Strangeness in Heavy-lon Collisions

ad nauseam ...

Christoph Blume Goethe-University of Frankfurt

4th International Symposium on Non-equilibrium Dynamics Giardini Naxos, Sicily, September 2015

Outline

Starting point

Review: "Strange hadron production in heavy ion collisions from SPS to RHIC" CB and C. Markert, Prog. Part. Nucl. Phys. 66, 834 (2011)

Status before LHC heavy-ion run

What has changed since then?

New data, mainly from LHC and RHIC-BES

Keep an eye on low energies (\Rightarrow FAIR)

Any new point of views or developments?

Outline

Strangeness in heavy-ion physics

Overview on strangeness measurements by different experiments

Strangeness enhancement

Strangeness as QGP signal Evolution from SPS via RHIC to LHC Results from low energies

Small systems

Proton-proton collisions Proton-nucleus collisions

Baryon-meson ratios

Hadronization mechanisms, evidence for recombination?

The φ meson

Hypermatter and hyperon interaction

Christoph Blume

Overview on Strangeness Measurements

Experiments

GSI-SPS FOPI, KAOS, <u>HADES</u>

BNL-AGS E802, E810, E866, E895, ...

CERN-SPS (Pb beam) WA97, NA44, NA45, NA50 NA49, NA57, <u>NA61</u>

BNL-RHIC STAR, PHENIX, BRAHMS

CERN-LHC

New low energy programs CBM@FAIR, NICA

Overview on Strangeness Measurements

Energy Dependence of Total Yields

Covered CM-energies

AGS: $2.4 \le \sqrt{s_{NN}} \le 4.8 \text{ GeV}$

SPS: $6.3 \text{ GeV} \le \sqrt{s_{NN}} \le 17.3 \text{ GeV}$

RHIC: 7 GeV $\leq \sqrt{s_{NN}} \leq 200$ GeV

LHC: $\sqrt{s_{NN}} = 2760 \text{ GeV}$

High energies

All particle species measured

Only mid-rapidity data

Low energies

Mostly limited to bulk particles

Almost no rare strange (anti-)particles (Ξ^{-}, Ω^{-}) at low energies

4π data available

Overview on Strangeness Measurements Yields at Lower Energies (NA49 + AGS)

Available data

Central events: π , K, p, Λ (statistics ok) and Λ^* , K*, Ξ , Ω , ϕ (low statistics)

System size: π , K, p, (Λ), not at all energies

Overview on Strangeness Measurements

Yields at Lower Energies (NA49): System Size Dependence

NeD Symposium, Giardini Naxos, Sicily, Sept. 2015

Overview on Strangeness Measurements

Yields at Lower Energies (NA49, NA57, STAR)

Energy Dependence

Gap between SPS and RHIC is being closed

Overlap with SPS \rightarrow cross checks

From top SPS energy up to LHC all particle species, including rare Ξ and Ω , are covered

PRC83, 024901 (2011)

Overview on Strangeness Measurements Beam Energy Scan (BES) at RHIC: STAR

X. Zhang, SQM 2015

Overview on Strangeness Measurements Beam Energy Scan (BES) at RHIC: STAR

Overview on Strangeness Measurements Yields at Lower Energies (NA49, NA57, STAR)

Overlap with SPS data

Reasonable agreement with NA49 yields

STAR data indicate minimum in Λ yields at higher $\sqrt{s_{NN}}$

Overview on Strangeness Measurements

Rapidity Distributions at Lower Energies (NA49)

NA49 PR**C**78, 034918 (2008) PRL94, 192301 (2005)

Christoph Blume

NeD Symposium, Giardini Naxos, Sicily, Sept. 2015

Overview on Strangeness Measurements Beam Energy Scan at the CERN-SPS: NA61 / SHINE

