Transverse momentum fluctuation in ultra-central Pb+Pb collision

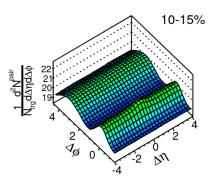
Rupam Samanta

AGH University of Science and Technology, Krakow, Poland

with Somadutta Bhatta, Jiangyong Jia, Matthew Luzum, Jean-Yves Ollitrault ...based on arXiv:2303.15323

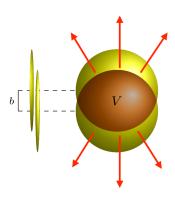
NA7-STRONG HFHF 2023, Giardini Naxos, Italy, October 4, 2023

Motivation



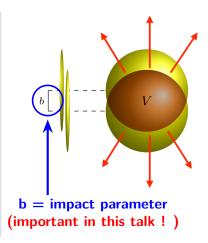
CMS:1201.3158

Motivation

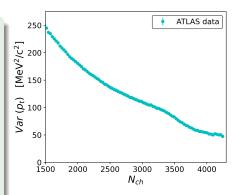


Motivation

- We report more direct evidence of local thermalization in Pb+Pb collisions —> does not involve directions of outgoing particles, but solely their momenta.

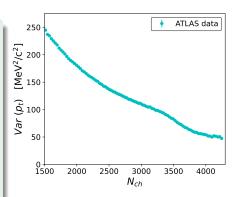


 Recent ATLAS data shows multiplicity (*Nch*) dependence of the variance of transverse momentum per particle, [p_t].



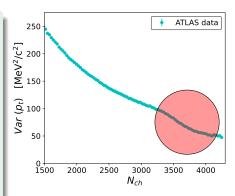
Variance of $[p_t]$ for Pb+Pb @ 5.02 TeV PhysRevC.107.054910

- Recent ATLAS data shows multiplicity (*Nch*) dependence of the variance of transverse momentum per particle, [*p_t*].
- The relative dynamical fluctuation of $[p_t]$ is very small $\sim 1~\%$



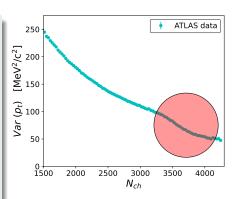
Variance of $[p_t]$ for Pb+Pb @ 5.02 TeV PhysRevC.107.054910

- Recent ATLAS data shows multiplicity (*Nch*) dependence of the variance of transverse momentum per particle, [p_t].
- The relative dynamical fluctuation of $[p_t]$ is very small $\sim 1~\%$
- Puzzling behavior in ATLAS data : steep decrease over a narrow range of N_{ch}



Variance of $[p_t]$ for Pb+Pb @ 5.02 TeV PhysRevC.107.054910

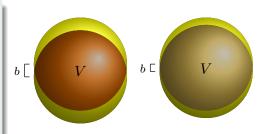
- Recent ATLAS data shows multiplicity (*Nch*) dependence of the variance of transverse momentum per particle, [p_t].
- The relative dynamical fluctuation of $[p_t]$ is very small $\sim 1~\%$
- Puzzling behavior in ATLAS data : steep decrease over a narrow range of N_{ch}
- We will show that this is a consequence of thermalization!



Variance of $[p_t]$ for Pb+Pb @ 5.02 TeV PhysRevC.107.054910

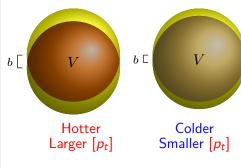
Impact parameter (b) is important!

• In experiment b is not known ! \Longrightarrow [p_t] fluctuation is measured for fixed N_{ch}



Impact parameter (b) is important!

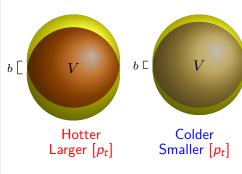
- In experiment b is not known ! \Longrightarrow [p_t] fluctuation is measured for fixed N_{ch}
- Fixed N_{ch} ⇒ finite range of b!



Variation of b at fixed N_{ch}

Impact parameter (b) is important!

