Holography near Tc

B. Kämpfer

Helmholtz-Zentrum Dresden-Rossendorf & Technische Universität Dresden

Holographically emulating deconfinement as disappearance of hadron states

R. Zollner, BK, Phys. Rev. C (2016), CPOD (2016) procs.

Holographic view on the phase diagram R. Yaresko, J. Knaute, BK, EPJC (2015), PLB (2015)

Holographic Viscosities for NeD

Member of the Helmholtz Association

QCD input: Nf = 2+1, phys. q masses

Bazazov et al (2014), Borzanyi et al (2014), Tc = 150 MeV

Member of the Helmholtz Association B. Kampfer 1 Institute of Radiation Physics 1 www.hzdr.de Einstein-Hilbert action $\rightarrow \frac{\eta}{s} = 1/4\pi$

adding Gauss-Bonnet terms \rightarrow T dependence

Member of the Helmholtz Association B. Kampfer I Institute of Radiation Physics I www.hzdr.de Vector mesons in AdS/CFT – extended soft wall model μ 5D gravity conf. symmetry breaker sourced by $\bar{q}\gamma^{\mu}q$ $S_V = F(\text{warp factor, blackening function, dilaton, V wave function})$ soft wall (probe limit): $A(z) = \ln (L/z)^2$ $f(z) = 1 - (\frac{z}{H})^4$ $\Phi(z) = (cz)^2$

EoM of V \rightarrow Schrödinger eq. in tortoise coordinate, T = 0 \rightarrow Regge type spectrum

A black brane in AdS

(analog to Schwarzschild Black Hole in Friedmann universe)

AdS/CFT dictionary: T(zH) as Hawking temperature of boundary theory s(zH) as Bekenstein-Hawking entropy

warning: Hawking-Page transition at T < Tc

action:
$$S_V = -\frac{1}{4k_V} \int dz \, d^4x \, \sqrt{g} e^{-\Phi(z)} F^2$$

rad. & Lorenz gauge
$$V_\mu = \epsilon_\mu \varphi(z) \exp\{ip_\nu x^\nu\}$$

ansatz:
$$ds^2 = e^{A(z)} \left(f(z)dt^2 - d\vec{x}^2 - \frac{1}{f(z)}dz^2 \right)$$

EoM:

$$\begin{pmatrix} \partial_{\xi}^{2} - (U_{T} - m_{n}^{2}) \end{pmatrix} \psi = 0,$$

$$\int U_{T} = \left(\frac{1}{2}(\frac{1}{2}\partial_{z}^{2}A - \partial_{z}^{2}\Phi) + \frac{1}{4}(\frac{1}{2}\partial_{z}A - \partial_{z}\Phi)^{2}\right) f^{2} + \frac{1}{4}(\frac{1}{2}\partial_{z}A - \partial_{z}\Phi)\partial_{z}f^{2}.$$

spirit of soft-wall model: ansatz for A,f, phi

vector mesons = normalizable modes

Schrödinger equivalent potential for modes in Klein-Kaluza decomposition of V in axial gauge

sequential disappearance upon temperature increase

disappearance

thermodyn. options:

continuous – cross over – 2nd order – 1st order transition 🕬 📑

A two-parameter model for Tdis (Tmin, z_min)

the Helmholtz Association on Physics I www.hzdr.de

contours: Tdis(2nd), color code: Tdis(2nd) – Tdis(g.s.)

Cosmic Swing: from estimates to precision

Association ww.hzdr.de

page 14

Member of the Helmholtz Association B. Kampfer I Institute of Radiation Physics I www.hzdr.de

AdS-BH vs. Thermal Gas: FOPT

0.3

80

 $\theta = \pi z_x T_x = 2/3$ (blue), 1 (green), 4/3 (red)

Kiritsis et al. (2008):

p(BH) ~ Nc^2 p(therm.gas) ~ O(Nc^0)

1.5

Member of the Helmholtz Association

2+1 flavor QCD: phase diagram/Columbia plot

Figure 1: Possible scenarios for the QCD phase diagram at $\mu = 0$ as function of quark mass.

from Pinke & Philipsen, 2015

all the way AdS-BH: thermodynamics

page 18

B. Kampfer I Institute of Radiation Physics I www.hzdr.de

contour plot Tdis vs. Theta - b at Tx = 150 MeV

Member of the Helmholtz Association B. Kampfer | Institute of Radiation Physics | www.hzdr.de

Member of the Helmholtz Association B. Kampfer | Institute of Radiation Physics | www.hzdr.de

5D Einstein-dilaton-Maxwell model

$$S = \frac{1}{2\kappa_5} \int d^5 x \sqrt{-g} \left(R - \frac{1}{2} \partial^\mu \phi \partial_\mu \phi - V(\phi) - \frac{f(\phi)}{4} F_{\mu\nu}^2 \right) + S_{GH},$$

DeWolfe, Gubser, Rosen, PRD (2010, 2011)

solve Einstein eqs. + EoM for dilaton and Maxwell with proper conds. at boundary and horizon, get T, s, mu, n (AdS/CFT dictionary), integrate to get p(T, mu) to be used for susceptibilities

adjustments at mu = 0: (i) lattice QCD thermodynamics \rightarrow V(phi)

cf. Yaresko, BK, PLB (2015), Yaresko, Knaute, BK, EPJC (2015)

(ii) susceptibilities \rightarrow f(phi)

work in progress

dr.de

page 23

Crossing the phase border line

Summary

(i) Bulk viscosity = 0.5 shear viscosity at Tc

(ii) extended soft wall model for vector mesons:

- + T = 0: two options for rho Regge trajectories
- + T > 0: emulating deconfinement as disappearance (instant. vs. sequential) of hadrons at T(QCD)
- + contact to thermodynamics
 - (ambient medium mimicked by dilation via ansatz)
- ? construction of a phase diagram

(iii) holographic phase diagram:

- + accommodates QCD thermodynamics
 - (medium mimicked by self consist. dilaton)
- no individual hadrons sourcing dilaton below Tc
- -- vdW behavior (w/o tuning 4th order susceptibility)

Results of the Sao Paulo Group