Systematic study of pp

Beam energies 20, 31, 40, 80, 158 GeV

Before: collection of "historic" data as reference

Data on charged kaons available up to now

Large rapidity coverage

Results from Be+Be

Beam energies 13, 19, 31, 40, 75, 150 *A*GeV

Charged pions shown so far

Heavier systems

Analysis of Ar+Sc ongoing

D.T. Larsen, SQM2015

Overview on Strangeness Measurements Beam Energy Scan at the CERN-SPS: NA61 / SHINE

Energy dependence of K⁺/ π ⁺ yields

Reduced statistical and systematic errors in comparison to "historic" data

Important benchmark for models

Overview on Strangeness Measurements LHC

Strangeness as QGP Signature

Quark Gluon Plasma (QGP) signature

J. Rafelski and B. Müller, Phys. Rev. Lett. 48, 1066 (1982)

P. Koch, B. Müller, and J. Rafelski, Phys. Rep. 142, 167 (1986)

Strangeness is newly produced (no s-Quarks in nucleons)

Thresholds are high in hadronic reactions, e.g..: N + N \rightarrow N + K⁺ + Λ ($E_{\text{thres}} \approx 700 \text{ MeV}$)

Fast equilibration in QGP via partonic processes, e.g. gluon-fusion

\Rightarrow Enhanced strangeness production relative to p+p

experimentally observed: NA35, WA97, NA49, NA57, STAR, ALICE, ...

Strangeness Enhancement SPS Data (NA57)

Relative to p+Be(!)

$$E = \frac{2}{\langle N_{part} \rangle} \left[\left. \frac{dN(Pb+Pb)}{dy} \right|_{y=0} \right/ \left. \frac{dN(p+Be)}{dy} \right|_{y=0}$$

Enhancement for Ω up to factor ≈ 20

Strangeness Enhancement SPS Data (NA49)

Canonical Suppression

Statistical model

Transition from canonical to grand-canonical description

Hierarchy of suppression depends on strangeness content

Onset of suppression does not match data

Model: Data: $\langle N_{\text{part}} \rangle \approx 30$ $\langle N_{\text{part}} \rangle > 60$

Core corona

Strangeness Enhancement RHIC Data (STAR)

Enhancement factor Relative to p+p $E = \frac{2}{\langle N_{part} \rangle} \left[\frac{dN(Pb+Pb)}{dy} \Big|_{y=0} / \frac{dN(p+p)}{dy} \Big|_{y=0} \right]$ Enhancement for Ω factor ≈ 12

SPS and RHIC Compared

Enhancement factor

As function of the number of strange valence quarks |S|

 $E_{\rm s}$ similar for mesons and Λ , large difference for Ξ and Ω Opposite trend for $\overline{\Lambda}$

Strangeness Enhancement LHC Data (ALICE)

Enhancement factor Relative to p+p

$$E = \frac{2}{\langle N_{part} \rangle} \left[\left. \frac{dN(Pb+Pb)}{dy} \right|_{y=0} \right/ \left. \frac{dN(p+p)}{dy} \right|_{y=0} \right]$$

Enhancement for Ω factor ≈ 6

Statistical Model Comparison in A+A

Statistical Model Comparison in A+A

Statistical Model Comparison in A+A

Strangeness close to statistical model expectation in A+A

Already at lowest SPS energies (some exceptions $\Rightarrow \phi$)

 $K^{\scriptscriptstyle +}$ and Λ Towards Low Energies

$|\mathbf{S}| = 1$ Particles Continuous decrease with increasing $\sqrt{s_{NN}}$ Most dramatic change at lower energies Threshold effects Reasonably described by transport models **Multistrange particles** Scarce data, pp reference missing € 0.000)/(+U+U) 0.0004 --- Hadron Gas (A) Hadron Gas (B) UrQMD 0.0003 0.0002 0.0001 NA49 PRL94, 192301 (2005) 00 20 25 5 10 15 √s_{NN} (GeV)

Christoph Blume

NeD Symposium, Giardini Naxos, Sicily, Sept. 2015

Cascades at Low Energies

Sub-Threshold

Threshold in N+N: $E_{thr} = 3.74 \text{ GeV}$

Surprisingly high Ξ^- yield

Statistical model comparison

Data much above model expectation

Similar for transport models

New mechanisms?