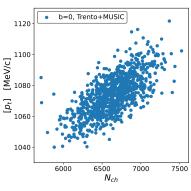
- In experiment b is not known! $\Longrightarrow [p_t]$ fluctuation is measured for fixed N_{ch}
- Fixed N_{ch} ⇒ finite range of b!
- Variation of b gives a contribution to the variation of [p_t] ⇒ goes to 0 in ultracentral collisions!



Variation of b at fixed N_{ch}

Hydrodynamic simulation: b is known!

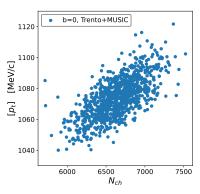
► Hydro: assumes thermalization! ⇒ We simulate Pb+Pb collisions at fixed b (=0) with TRENTO (initial condition)+ MUSIC (hydro)



Pb+Pb @ 5.02 TeV

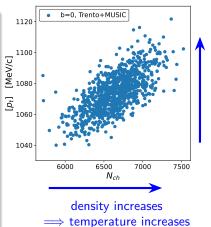
Hydrodynamic simulation: b is known!

- ► Hydro: assumes thermalization! ⇒ We simulate Pb+Pb collisions at fixed b (=0) with TRENTO (initial condition)+ MUSIC (hydro)
- Significant fluctuation of N_{ch} and modest fluctuation of [p_t]. Strong correlation between [p_t] and N_{ch}



Pb+Pb @ 5.02 TeV

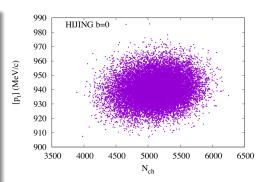
- ► Hydro: assumes thermalization! ⇒ We simulate Pb+Pb collisions at fixed b (=0) with TRENTO (initial condition)+ MUSIC (hydro)
- ► Significant fluctuation of N_{ch} and modest fluctuation of $[p_t]$. Strong correlation between $[p_t]$ and N_{ch}
- ► Fixed b \Longrightarrow fixed collision volume Larger $N_{ch} \Longrightarrow$ larger density \Longrightarrow larger temperature \Longrightarrow larger energy per particle \Longrightarrow larger $[p_t]$



Comparing other models: HIJING simulation

Wang, Gyulassy, arXiv:nucl-th/9502021

 HIJING: microscopic model of HI collision \Longrightarrow the system doesn't thermalize!

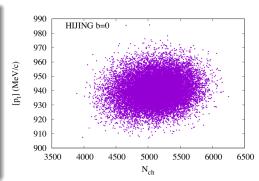


Pb+Pb @ 5.02 TeV

Comparing other models : HIJING simulation

Wang, Gyulassy, arXiv:nucl-th/9502021

- HIJING: microscopic model of HI collision
 the system doesn't thermalize!
- Very small correlation between N_{ch} and $[p_t] \sim 10$ \times smaller !!



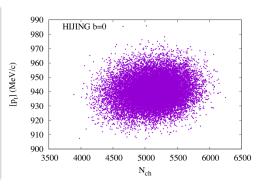
Pb+Pb @ 5.02 TeV

No thermalization \Longrightarrow Very little correlation !

Comparing other models: HIJING simulation

Wang, Gyulassy, arXiv:nucl-th/9502021

- HIJING: microscopic model of HI collision
 the system doesn't thermalize!
- Very small correlation between N_{ch} and $[p_t] \sim 10$ \times smaller !!
- Hence the correlation is a signature of thermalization!

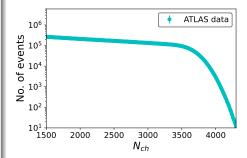


Pb+Pb @ 5.02 TeV

No thermalization \implies Very little correlation!

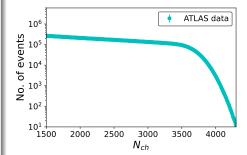
• First we solve the inverse problem:

what is the distribution of N_{ch} at fixed b i.e. $P(N_{ch}|b)$?



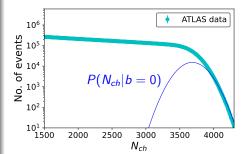
N_{ch} distribution for centrality classification!

