Percolation and conformal limits in neutron stars

- M. Marczenko, L. McLerran, K. Redlich, C. Sasaki
- Incubator of Scientific Excellence Centre for Simulations of Superdense Fluids University of Wrocław
 - Phys.Rev.C 107 (2023) 2, 025802
 - 2nd Workshop of the Network NA7-HF-QGP Giardini Naxos, Italy, 4 October 2023

Solid Constraints

- Low density: χEFT ($n \leq 1.1n_0$) Tews et al, 2013
- High density pQCD ($n \gtrsim 40n_0$) Gorda et al, 2018

Interpolation methods

• Polytropes, CSS, Linear Speed of Sound eg. Annala et al, 2018, 2020; Alford et al 2013, 2017, Li et al 2021

Deconfinement by polytropic index

$1.75 \rightarrow \text{Hadrons}$ $d\log p$ $\frac{1}{d \log \epsilon} \rightarrow \qquad \gamma < 1.75 \rightarrow \text{Quarks}$

Quark Matter in Neutron Stars?

Energy density (MeV/fm³)

Solid Constraints

- Low density: χEFT ($n \leq 1.1n_0$) Tews et al, 2013
- High density pQCD ($n \gtrsim 40n_0$) Gorda et al, 2018

Interpolation methods

• Polytropes, CSS, Linear Speed of Sound eg. Annala et al, 2018, 2020; Alford et al 2013, 2017, Li et al 2021

Deconfinement by polytropic index

$1.75 \rightarrow \text{Hadrons}$ $d\log p$ $\frac{1}{d \log \epsilon} \rightarrow \qquad \gamma < 1.75 \rightarrow \text{Quarks}$

Quark Matter in Neutron Stars?

Energy density (MeV/fm³)

 5×10^5 viable Equations of State

TOV Equations P(E)

TOV Equations

TOV Equations

General Structure of Speed of Sound

 ${}^{C}_{s}$

• General peak-dip structure Altiparmak et al, 2022

• Peak similar to quarkyonic matter McLerran, Reddy, 2019; Pang et al, 2023

Local maximum at $\epsilon_{\text{peak}} = 0.56^{+0.11}_{-0.09}$ GeV/fm³ with $c_s^2 = 0.82 \pm 0.08$

- Attractive interactions with resonance formation
- Chiral symmetry restoration and deconfinement

Non-monotonicity

- Dominance of repulsive interactions
- Onset of quark or quarkyonic matter?

Change of phase

-	-
-	
	-
-	_
-	
-	-
-	-
-	_
_	-
-	_
-	_
-	
-	_
-	7
-	-
-	-
-	-
-	-
-	
-	-
-	-
-	
-	
-	
-	1111
-	1111
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	

Percolation theory vs speed of sound

see e.g. Satz, 1998; Castorina et al, 2009; Fukushima, 2020

Percolation theory: $n_c = 1.22/V_0$

Avg. proton radius: $R_0 = 0.80 \pm 0.05$ fm Wang et al 2022 Pb-Pb collisions at $\sqrt{s} = 2.76$ TeV Andronic et al 2018

Speed of Sound as Trace Anomaly Fujimoto et al 2022

Trace anomaly more informative than speed of sound

Measure of conformality

Δ monotonic up to $\simeq \epsilon_{\rm TOV}$

 $c_s^2 = \frac{-}{3}$

$\triangleleft -0.1$ Maximum in c_s^2 Fast approach to comformality

 $- p/\epsilon$

 $\Delta \simeq 0$ at $\epsilon \simeq 1$ GeV/fm³ $\leftarrow \varepsilon_{TOV} = 1.16 \pm 0.01$ GeV/fm³

Conformality:

$$c_s^2 = \frac{1}{3} \text{ and } \Delta = 0$$
 $c_s^2 = 0.28 \pm 0.16 \simeq \frac{1}{3}$
 $c_{0.4}^{0.4}$
 $c_{0.2}^{0.4}$
 $\Delta_{\text{TOV}} = -0.01 \pm 0.03 \simeq 0$
 0

Matter almost conformal in the cores of maximally massive NSs

$c_{\rm s}^2$ and Δ in Heavy Neutron Stars

 $\Delta = 1/3 - p/\epsilon$

14/17

Incompressiblity & curvature of binding energy MM, K. Redlich, C. Sasaki, to appear

0.2

-0.2

-0.4

$$K \equiv \frac{dP}{dn} = 9\mu(\hat{\alpha} + \hat{\beta}) \qquad 0.4$$

$$\hat{\alpha} \equiv 2 \frac{n}{\mu} \frac{d\epsilon/n}{dn} = 2 \frac{1/3 - \Delta}{4/3 - \Delta} \quad \stackrel{\text{(n)}}{\sim}$$

 $n^2 d^2 \epsilon / n$

$\beta < 0 \rightarrow$ changeover to conformal regime

Changeover consistent with percolation

 $K \equiv \frac{dP}{dn} = 9\mu(\hat{\alpha} + \hat{\beta})$ 0.4 $\hat{\alpha} \equiv 2 \frac{n \, d\epsilon / n}{\mu \, dn} = 2 \frac{1/3 - \Delta}{4/3 - \Delta}$ 0.1

 $n^2 d^2 \epsilon / n$ $\begin{array}{c} -0.2^{\bigsqcup}\\ 10^2 \end{array}$ dn^2

Summary

Maximum of c_s^2 consistent with percolation threshold

Matter seems to be conformal in the cores of massive NSs

Thank You