Strangeness Enhancement SIS-18: HADES Data Compared to Statistical Model

Strangeness Enhancement Conclusions

Strangeness enhancement decreases with increasing energy

E.g. $\Omega\text{-enhancement}$ reduces from ~20 to ~6 from SPS to LHC

Centrality dependence fits core-corona picture

Central A+A data well described by statistical model at higher energies

Strong rise of enhancement towards low energies

Sub-threshold multistrange particles above statistical model expectation!

Experimental situation

All particles species between top-SPS and LHC

Very good coverage of energy dependence

Data on rare particles (Ξ, Ω) scarce at energies below top-SPS

Small Systems Energy Dependence of pp Data (RHIC and LHC)

Continuous increase of yields with \sqrt{s}

Stronger than model expectation for multistrange particles

Small Systems Energy Dependence of pp Data

Strange / non-strange ratio: K⁺/ π ⁺

Continuous increase with \sqrt{s} in pp (not in A+A, though)

Ratio converges to approx. same value at high energies

Small Systems Energy Dependence of pp Data

Statistical Model Comparison in pp

Statistical model analysis of

pp

Existing for lower energies and older Tevatron data at higher energies

Based on canonical ensemble

Predictions for pp

Table 2. Predictions of the midrapidity density of hadrons relative to that of all charged hadrons at $\sqrt{s} = 10$ TeV in the grand-canonical limit. The temperature value is assumed as T = 170 MeV, and the numbers *do not* include weak decay products.

Particle	$(dn/dy)/(dn/dy_{ch})$ $\gamma_S = 0.6$	$\frac{(dn/dy)/(dn/dy_{ch})}{\gamma_S = 1}$	
$\Lambda = \bar{\Lambda}$	0.0112	0.0162	
$\Xi^{+} = \Xi^{-}$ $\Omega^{+} = \Omega^{-}$	0.001 05 0.000 121	0.002 54 0.000 488	F. Becattini et al., JPG38, 025002 (2011)

Measurement (pp, $\sqrt{s} = 7$ $\Xi^{-}/(dN_{ch}/d\eta)$: 0.00131 $\Omega^{-}/(dN_{ch}/d\eta)$: 0.000112

ALICE PLB728, 216 (2014)

F. Becattini and J. Manninen, JPG35, 104013 (2008)

Wroblewski-factor: $\lambda_s = \frac{2 \langle s\bar{s} \rangle}{\langle u\bar{u} \rangle + \langle d\bar{d} \rangle}$

Statistical Model Comparison in pp

Statistical model fit

Grand canonical ensemble

 χ^2 /NDF not too impressive

Lower temperature than in extrapolation by Becattini et al.

M. Floris, QM2014

Particle Ratios: K/ π and Λ/K_{s}^{0} in Proton-Nucleus Collisions

Multiplicity Dependence

Similar increase of strange/non-strange ratios in p-Pb and Pb-Pb

Connection between pp and AA?

How about multistrange particles?

Particle Ratios in Proton-Nucleus: Ξ/π and Ω/π

Multiplicity Dependence

p-Pb provides qualitative connection between pp and Pb-Pb also for multistrange particles

Better scaling with multiplicity density?

Reaches level of statistical model (GC) expectation

Small Systems

Statistical Model for p-Pb

Statistical model fits

Grand-canonical (GC) and strangeness-canonical (SC) Most central p-Pb collisions

 χ^2 /NDF not too impressive

 γ_{s} compatible with unity.