- First we solve the inverse problem:
 what is the distribution of N_{ch} at fixed b i.e. P(N_{ch}|b)?
- Then we apply Bayes' theorem to find $P(b | N_{ch})$: $P(b | N_{ch}) P(N_{ch}) = P(N_{ch} | b) P(b)$



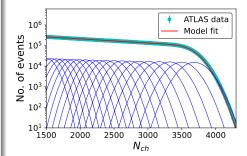
N_{ch} distribution for centrality classification!

- First we solve the inverse problem:
 what is the distribution of N_{ch} at fixed b i.e. P(N_{ch}|b)?
- Then we apply Bayes' theorem to find $P(b \mid N_{ch})$: $P(b \mid N_{ch}) P(N_{ch}) = P(N_{ch} \mid b) P(b)$
- We assume $P(N_{ch}|b)$ to be Gaussian!



N_{ch} distribution at fixed b Gaussian assupmtion!

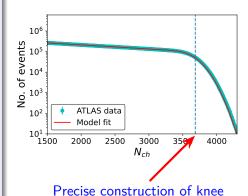
- First we solve the inverse problem:
 what is the distribution of N_{ch} at fixed b i.e. P(N_{ch}|b)?
- Then we apply Bayes' theorem to find $P(b \mid N_{ch})$: $P(b \mid N_{ch}) P(N_{ch}) = P(N_{ch} \mid b) P(b)$
- We assume $P(N_{ch}|b)$ to be Gaussian!
- Fit $P(N_{ch})$ as sum of Gaussians



Sum of Gaussians at fixed b

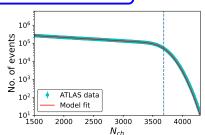
Das, Giacalone, Monard, Ollitrault arXiv:1708.00081

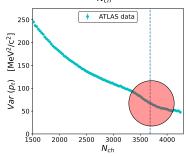
- First we solve the inverse problem:
 what is the distribution of N_{ch} at fixed b i.e. P(N_{ch}|b)?
- Then we apply Bayes' theorem to find $P(b \mid N_{ch})$: $P(b \mid N_{ch}) P(N_{ch}) = P(N_{ch} \mid b) P(b)$
- We assume $P(N_{ch}|b)$ to be Gaussian!
- Fit $P(N_{ch})$ as sum of Gaussians
- We precisely reconstruct the knee (mean N_{ch} at b=0)



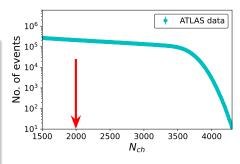
 $\langle N_{cb}|b=0\rangle$

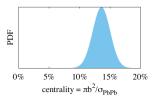
- First we solve the inverse problem:
 what is the distribution of N_{ch} at fixed b i.e. P(N_{ch}|b)?
- Then we apply Bayes' theorem to find $P(b | N_{ch})$: $P(b | N_{ch}) P(N_{ch}) = P(N_{ch} | b) P(b)$
- We assume $P(N_{ch}|b)$ to be Gaussian!
- Fit $P(N_{ch})$ as sum of Gaussians
- We precisely reconstruct the knee (mean N_{ch} at b=0)
- The steep fall of the variance precisely occur at the knee!



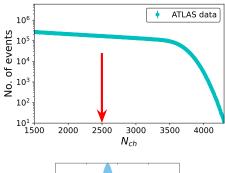


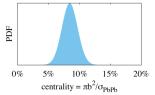
• At smaller N_{ch} the distribution $P(b|N_{ch})$ is a full Gaussian



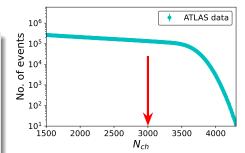


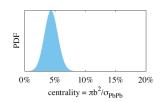
• At smaller N_{ch} the distribution $P(b|N_{ch})$ is a full Gaussian



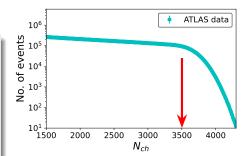


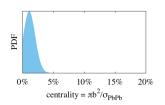
- At smaller N_{ch} the distribution $P(b|N_{ch})$ is a full Gaussian
- But as we move closer and closer to the knee, $P(b|N_{ch})$ becomes truncated due to the limit $b \ge 0$



