrow M_{0}=0$ solves gap equation $\alpha_{1}=0$
- $M_{0}=0 \Rightarrow \alpha_{3}=0$ (no odd powers)
- $M_{0}=0 \Rightarrow \alpha_{4, a}=\alpha_{4, b} \Rightarrow$ TCP = LP [Nickel, PRL (2009)]

GL coefficients: results

- Resulting coefficients:

$$
\begin{aligned}
& \alpha_{1}=\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
& \alpha_{4, a}=\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3} \\
& -F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(\omega \omega_{j}+\mu\right)^{2}-\vec{\rho}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T
\end{aligned}
$$

- towards the chiral limit:
- $M_{0} \rightarrow 0 \Rightarrow \alpha_{3}, \alpha_{4 b a}, \alpha_{4, b} \propto F_{2} \Rightarrow$ CEP \rightarrow TCP $=\mathrm{LP}$

GL coefficients: results

- Resulting coefficients:

$$
\begin{aligned}
& \alpha_{1}=\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
& \alpha_{4, a}=\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3} \\
& -F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(\omega \omega_{j}+\mu\right)^{2}-\vec{\rho}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T
\end{aligned}
$$

- away from the chiral limit:
- $M_{0} \neq 0 \Rightarrow \alpha_{3}=4 M_{0} \alpha_{4, b} \Rightarrow$ CEP $=$ PLP

GL coefficients: results

- Resulting coefficients:

$$
\begin{aligned}
& \alpha_{1}=\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
& \alpha_{4, a}=\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3} \\
& -F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(i \omega_{j}+\mu\right)^{2}-\vec{\rho}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T
\end{aligned}
$$

- away from the chiral limit:
- $M_{0} \neq 0 \Rightarrow \alpha_{3}=4 M_{0} \alpha_{4, b} \Rightarrow$ CEP $=$ PLP

The CEP coincides with the PLP!

Results:

- position of the CEP=PLP for different m :

GL results for critical points and Lifshitz points

	chiral limit	explicitly broken
NJL model		
QM model		

GL results for critical points and Lifshitz points

	chiral limit	explicitly broken
NJL model	LP $=$ TCP [Nickel, PRL (2009)]	
QM model		

GL results for critical points and Lifshitz points

	chiral limit	explicitly broken
NJL model	LP $=$ TCP	
	$[$ Nickel, PRL (2009)]	
QM model	LP $=$ TCP	
	if $m_{\sigma}=2 \bar{M}$	

GL results for critical points and Lifshitz points

	chiral limit	explicitly broken		
NJL model	LP $=$ TCP			
	$[$ Nickel, PRL (2009)]	PLP $=$ CEP		
QM model	LP $=$ TCP			
if $m_{\sigma}=2 \bar{M}$				
$[M B$, Carignano, Schaefer, PRD (2014)]			\quad	
:---				

GL results for critical points and Lifshitz points

	chiral limit	explicitly broken
NJL model	$\begin{gathered} \text { LP = TCP } \\ {[\text { Nickel, PRL (2009)] }} \end{gathered}$	$\begin{gathered} \text { PLP }=\text { CEP } \\ {[\mathrm{MB}, \text { Carignano, } \mathrm{PLB}(2019)]} \end{gathered}$
QM model	$\begin{aligned} & \mathrm{LP}=\mathrm{TCP} \\ & \text { if } m_{\sigma}=2 \bar{M} \end{aligned}$ [MB, Carignano, Schaefer, PRD (2014)]	PLP = CEP if $m_{\sigma}=2 \bar{M}$ in the chiral limit [MB, Carignano, Kurth EPJST (2020)]

GL results for critical points and Lifshitz points

	chiral limit	explicitly broken
NJL model	$\begin{gathered} \text { LP = TCP } \\ {[\text { Nickel, PRL (2009)] }} \end{gathered}$	$P L P=C E P$ [MB, Carignano, PLB (2019)]
QM model	$\begin{aligned} & \mathrm{LP}=\mathrm{TCP} \\ & \text { if } m_{\sigma}=2 \bar{M} \end{aligned}$ [MB, Carignano, Schaefer, PRD (2014)]	$P L P=C E P$ if $m_{\sigma}=2 \bar{M}$ in the chiral limit [MB, Carignano, Kurth EPJST (2020)]

- Model results, but independent of model parameters

GL results for critical points and Lifshitz points

	chiral limit	explicitly broken		
NJL model	LP $=$ TCP			
[Nickel, PRL (2009)]	PLP $=$ CEP			
	LP $=$ TCP			
QM model	if $m_{\sigma}=2 \bar{M}$			
	[MB, Carignano, Schaefer, PRD (2014)]			if $m_{\sigma}=2 \bar{M}$ in the chiral limit
:---:				
[MB, Carignano, Kurth EPJST (2020)]				

- Model results, but independent of model parameters
\rightarrow Model predictions of an inhomogeneous phase should be taken as seriously as those of a CEP!

