Experimental Constraints on the QCD Phase Diagram based on RHIC and LHC results

R. Bellwied (University of Houston)

with a little help from my friends

The 5th International Symposium on Non-Equilibrium Dynamics

Oct.31– Nov 5, 2016 Phuket, Thailand

Outline

- The most recent results of RHIC and LHC with a focus on particle production in order to answer questions on two major open issues in our field:
 - Hadronization and Chiral Symmetry Restoration
 from RHIC to LHC, from HI to pp global effects
 from RHIC to LHC, from HI to pp chirality
 from RHIC to LHC, from HI to pp particle production
 from RHIC to LHC, from HI to pp hadronization
- I will not cover much of:
 - Flow (Raimond)
 - Heavy Flavor (Andre)
 - Hadronic Resonances (Christina)

Global effects

Versatility of RHIC

RHIC Amazing QCD Machine: Many Species and Many Energies!

RHIC energies, species combinations and luminosities (Run-1 to 16)

RHIC BES-I

√s _{NN} (GeV)	μ _B (MeV)	#Events	#Weeks	Year
200	20	350 M	11	2010
62.4	70	67 M	1.5	2010
39.0	115	130 M	2	2010
27.0	155	70 M	1	2011
19.6	205	36 M	1.5	2011
14.5	260	20 M	3	2014
11.5	315	12 M	2	2010
7.7	420	4 M	4	2010

BES-II scheduled for 2018/2019

The power of the LHC (the 5.02 TeV era has begun)

The ALICE setup now contains a fully functional back-to-back calorimeter RUN-I milestone (2009 – 2013)

Year	System	Energy √ <i>s</i> _{NN} (TeV)	Integrated Iuminosity (nb ⁻¹)
2010	PbPb	2.76	~ 0.01
2011	PbPb	2.76	~ 0.1
2013	p–Pb	5.02	~ 30

• pp collisions at 0.9, 2.76, 7 and 8 TeV, total integrated luminosity up to \sim 20 pb⁻¹

RUN-II, since 2015

- Pb-Pb at 5.02 TeV: up to 0.5 nb-1 2 40
- pp at 13 TeV and 4 days at 5.02 TeV (~100 nb⁻¹)
- Upcoming p–Pb at 5.02 and 8 TeV: 10 times more statistics than in RUN-I

RHIC vs. LHC: charged particle multiplicity

- ALICE: Pb–Pb at 5.02 TeV highest energy so far
 - For 0–5% most central collisions, confirms trend from lower energies
- $<dN_{ch}/d\eta > vs. <N_{part}>$: similar evolution with centrality between 5.02 and 2.76 TeV
 - ~20% increase going from 2.76 to 5.02 TeV
 - Provides further constraints for models

RHIC vs. LHC: photon spectra and charged particle flow

ALICE:Phys. Lett. B 754 235-248 PHENIX:*Phys. Rev. Lett.* **104** 132301

Effective Temperature over 200MeV

Anisotropy described by hydro

RHIC: onset of QGP signatures

 R_{CP} exhibits suppression down to 39 GeV

Cronin effects more prominent at lower energies

Yields per binary collision show indicate a balance of enhancement and suppression effects at $\sqrt{s_{NN}} = 14.5$ GeV.

LHC: intriguing R_{AA} pattern at high pT

- Charged hadrons at high p_T → hard fragmenting high p_T jets
- Energy loss at high p_T Rising trend as a function of p_T up to 400 GeV \rightarrow approaching I
- Center of mass energy dependence Slightly larger $E_{loss} \rightarrow higher T$ and density

RHIC: onset of QGP signatures

Directed flow v₁

- Sensitive to the pressure
- Sensitive to EoS
- Dip in dv₁/dy softening of EOS

- Minimum in $dv_1/dy|_{y=0}$ –hydro and baryon transport interplay
 - (Anti)-Lambdas follow those of (anti)protons
- Net-K and net-p are consistent with each other down to ~14.5 GeV. Net-K stays negative below14.5 GeV

RHIC: search for critical point

At critical point susceptibilities and correlation length diverge leading to large fluctuations

Observables: Higher moments of conserved quantum numbers (Q, S, B)

Direct link between theory and moments of distributions (cumulant ratios)

$$\chi_q^{(n)} = \frac{1}{VT^3} \times C_{n,q} = \frac{\partial^n (p/T^4)}{\partial (\mu_q)^n}, q = B, Q, S$$

$$i = B, Q,$$

S. Ejiri et al, Phys.Lett. B 633 (2006) 275.
Cheng et al, PRD (2009) 074505. B. Friman et al., EPJC 71 (2011) 1694.
F. Karsch and K. Redlich , PLB 695, 136 (2011).
S. Gupta, et al., Science, 332, 1525(2011).
A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13) // P. Alba et al., arXiv:1403.4903