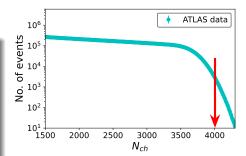


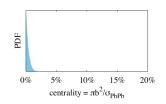
- At smaller N_{ch} the distribution $P(b|N_{ch})$ is a full Gaussian
- But as we move closer and closer to the knee, $P(b|N_{ch})$ becomes truncated due to the limit $b \ge 0$





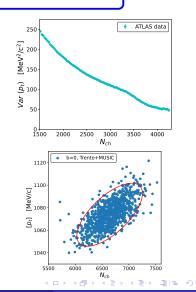
- At smaller N_{ch} the distribution $P(b|N_{ch})$ is a full Gaussian
- But as we move closer and closer to the knee, $P(b|N_{ch})$ becomes truncated due to the limit $b \ge 0$





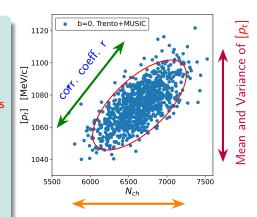
Understanding $[p_t]$ fluctuation data : Parametrizing $P(N_{ch}, [p_t]|b)$

► We assume a simple 2D correlated Gaussian between $[p_t]$ and N_{ch} at fixed impact parameter b : $P([p_t], N_{ch}|b)$.



Understanding $[p_t]$ fluctuation data : Parametrizing $P(N_{ch}, [p_t]|b)$

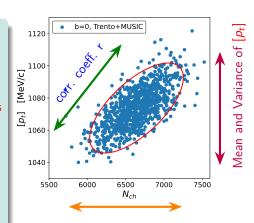
- We assume a simple 2D correlated Gaussian between [p_t] and N_{ch} at fixed impact parameter b : P([p_t], N_{ch}|b).
- ► The distribution has 5 parameters : Mean and variance of N_{ch}, Mean and variance of [p_t] and correlation coefficient r between N_{ch} and [p_t].



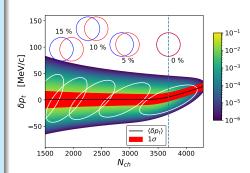
Mean and Variance of N_{ch} Known from $P(N_{ch})$

Understanding $[p_t]$ fluctuation data : Parametrizing $P(N_{ch}, [p_t]|b)$

- ► We assume a simple 2D correlated Gaussian between $[p_t]$ and N_{ch} at fixed impact parameter b : $P([p_t], N_{ch}|b)$.
- ► The distribution has 5 parameters : Mean and variance of N_{ch}, Mean and variance of [p_t] and correlation coefficient r between N_{ch} and [p_t].
- Mean value of $[p_t]$ is constant at fixed b and assuming it is independent of b \Longrightarrow we fit $P(\delta p_t, N_{ch}|b)$ $\delta p_t = [p_t] \langle [p_t] \rangle$

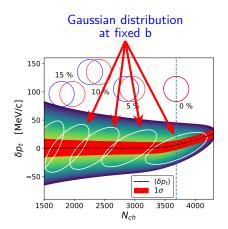


Mean and Variance of N_{ch} Known from $P(N_{ch})$

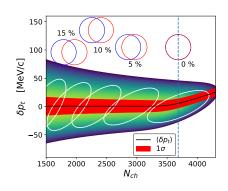


2D correlated gaussian distribution of δp_t and N_{ch}

■ We get, $P(N_{ch}, \delta p_t)$ = $\int P(N_{ch}, \delta p_t | b) P(b) db$

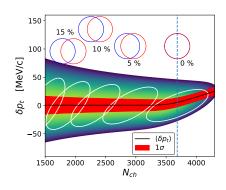


- We get, $P(N_{ch}, \delta p_t)$ = $\int P(N_{ch}, \delta p_t | b) P(b) db$
- By conditional probability $P(\delta p_t | N_{ch}) = \frac{P(N_{ch}, \delta p_t)}{P(N_{ch})}$ $\implies \text{Var}([p_t] | N_{ch}) \text{ is the squared}$ width of $P(\delta p_t | N_{ch})$