 $R_{\rm c} \approx R_{\rm V} \Rightarrow$ no canonical strangeness suppression

M. Floris, QM2014

Small Systems

Conclusions

Proton-proton collisions

Ratios of strange/non-strange particles rise faster in pp than in AA Reach almost same level for |S| = 1 particles at LHC (e.g. K⁺/ π ⁺)

Strangeness suppression in pp get released Grand-canonical limit reached? ⇒Systematic studies with statistical models

Proton-nucleus collisions

Can qualitatively bridge gap between pp and peripheral AA Use of $dN_{ch}/d\eta$ to quantify centrality

Always exact overlap between pA and AA?

Statistical model comparisons inconclusive

Baryon-Meson Ratios Λ/K_{s}^{0} -Ratio vs p_{T} at RHIC

Baryon-Meson Ratios Λ/K_{s}^{0} -Ratio vs p_{T} at SPS

Stronger baryon dominance

 $\begin{array}{ll} \mbox{Height of maximum larger than RHIC} \\ \mbox{SPS:} & (\Lambda/{\mbox{K}^0}_{s})_{max} \approx 3.5 \\ \mbox{RHIC:} & (\Lambda/{\mbox{K}^0}_{s})_{max} \approx 1.5 \end{array}$

Similar $p_{\rm T}$ dependence Maximum maybe at slightly smaller $p_{\rm T}$

Baryon-Meson Ratios Λ/K^{0} -Ratio vs p_{T} at LHC

Same baryon dominance

Height of maximum similar to RHIC $(\Lambda/K^0{}_s)_{max} \approx 1.5$

Position of maximum shifted to slightly higher p_{T}

Strong centrality dependence pp: $(\Lambda/\text{K}^0{}_{s})_{max}\approx 0.5$

High *p*_T (> 7 GeV/*c*) Ratio the same in pp and A+A (~ 0.3)

Model comparisons

Hydro works up to $p_{\rm T}$ \approx 2 GeV/c

Recombination model describes shape, but overestimates ratio

Good description by EPOS

Baryon-Meson Ratios Λ/K_{s}^{0} -Ratio vs p_{T} at LHC: p-Pb vs Pb-Pb

No enhancement above unity in p-Pb

But higher than in pp, with maximum at similar position than Pb-Pb

Multiplicity dependence in p-Pb seen

Baryon-Meson Ratios Λ/K_{s}^{0} -Ratio vs p_{T} at LHC

Bulk vs jet

Enhancement seen only in inclusive Λ/K_{s}^{0} -ratio

Not seen for particles in jet cone \Rightarrow fragmentation dominates there

Baryon-Meson Ratios Λ/K_{s}^{0} -Ratio vs p_{T} at LHC

Baryon/meson or mass?

Comparison of Λ/K_s^0 and p/ϕ

 p/ϕ -ratio is flat as function of p_T (central collisions)

 \Rightarrow Mass difference the driving factor

Strong centrality dependence of p/ϕ Role of rescattering?

Baryon-Meson Ratios Early Decoupling of Ω

Particles with low hadronic cross section

E.g. multi-strange baryons (Ξ , Ω)

Should decouple earlier

Less affected by transverse expansion of hadronic phase

N. Xu and M. Kaneta, NPA698, 306 (2002).

Effect visible in BW fits at RHIC and LHC

Higher T_{kin} and lower $\langle \beta_T \rangle$ for Ξ and Ω than for lighter hadrons (π , K, p)

Baryon-Meson Ratios

Ω/φ-Ratio vs p_T at RHIC and LHC

Only strange quarks

Baryon (sss) and meson (ss)

Small hadronic cross section \Rightarrow partonic phase

Ratio Ω/ϕ

Rising up to $p_{\rm T} \approx 4 \ {\rm GeV}/c$

Consistent with quark coalescence model up to $p_T \approx 4 \text{ GeV}/c$ Maximum at different position