 $\frac{\chi_2^i}{\chi_1^i} = (\sigma^2/M)^i = \frac{c_2^i}{c_1^i}$

 $\frac{\chi_3^i}{\chi_2^i}=(S\sigma)^i=\frac{c_3^i}{c_2^i}$

 $\frac{\chi_4^i}{\chi_2^i}=(\kappa\sigma^2)^i=\frac{c_4^i}{c_2^i}$

S

Net-charge,kaon,proton fluctuations search for non-monotonic behavior in higher moments

Largest deviation from Poisson and uRQMD in net-protons around 19.6 GeV

Need more precise measurements below 20 GeV, finer steps in μ_{B_1} increase accepted rapidity window = BES-II

Fluctuation measurements are acceptance dependent

S. Jeon, V. Koch, arXiv:hep-ph/0304012

M. Kitazawa, Nucl. Phys. A942 (2015) 65-96

V. Koch, arXiv:0810.2520

Net-Charge – $\Delta \eta$ Dependence Au+Au collisions at $\sqrt{s_{NN}} = 14.5$ GeV

Chiral Symmetry

Broadened ρ spectral function at RHIC

STAR and PHENIX are Now consistent after HBD results from PHENIX (2016)

Data/cocktail (0.3 < m _{ee} < 0.76 GeV/c ²)		
	value <u>+</u> stat <u>+</u> syst <u>+</u> model	
PHENIX (New)	$2.3 \pm 0.4 \pm 0.4 \pm 0.2$	
STAR	$1.76 \pm 0.06 \pm 0.26 \pm 0.29$	

Measurement extended to U+U and related to fireball lifetime

Integrated excess yield, normalized by dN_{ch}/dy, is proportional to lifetime of fireball from 17.3 – 200 GeV.

Given that total baryon density is nearly constant and emission rate is dominant in the near-T_c region.

R. Rapp, H. van Hees PLB 753 (2016) 586-590

No excess at the LHC ?

cc in cocktail

11

- Understanding of the charm contributions in cocktail is crucial to study inmedium ρ spectra
- New PHENIX result: PYTHIA and MC@NLO
 - 40% difference in data/cocktail (0.3 < m_{ee} < 0.76 GeV/c²)
 PYTHIA: 2.3 ±0.4±0.4±0.2, MC@NLO: 1.7 ±0.3±0.3±0.2
 - Cross sections are derived using IMR of d-Au collisions
 - Uncertainty in extrapolation to m~0
 - Lack of understanding in cc̄ cross section and correlation
- Vertex detectors (PHENIX, STAR, ALICE) and MTD (STAR)

	$d\sigma^{pp}_{c\bar{c}}/dy$ (µb)
PYTHIA	$106 \pm 9^{stat} \pm 33^{syst}$
MC@NLO	$287\pm29^{stat}\pm100^{syst}$
STAR (D meson) PRL 113(2014)022301	171 ± 26

PRC 93 (2016) 014904

Link to chiral symmetry restoration

- In-medium ρ spectra are well described by the models with "ρ broadening"
- Measurement of the a₁ meson is experimentally difficult
 According to PLB 731 (2014) 103, the medium-modified ρ and a₁ meson degenerate with each other at high T

No further evidence in ω or ϕ measurements at RHIC or LHC

Particle production as a function of collision energy and system size

LHC: identified spectra out to high pT

Low $p_T (p_T < 3 \text{ GeV}/c)$ \rightarrow Study collective phenomena (radial flow)

Mid-p_T (3 < p_T < 8-10 GeV/c)</p>
→ Study fragmentation vs
recombination

High p_{T} ($p_{T} > 8-10 \text{ GeV}/c$): \rightarrow Study jet quenching and energy loss nuclear via nuclear modification factors

Phys. Rev. C 93 (2016) 034913 (High-p_T π,K,p and R_{AA})

Strangeness production from pp to PbPb

Strangeness production in pPb

ALI-DER-110617

Strangeness production in pp

Canonical Suppression Model (Vislavicius, Kalweit, arXiv:1610.03001)

Deuteron production in pPb

Very similar trend than strangeness enhancement. Is deuteron produced directly in partonic medium ?