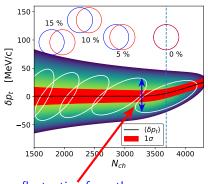
2D correlated gaussian distribution of δp_t and N_{ch}

- We get, $P(N_{ch}, \delta p_t)$ = $\int P(N_{ch}, \delta p_t | b) P(b) db$
- By conditional probability $P(\delta p_t | N_{ch}) = \frac{P(N_{ch}, \delta p_t)}{P(N_{ch})}$ $\implies \text{Var}([p_t] | N_{ch}) \text{ is the squared}$ width of $P(\delta p_t | N_{ch})$
- The width of $[p_t]$ fluctuation has two contributions :



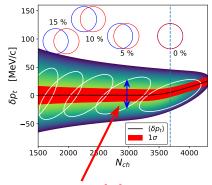
2D correlated gaussian distribution of δp_t and N_{ch}

- We get, $P(N_{ch}, \delta p_t)$ = $\int P(N_{ch}, \delta p_t | b) P(b) db$
- By conditional probability $P(\delta p_t | N_{ch}) = \frac{P(N_{ch}, \delta p_t)}{P(N_{ch})}$ $\implies \text{Var}([p_t] | N_{ch}) \text{ is the squared}$ width of $P(\delta p_t | N_{ch})$
- The width of $[p_t]$ fluctuation has two contributions :
 - due to fluctuation of impact parameter b



fluctuation from the variation of b (several ellipses contribute) Fit result : $P(N_{ch}, \delta p_t)$

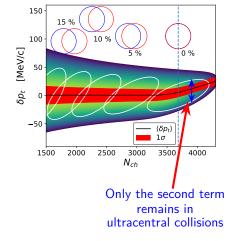
- We get, $P(N_{ch}, \delta p_t)$ = $\int P(N_{ch}, \delta p_t | b) P(b) db$
- By conditional probability $P(\delta p_t | N_{ch}) = \frac{P(N_{ch}, \delta p_t)}{P(N_{ch})}$ $\implies \text{Var}([p_t] | N_{ch}) \text{ is the squared}$ width of $P(\delta p_t | N_{ch})$
- The width of $[p_t]$ fluctuation has two contributions :
 - due to fluctuation of impact parameter b
 - the true intrinsic fluctuation



fluctuation of $[p_t]$ at fixed b and fixed N_{ch} (height of a single ellipse)

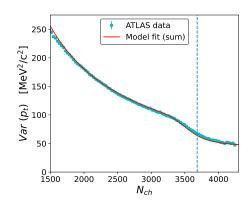
Fit result : $P(N_{ch}, \delta p_t)$

- We get, $P(N_{ch}, \delta p_t)$ = $\int P(N_{ch}, \delta p_t | b) P(b) db$
- By conditional probability $P(\delta p_t | N_{ch}) = \frac{P(N_{ch}, \delta p_t)}{P(N_{ch})}$ $\implies \text{Var}([p_t] | N_{ch}) \text{ is the squared}$ width of $P(\delta p_t | N_{ch})$
- The width of $[p_t]$ fluctuation has two contributions :
 - due to fluctuation of impact parameter b
 - the true intrinsic fluctuation
- Only the second term contributes above knee in the ultracentral regime.



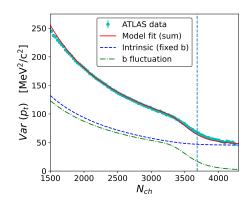
Fit result : $Var([p_t])$ vs N_{ch}

 Our simple model naturally reproduces the steep fall in the ATLAS data very well!