 $p_{\rm T}$ dependence not described by any model

```
\Omega/\phi(LHC) > \Omega/\phi(RHIC, 200 \text{ GeV})
for p_T > 3 \text{ GeV/c}
```

```
Also deviation at \sqrt{s_{NN}} = 11.5 GeV
```


NeD Symposium, Giardini Naxos, Sicily, Sept. 2015

Baryon-Meson Ratios Ω/ϕ -Ratio vs p_T at RHIC

NCQ-scaled Ω/ϕ -ratio Might reflect strange quark distribution $f_s(p^s_T)$ at hadronization $\frac{N(\Omega^{-} + \bar{\Omega}^{+})|_{p_{T}^{\Omega} = 3p_{T}^{s}}}{N(\phi)|_{p_{T}^{\phi} = 2p_{T}^{s}}} \quad \text{J.H. Chen et al.,} \\ \underset{\text{PRC78, 034907 (2008)}}{\text{PRC78, 034907 (2008)}}$ Fit to ratios with Boltzmann $g_s A \frac{m_T}{T (m_s + T)} e^{-(m_T - m_s)/T}$ $(m_s = 0.46 \text{ GeV}/c^2, g_s \text{ takes } \sqrt{s_{NN}}\text{-dependent yield}$ ratio \overline{s}/s into account) Similar fit results for $\sqrt{s_{NN}} \ge 19.6 \text{ GeV}$ deviations below (note: centrality selection different at 7.7 GeV) Transition from partonic to hadronic matter below $\sqrt{s_{NN}}$ = 19.6 GeV ?

The φ Meson

Total Yields

At SPS yields not fully described by models

UrQMD1.3 underestimates ϕ/π -ratio but good description of ϕ yield at lower energies

Statistical model ($\gamma_s = 1$) above ϕ/π -ratio

NA49 PRC78, 044907 (2008)

HGM: P. Braun-Munzinger et al., NPA687, 902 (2002).

The φ Meson Rapidity Dependence (SPS)

RMS of *y*-distributions

Rapidity distribution broadens faster with increasing $\sqrt{s_{\rm NN}}$ than for other particles

Disagrees with expectation for kaon coalescence at higher energies

NA49 PRC78, 044907 (2008)

Christoph Blume

The φ Meson Rapidity Dependence (RHIC and LHC)

NeD Symposium, Giardini Naxos, Sicily, Sept. 2015

The \phi Meson ϕ/K^- -Ratios as Function of $\sqrt{s_{NN}}$

No strong $\sqrt{s_{NN}}$ dependence

Ratio constant for A+A up to RHIC Indication for slight drop towards LHC LHC data agrees with thermal model

Comp. to small systems

 $\phi/K^{-}(AA) > \phi/K^{-}(pp)$ at lower $\sqrt{s_{NN}}$, but the same at LHC

The φ Meson φ/K⁻-Ratios vs System Size

No strong system size dep.

Indications for a maximum for mid-central collisions

Universal dependence as function of $(dN_{ch}/d\eta)^{1/3}$ for all systems (?)

NeD Symposium, Giardini Naxos, Sicily, Sept. 2015

The φ Meson Comparison of Enhancements

Enhancement of ϕ between Λ and Ξ

```
Effective strangeness between 1 and 2
```

```
Ratio \phi/(\pi^- + \pi^+) between (\Lambda + \overline{\Lambda})/(\pi^- + \pi^+) and (\Xi^- + \overline{\Xi}^+)/(\pi^- + \pi^+)
```

The φ Meson

Some More Ratios ...