Strangeness enhancement as a f(beam energy)

Statistical Hadron gas Model: A. Andronic et al., Nucl. Phys. A 772, 167 (2006)

Baryon to meson ratios at LHC

ALI-PUB-90633

- Hydrodynamics describes only the rise < 2 GeV/c
- **Recombination** reproduces effect but overestimates
- EPOS gives good description of the data (with flow)

 p/ϕ have similar mass p/ϕ ratio is flat in central Pb-Pb → Mass determines the spectral shapes (as in hydrodynamics)

Baryon to meson ratio as a f(system size)

In pp, p-Pb and Pb-Pb collisions the B/M ratio as a function of multiplicity is

- qualitatively similar: depletion at low p_T, enhancement at intermediate p_T
- quantitatively different in the three systems

Latest recombination model results (Minissale, Scardina, Greco, arXiv:1502.06213)

Good agreement with strange and non-strange B/M ratios

Ω/ϕ ratio at RHIC-BES

- The ratios at 11.5 GeV seem to deviate from the trend observed at higher beam energies for p_T > 2.4 GeV/c
- 40%-60% peripheral < 0-10% central for 19.6, 27 and 39 GeV</p>
- Need more statistics at lower beam energies

NCQ scaled Ω/ϕ ratio at RHIC-BES

- ➤ One single strange quark distribution describes both Ω and φ spectra-> quark coalescence production
- Slope (T) from Boltzmann fit changes at 7.7 GeV. Centrality difference?
- Decreasing s quark density below 19.6 GeV -> Possible phase transition

Ω and ϕ v₂ at RHIC

 Ω and ϕ : good probes of early partonic stage of collision

- \succ Proton and pion v₂ compared with Ω baryon and ϕ meson v₂
- High precision data prove that Ω follows the baryon/meson splitting at intermediate p_T range, 2 < p_T < 5 GeV/c . First time!</p>

The major part of collectivity has been built-up at partonic stage!

Baryon to meson splitting persists at all energies....

- A splitting between baryons and mesons is observed at all energies except 7.7 GeV and all centralities.
- At 7.7 GeV we are limited by the number of events.

STAR: Phys. Rev. C 93, 014907(2016)

...and for all system sizes

Nuclear suppression does NOT persist for all system sizes

Identified particle R_{AA} at RHIC

Identified particle R_{AA} at LHC (incl. charm)

LI-PREL-10738:

 $R_{xA}(p_T) = \frac{d^2 N_{ch}^{xA} / d\eta dp_T}{\langle T_{xA} \rangle d^2 \sigma_{rh}^{pp} / d\eta dp_T}$

At high-p_T (>8-10 GeV/c):

- strong flavour-independent suppression in central Pb-Pb with respect to pp
- no suppression observed in p-Pb for π,K,p above 6-8 GeV/c
- → In Pb-Pb, due to parton energy loss in the hot nuclear matter

arXiv:1601.03658 (High- $p_T \pi$,K,p and R_{pPb})

Charm R_{AA} and v₂ at RHIC (w. STAR-HFT)

 $R_{AA} > 1$ for $p_T \thicksim 1.5~GeV/c$

Charm coalescence with the flowing medium

• $R_{AA} << 1$ for $p_T > 2.5$ GeV/c

Strong charm-medium interaction leading to sizable energy loss

- Similar suppression as pions at high p_T
 - Collisional energy loss is important
 - Shapes of parton spectrum & fragmentation function need to be taken into account.

Comparison to models

Values for the diffusion coeff. extracted from models and compared to STAR data

	D × 2πT	Diff. Calculation
TAMU	2-11	T-Matrix
SUBATECH	2-4	pQCD+HTL
Duke	7	Free parameter

STAR D₀ 2010/11: PRL 113 (2014) 142301 Theory curves private communications DUKE: PRC 92 (2015) 024907 A.Andronic arXiv:1506.03981(2015)

Does charm flow and quench at LHC ?

$D_s R_{AA}$ and v_2 at RHIC

- > $D_s R_{AA}$ may be higher than D^0 .
- ➢ Higher D_s/D⁰ ratio wrt. PYTHIA?
- Will follow up with better precision measurements.

R_{AA} of D, D_s and B (through non-prompt $J/\psi)$

- R_{AA}(D)<R_{AA}(J/ψ←B): ΔE_c>ΔE_b mass dependence of HF energy loss
- R_{AA}(D)≈R_{AA}(π): ΔE_c≈ΔE_g(?) or different parton p_T distributions and fragmentation functions
- Charm hadronization through recombination in medium (?) predicted in models

 hint of R_{AA}(D)<R_{AA}(D_s+) in data to be confirmed with higher precision
 measurements

B-meson suppression at the LHC

Freeze-out / Hadronization

Collision energy dependence of blast wave fits to π ,k,p at RHIC

The higher the collision energy the longer the hadronic lifetime of the system (confirmed by resonance measurements) and the larger the radial expansion velocity

Blast wave fits to π ,k,p as a function of system size and centrality at LHC

Simultaneous **Blast-Wave model** fit to the π , K, p spectra

- In Pb-Pb: increase of radial flow with centrality
- In pp and p-Pb, similar evolution of the parameters towards high multiplicity
- Stronger <β_T> for smaller systems at similar multiplicity
- ... but mind:
- Sensitivity to fit range and the set of particles included in the fit
- Mechanisms such as color reconnection in models of pp collisions can mimic the effects of radial flow