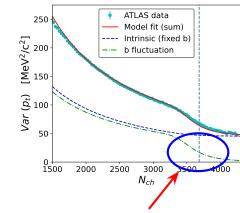
Fit result : $Var([p_t])$ vs N_{ch}

- Our simple model naturally reproduces the steep fall in the ATLAS data very well!
- Below the knee, half of the contribution is from impact parameter fluctuation



Fit result : $Var([p_t])$ vs N_{ch}

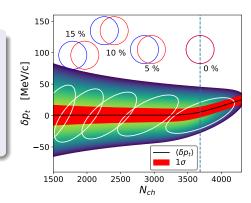
- Our simple model naturally reproduces the steep fall in the ATLAS data very well!
- Below the knee, half of the contribution is from impact parameter fluctuation
- The contribution gradually disappears around the knee!



Contribution of b-fluctuation disappears above knee

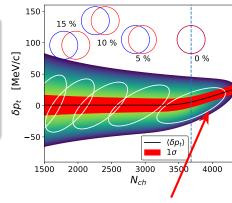
Thermalization observed!

• Our model fit returns r = 0.676!



Thermalization observed!

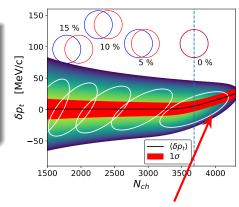
- Our model fit returns r = 0.676!
- It suggests strong correlation between $[p_t]$ and N_{ch} at fixed b



Strong correlation between $[p_t]$ and N_{ch} at fixed b from our model fit

Thermalization observed!

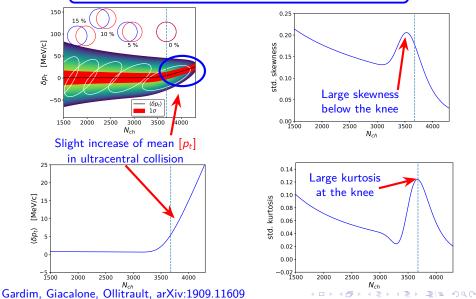
- Our model fit returns r = 0.676!
- It suggests strong correlation
 between [p_t] and N_{ch} at fixed b
- Hence thermalization is observed!



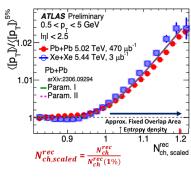
Strong correlation between $[p_t]$ and N_{ch} at fixed b from our model fit

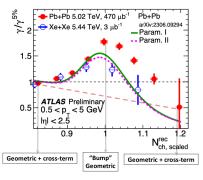
Further predictions!

RS, Picchetti, Luzum, Ollitrault, arXiv:2306.09294



ATLAS Preliminary, presented in QM2023





 $[p_t]$ - skewness

Summary and Outlook

- Impact parameter fluctuation at fixed N_{ch} plays an important role in ultracentral collision!
- Two separate contributions to $[p_t]$ fluctuation :
 - intrinsic fluctuation → originates from quantum fluctuation in the initial state
 - impact parameter fluctuation at fixed $N_{ch} \longrightarrow$ disappears in ultracentral region \longrightarrow causes the steep fall at the knee
- Our methodology paves a way to separate the geometrical and quantum fluctuations — the unique patterns of the cumulants of [pt] fluctuation at the ultracentral regime originates mostly due to b-fluctuation!
- Transverse momentum fluctuation in ultra central collision provides a new , direct probe of the thermalization!

Summary and Outlook

- Impact parameter fluctuation at fixed N_{ch} plays an important role in ultracentral collision!
- Two separate contributions to $[p_t]$ fluctuation :
 - intrinsic fluctuation --> originates from quantum fluctuation in the initial state
 - **impact** parameter fluctuation at fixed $N_{ch} \longrightarrow \text{disappears in}$ ultracentral region — causes the steep fall at the knee
- Our methodology paves a way to separate the geometrical and guantum fluctuations → the unique patterns of the cumulants of $[p_t]$ fluctuation at the ultracentral regime originates mostly due to b-fluctuation!
- Transverse momentum fluctuation in ultra central collision provides a new, direct probe of the thermalization!