The φ Meson Low Energies (SIS)

Φ/K[–]-ratio

Rapid rise towards low energies

Qualitatively predicted by statistical model

But might be higher than expected in Au+Au collisions

Feeddown into kaons

Can explain the different slope parameters of K^+ and K^-

Important role of φ at low energies

Baryon-Meson-Ratios and the φ Meson

Conclusions

Baryon-Meson-Ratios

Strong enhancement of Λ/K_{s}^{0} and Ω/ϕ ratios above unity at intermediate p_{T}

```
Same level of \Lambda/K_{s}^{0}-enhancement at RHIC and LHC, \Omega/\phi is higher at LHC Strong increase of \Lambda/K_{s}^{0}-ratio towards SPS energies!
```

Slight increase of position of maximum with $\sqrt{s_{\rm NN}}$

 p/ϕ -ratio not p_T dependent at LHC

Sign of recombination or hydrodynamic flow? Depends on which side of the Atlantic you live ... ©

The φ meson

Many interesting features

How does ϕ production scale?

Does not behave like a strangeness neutral particle (effective strangeness between 1 and 2)

Systematic study could provide valuable information on onset partonic matter

Hyperon Interaction $\Lambda \Lambda$ Correlations

Experimental challenge

High statistics on low-Q pairs needed

Hyperon Interaction $\Lambda \Lambda$ Correlations

PRL114, 022301 (2015)

Strong Interaction between Λs

ΛΛ scattering length

Fit with Lednicky-Lyuboshitz model Parameters:

S-wave scattering length a_0 Effective radius r_{eff} Emission radius r_0 (Normalization *N* and suppr. par. λ)

Term for residual correlations (a_{res} , r_{res})

Interaction is weak $|a_{\Lambda\Lambda}| < |a_{p\Lambda}| < |a_{NN}|$

Sign not yet conclusive

Fit suggests weak repulsive interaction

Morita et al. favor weak attraction

Implications for Bound States (H-Dibaryon)

ΛΛ bound state

Disfavored, since it would imply a depletion below 0.5 of c.f. at Q = 0

Resonance above $\Lambda\Lambda$ thres.

Very small signal expected

More statistics needed

Direct Searches for H-Dibaryon

Direct Searches for H-Dibaryon

Extraction of upper limits

A-bound states: $\Lambda\Lambda$ and $\overline{\Lambda}n$

 $\frac{H \to \Lambda \ p \ \pi^-}{\Lambda n \to d} \ \pi^+$

Upper limits as function of lifetime and branching ratios

Theory expectations from thermal model (eq. and non-eq.), hybrid UrQMD, and coalescence model (for H-dibaryon)

Hypernuclei Hypertriton Measurement by STAR

First observation of an anti-hypernucleus

Extends chart of nuclei

Bound Λ-nucleon states

Good agreement with thermal model expectation in contrast to $\Lambda\Lambda$ and Λn

Hypernuclei Hypertriton Measurement by ALICE

NeD Symposium, Giardini Naxos, Sicily, Sept. 2015

Hypernuclei Hypertriton Measurement by ALICE

Yield of hypertriton

Good agreement with equilibrium thermal models and hybrid UrQMD

Ratio hypertriton/³He

Good agreement with thermal model expectations

Hypernuclei Lifetime of Hypertriton

New world average $\tau = 215^{+18}_{-16}$ ps

Good agreement with STAR and ALICE measurement

Slightly below expectation for free Λ

Hyperon Interaction and Hypernuclei Conclusions

Hyperon interaction

First useful information from $\Lambda\Lambda$ correlations

 $\Lambda\Lambda$ is clearly weaker than between p Λ or NN

Not finally clear whether it is attractive

No evidence for a Λ -bound state (e.g. H-dibaryon)

Hypernuclei

Anti-Hypertriton discovery by STAR, also measured at LHC Extension of chart of nuclei into a new direction

Good agreement of yields with statistical model expectation

Hypertriton lifetime below free Λ -decay

(Personal) Conclusion on Strangeness

Lots of new and precise data in the last few years

No big surprises in AA, though

Small systems get interesting at high energies

New topics appear (e.g. anti-hypernuclei)