Stability analysis

Stability analysis

- as before:

Expand the thermodynamic potential in powers of small fluctuations δM around the most stable homogeneous solution M_{0}

- Contributions of order $(\delta M)^{n}$:

$$
\begin{aligned}
\Omega^{(0)} & =-\frac{T}{V} \operatorname{Tr} \log S_{0}^{-1}+\frac{1}{V} \int_{V} d^{3} x \frac{\left(M_{0}-m\right)^{2}}{4 G} \\
\Omega^{(1)} & =\frac{T}{V} \operatorname{Tr}\left(S_{0} \delta M\right)+\frac{M_{0}-m}{2 G} \frac{1}{V} \int_{V} d^{3} x \delta M(\vec{x}) \\
\Omega^{(2)} & =\frac{1}{2} \frac{T}{V} \operatorname{Tr}\left(S_{0} \delta M\right)^{2}+\frac{1}{4 G} \frac{1}{V} \int_{V} d^{3} x \delta M^{2}(\vec{x}) \\
\Omega^{(n>3)} & =\frac{1}{n} \frac{T}{V} \operatorname{Tr}\left(S_{0} \delta M\right)^{n}
\end{aligned}
$$

Stability analysis

- as before:

Expand the thermodynamic potential in powers of small fluctuations δM around the most stable homogeneous solution M_{0}

- Contributions of order $(\delta M)^{n}$:
$\Omega^{(0)}$ not relevant in the following
$\Omega^{(1)}=0$ by the gap equation

$$
\Omega^{(2)}=\frac{1}{2} \frac{T}{V} \operatorname{Tr}\left(S_{0} \delta M\right)^{2}+\frac{1}{4 G} \frac{1}{V} \int_{V} d^{3} x \delta M^{2}(\vec{x})
$$

$\Omega^{(n>3)}$ not relevant in the following

Quadratic contribution

- $\Omega^{(2)}=\frac{1}{2} \frac{T}{V} \operatorname{Tr}\left(S_{0} \delta M\right)^{2}+\frac{1}{4 G} \frac{1}{V} \int_{V} d^{3} x \delta M^{2}(\vec{x})$
- functional trace:

$$
\operatorname{Tr}\left(S_{0} \delta M\right)^{2}=2 N_{c} \int d^{4} x d^{4} x^{\prime} \operatorname{tr}_{\mathrm{D}}\left[S_{0}\left(x, x^{\prime}\right) \delta M(\vec{x}) S_{0}\left(x^{\prime}, x\right) \delta M(\vec{x})\right]
$$

Quadratic contribution

- $\Omega^{(2)}=\frac{1}{2} \frac{T}{V} \operatorname{Tr}\left(S_{0} \delta M\right)^{2}+\frac{1}{4 G} \frac{1}{V} \int_{V} d^{3} x \delta M^{2}(\vec{x})$
- functional trace:

$$
\operatorname{Tr}\left(S_{0} \delta M\right)^{2}=2 N_{c} \int d^{4} x d^{4} x^{\prime} \operatorname{tr}_{\mathrm{D}}\left[S_{0}\left(x, x^{\prime}\right) \delta M(\vec{x}) S_{0}\left(x^{\prime}, x\right) \delta M(\vec{x})\right]
$$

- Evaluate in momentum space without gradient expansion:

$$
\Omega^{(2)}=\frac{1}{2 V} \int \frac{d^{3} q}{(2 \pi)^{3}}|\delta M(\vec{q})|^{2} \Gamma_{S}^{-1}(q)
$$

- $\Gamma_{S}^{-1}(q) \propto$ inverse sigma propagator at $q=\binom{0}{\vec{q}}$

- unstable region: $\Gamma_{S}^{-1}(q)<0$

Quadratic contribution

- $\Omega^{(2)}=\frac{1}{2} \frac{T}{V} \operatorname{Tr}\left(S_{0} \delta M\right)^{2}+\frac{1}{4 G} \frac{1}{V} \int_{V} d^{3} x \delta M^{2}(\vec{x})$
- functional trace:

$$
\operatorname{Tr}\left(S_{0} \delta M\right)^{2}=2 N_{c} \int d^{4} x d^{4} x^{\prime} \operatorname{tr}_{\mathrm{D}}\left[S_{0}\left(x, x^{\prime}\right) \delta M(\vec{x}) S_{0}\left(x^{\prime}, x\right) \delta M(\vec{x})\right]
$$

- Evaluate in momentum space without gradient expansion:

$$
\Omega^{(2)}=\frac{1}{2 V} \int \frac{d^{3} q}{(2 \pi)^{3}}|\delta M(\vec{q})|^{2} \Gamma_{S}^{-1}(q)
$$