... Thank you for your attention

$P(\delta p_t | N_{ch}, c_b)$ in terms of k1 and k2

$$P(\delta p_t | N_{ch}, c_b) = \frac{1}{\sqrt{2\pi\kappa_2(c_b)}} \exp\left(-\frac{(\delta p_t - \kappa_1(c_b))^2}{2\kappa_2(c_b)}\right)$$

$$\kappa_1(c_b) = r \frac{\sigma_{p_t}(c_b)}{\sigma_{N_{ch}}(c_b)} (N_{ch} - \overline{N_{ch}}(c_b)),$$

$$\kappa_2(c_b) = (1 - r^2)\sigma_{p_t}^2(c_b).$$

Moments and cumulants of $[p_t]$ -fluctuation

$$\langle \delta p_{t} | c_{b} \rangle = \langle \kappa_{1} \rangle,$$

$$\langle \delta p_{t} | c_{b} \rangle = \kappa_{1},$$

$$\langle \delta p_{t}^{2} | c_{b} \rangle = \kappa_{1}^{2} + \kappa_{2},$$

$$\langle \delta p_{t}^{2} | c_{b} \rangle = \kappa_{1}^{2} + \kappa_{2},$$

$$\langle \delta p_{t}^{3} | c_{b} \rangle = \kappa_{1}^{3} + 3\kappa_{2}\kappa_{1},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

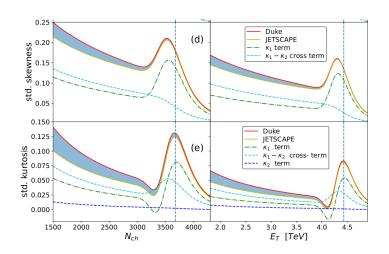
$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + 6\kappa_{2}\kappa_{1}^{2} + 3\kappa_{2}^{2},$$

$$\langle \delta p_{t}^{4} | c_{b} \rangle = \kappa_{1}^{4} + \kappa_{2}^{4} + \kappa_{2}^{4} + \kappa_{2}^{4} + \kappa_{2}^{$$

Detailed structure of skewness and kutosis



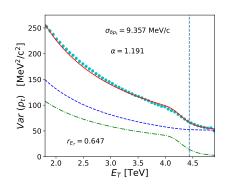
b-dependence of the fit parameters

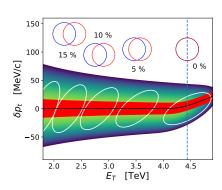
- We assume mean $[p_t]$ to be independent of b
- We assume $Var([p_t])$ is a smooth function of mean multiplicity :

$$\sigma p_t^2 (\frac{\langle N_{ch}(0) \rangle}{\langle N_{ch}(b) \rangle})$$

We also assume r to be independent of b for simplicity

E_T -dependent $[p_t]$ -fluctuation



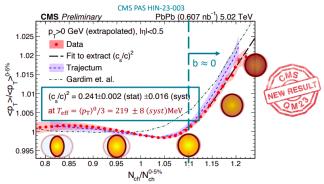


Impact parameter fluctuation is small!

CMS Result on mean $[p_t]$!

See CMS preliminary in QM 2023

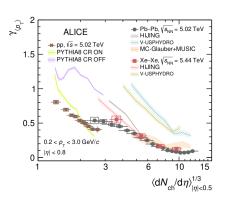
Significant increase of $\langle p_{\rm T} \rangle$ toward UCC events as predicted by the simulations



Speed of sound extracted from the fit and $T_{\rm eff}$ from $\langle p_{\rm T} \rangle^0$

ALICE Measurements of $[p_t]$ -skewness!

arXiv: 2308.16217



Pb-Pb, $\sqrt{s_{NN}}$ = 5.02 TeV HIJING ALICE *****− pp, \sqrt{s} = 5.02 TeV V-USPHYDRO MC-Glauber+MUSIC PYTHIA8 CR ON PYTHIA8 CR OFF $0.2 < p_{_{\rm T}} < 3.0~{
m GeV}/c$ V-USPHYDRO $|\eta| < 0.8$ 10 Independent baseline --- Pb-Pb Xe-Xe 10 $\langle dN_{ch}/d\eta \rangle_{|\eta|<0.5}^{1/3}$

standardized $[p_t]$ -skewness

intensive $[p_t]$ -skewness