Collision energy dependence of chemical freeze-out fit to all particle yields

More detailed fit assuming two freeze-out surfaces for light and strange flavor:

Relevant experimental results

Separation of quark flavor freeze-out in yield fits at RHIC & LHC

Indication of flavor dependence in susceptibilities and susceptibility ratios

C. Ratti et al., PRD 85, 014004 (2012) R. Bellwied, arXiv:1205.3625

R. Bellwied & WB Collab., PRL (2013), arXiv:1305.6297

Indication of sequential hadronization ?

$$\kappa_B \sigma_B^2 \equiv \frac{\chi_{4,\mu}^B}{\chi_{2,\mu}^B} = \frac{\chi_4^B(T)}{\chi_2^B(T)} \left[\frac{1 + \frac{1}{2} \frac{\chi_6^B(T)}{\chi_4^B(T)} (\mu_B/T)^2 + \dots}{1 + \frac{1}{2} \frac{\chi_4^B(T)}{\chi_2^B(T)} (\mu_B/T)^2 + \dots} \right]$$

Susceptibilities on the lattice map to measureable moments of the multiplicity distribution

In a thermally equilibrated system we can define susceptibilities χ as 2nd derivative of pressure with respect to chemical potential (1st derivative of ρ). Starting from a given partition function we define the fluctuations of a set of conserved charges as:

Measurable ratios:

HRG and lattice QCD point at lower T_{ch} (IQCD result based on simultaneous net-charge and net-proton fit)

(Alba et al., PRL (2014) arXiv:1403.4903)

Fit σ²/M for net-kaons in the same fashion than for netproton and net-charge (Alba et al. in prep.)

So what can happen between 148 and 164 MeV ?

A 20 MeV drop can be translated into a 2 fm/c time window

Strangeness wants to freeze-out, light quarks do not

Can there be measurable effects ?

Simple strangeness enhancement of the strange ground states or additional strange hadronic resonances or exotic quark configurations with strangeness ? Evidence for exotic states: Comparison of trace anomaly from lattice to HRG spectrum expanded with Hagedorn States (J. Noronha-Hostler et al., PRC (2014), arXiv:1302.7038)

Inclusion of Hagedorn states seems to improve agreement with lattice near the transition temperature of 151+-4 MeV

Exotic states within the Standard Model

Exotic states measured at LHC (in the charm sector)

But little evidence for strange pentaquarks or dibaryons in ALICE data

Conclusions / Outlook

- Amazing new data from RHIC and LHC for 9 different system at 11 different energies
- Mass broadening of the r-meson has been measured now at SPS and RHIC. The effect is lost at LHC (too much charm in the cocktail ?). No effects are measured in any other resonances. A link to chiral symmetry restoration will still require a chiral partner measurement.
- RHIC-BES has added an enormous wealth of data which clearly indicate that around the SPS energies the system transitions from a hadron dominated to a parton dominated system. The critical point is still elusive, but also still possible.
- Strangeness enhancement has become an exact science with interesting new features in the small system region.
- Small systems flow like large systems and they show partonic features in certain dynamic variables, but they don't generate comparable partonic energy loss. In the large system partonic energy loss seems path-length independent (not shown here), and flavor independent at high pT. The mid-pT region reveals interesting flavor and quark configuration dependencies. Recombination and NCQ scaling are well and alive.
- The higher the collision energy, the larger the radial flow, the longer the partonic and hadronic lifetimes of the system.
- Flavor hierarchy in hadronization will lead to a better understanding of the hadronization process, but it hopefully also leads to some more exotic states in the strangeness sector. 58

Backup

Photons flow at RHIC

arXiv:1509.07758

A sizable v2 and v3 is observed for direct photons.

Theoretical picture still incomplete to describe large yield and v2 simultaneously.

RHIC: onset of QGP signatures

Triangular flow v₃ –is a sensitive indicator for the presence of a low viscosity QGP phase

Phys. Rev. Lett. 116 (2016) 112302

- Sizable v₃ at lower energies in central to mid-central centralities
- While the v₃ grows as $\sim \log(\sqrt{s})$ at higher energy, it is nearly independent of energy below 20 GeV.
- Peripheral collisions consistent with zero for $\sqrt{s_{NN}}$ less than 14.5 GeV

- v_3 scaled by $n_{ch,PP} = dN_{ch}/d\eta/(N_{part}/2)$
- •Flat trend $\sqrt{s_{NN}} = 7.7 20 \text{ GeV}$
- Softening of EoS?

Can a flavor dependent freeze-out temperature T_{ch} cause such an effect ?

Yes, if R_{AA} is generated late (near T_{ch}) and v_2 is generated early (Greco et al., PRC82 (2010) 054901): combined fit to R_{AA} and v_2