More unexpected things might happen at low energies

Femtoscopy

Correlations of Strange Particles

Role of strange particles

Higher masses than pions \Rightarrow Higher reach in $m_{\rm T}$

Hadronic interactions ⇒ Different sensitivity to possible effects of hadronic rescattering phase

m_{T} -Scaling

Can be broken due to rescattering

Correlations of strange particles can provide useful information

Femtoscopy

Correlations of Kaon-Pairs at LHC

Charged and neutral kaons

1-d Radius parameter R_{inv} compared to $\pi^{\pm}\pi^{\pm}$ and pp correlation results

Roughly consistent with $m_{\rm T}$ -scaling expectation

Slight deviation for charged kaons

Described by hydrokinetic model HKM

V. Shapoval et al., arXiv:1404.4501

Femtoscopy Correlations of $p-\Lambda$ -Pairs at LHC

Small Systems Antibaryon-Baryon Ratios at LHC

Antibaryon-baryon ratios same for all systems at LHC Comparison pp, p-Pb, Pb-Pb

Experiments CERN-SPS: NA57

Pb+Pb at 40 and 158 AGeV

Silicon tracker

Strange particles:

Christoph Blume

Experiments CERN-SPS: NA49

Energy scan program Pb+Pb reactions

Year	1998 1999	2000	2002
√s _{nn} (GeV)	8.8	12.3 17.3	6.3 7.6
E _{beam} (AGeV)	40	80 158	20 30

Covers ~250 MeV < $\mu_{\rm B}$ < ~470 MeV

Experiments CERN-SPS: NA61 / SHINE

Upgrade of NA49 setup

Faster readout Projectile Spectator Detector (PSD) Secondary ion beam line (fragment separator)

Strange particles:

Kaons, Λ , Ξ , Ω , ϕ , resonances ~ 4π acceptance

Program

2D scan: energy + system size

Recorded: p+p, Be+Be, Ar+Sc Approved: Xe+La, p+Pb Considered: Pb+Pb

Experiments RHIC: STAR

BES program of STAR

Au+Au reactions

Year	√s _{NN} (GeV)	$\mu_{_B}({\rm MeV})$	Events (10 ⁶)
2010	200	20	350
2010	62.4	70	67
2010	39	115	130
2011	27	155	70
2011	19.6	205	36
2014	14.5	260	20
2010	11.5	315	12
2010	7.7	420	4

Covers ~20 MeV < $\mu_{\rm B}$ < ~420 MeV

Strange particles:

Kaons, Λ , Ξ , Ω , ϕ , resonances Mid-rapidity: |y| < 1.0

STAR PRC83, 024901 (2011)

Experiments LHC: ALICE

Central barrel

Tracking: ITS + TPC + TRD PID: TPC + TRD + TOF Secondary vertex: ITS

Strange particles:

Kaons, Λ , Ξ , Ω , ϕ , resonances Mid-rapidity: |y| < 0.5

ALI-DER-80680

NeD Symposium, Giardini Naxos, Sicily, Sept. 2015

Christoph Blume

PRC88, 044910 (2013)

PRL109, 252301 (2012)

PRL108, 072301 (2012)

X. Zhang, SQM 2015

Strangeness Enhancement LHC Data (ALICE)

ALICE PLB728, 216 (2014)

Christoph Blume

Overview on Existing Data RHIC and LHC

System Size Dependence

Total Yields of Λ and Λ

Energy Dependence

Total yields of Λ and Ξ

Energy Dependence K⁺/ π ⁺ and Λ/π ⁻-Ratios

Extended statistical model

Higher mass resonances included (up to 3 GeV)

 \Rightarrow Improved description of pions and thus of the K⁺/ π ⁺-ratio

Limiting temperature reached in SPS energy region

Equilibration due to proximity of phase boundary?

A. Andronic et al., arXiv:0812.1186.

Energy Dependence Λ/π - and Ξ/π - Ratios

Energy Dependence Λ/π - and Ξ/π - Ratios

Proton-Nucleus Data Λ/K_{s}^{0} -Ratios at LHC