- $\Gamma_{S}^{-1}(q) \propto$ inverse sigma propagator at $q=\binom{0}{\vec{q}}$
$\rangle=x+X C+\ldots=X+X C$
- unstable region: $\Gamma_{S}^{-1}(q)<0$
- including pseudoscalar fluctuations δP :
analogous expressions involving $\Gamma_{P}^{-1}(q) \propto$ inverse pion propagator

Example

- inverse meson propagators for $m=10 \mathrm{MeV}, T=10 \mathrm{MeV}, \mu=344 \mathrm{MeV}$: [MB, S. Carignano, PLB (2018)]

- red: $\Gamma_{S}^{-1} \rightarrow$ marginally unstable (phase boundary) w.r.t. δS at $|\vec{q}| \sim 500 \mathrm{MeV}$
- blue: $\Gamma_{P}^{-1} \rightarrow$ stable w.r.t. δP

Phasediagram

[MB, S. Carignano, PLB (2018)]

- dominant instability in the scalar channel

Phasediagram

- orange region: RKC favored
- instability region $<$ RKC region (not shown)
- "right phase" boundaries agree
- stability analysis misses instabilites in the homogeneous broken regime w.r.t. large fluctuations
- dominant instability in the scalar channel

Are the inhomogeneous phases regularization artifacts?

Are the inhomogeneous phases regularization artifacts?

from [Koenigstein et al. (2022)]

- 1 + 1 dim Gross-Neveu model:
- inhomogeneous phase in the renormalized limit [Thies et al.]

Are the inhomogeneous phases regularization artifacts?

[MB, Kurth, Wagner Winstel; PRD (2021)]

- $1+1$ dim Gross-Neveu model:
- inhomogeneous phase in the renormalized limit [Thies et al.]
- $2+1$ dim Gross-Neveu model:
- IP for finite Λ
- disappears for $\Lambda \rightarrow \infty$

Are the inhomogeneous phases regularization artifacts?

- $1+1$ dim Gross-Neveu model:
- inhomogeneous phase in the renormalized limit [Thies et al.]
- 2 + 1 dim Gross-Neveu model:
- IP for finite Λ
- disappears for $\Lambda \rightarrow \infty$
[MB, Kurth, Wagner Winstel; PRD (2021)]
- Then how about $3+1 \mathrm{dim}$ GN /NJL ?
- non-renormalizable \rightarrow cutoff must be kept finite
- strong regulator dependecies [Pannullo, Wagner, Winstel PoS LATTICE2022]
- No IP in GN with $2 \leq d<3-\varepsilon$ spatial dimensions [Pannullo, PRD (2023)]

Are the inhomogeneous phases regularization artifacts?

- $1+1$ dim Gross-Neveu model:
- inhomogeneous phase in the renormalized limit [Thies et al.]
- 2 + 1 dim Gross-Neveu model:
- IP for finite Λ
- disappears for $\Lambda \rightarrow \infty$
[MB, Kurth, Wagner Winstel; PRD (2021)]
- Then how about $3+1 \mathrm{dim}$ GN /NJL ?
- non-renormalizable \rightarrow cutoff must be kept finite
- strong regulator dependecies [Pannullo, Wagner, Winstel PoS LATTICE2022]
- No IP in GN with $2 \leq d<3-\varepsilon$ spatial dimensions [Pannullo, PRD (2023)]
- $3+1$ dim QM model:

IP survives $\Lambda \rightarrow \infty$, but potential not bounded from below

Are the inhomogeneous phases regularization artifacts?

- But maybe the cutoff contains some physics ...

Are the inhomogeneous phases regularization artifacts?

- But maybe the cutoff contains some physics ...

Does the cutoff mimic asymptotic freedom?

Are the inhomogeneous phases regularization artifacts?

- But maybe the cutoff contains some physics ...

Does the cutoff mimic asymptotic freedom?

- Indications of an inhomogeneous chiral phase in QCD from DSEs (CDW-like ansatz)
[D. Müller et al., PLB (2013)]

Are the inhomogeneous phases regularization artifacts?

- But maybe the cutoff contains some physics ...

Does the cutoff mimic asymptotic freedom?

- Indications of an inhomogeneous chiral phase in QCD from DSEs (CDW-like ansatz) [D. Müller et al., PLB (2013)]
- Ongoing work towards a QCD stability analysis [Motta et al., arXiv:2306.09749]
\rightarrow Theo Motta's talk on Tuesday

Conclusion

- Chiral models can give us hints about interesting features of the QCD phase diagram:
- the critical endpoint
- color-superconducting phases
- inhomogeneous phases
- ...
- They are not suited for quantitative predictions of them, but they have inspired more sophisticated (QCD based) investigations and are useful benchmarks for them.

