## EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE

## Claudia Ratti




Collalboratos: Paolo A Aba, Rene BBellwied, Szaboles, Borsanyi, Zoffan Fodory Jana Guenther, Sandor Katz/Stefan Kriegk Valentina Mantovani-Sarti, Jaki NoronháHostler, Paolo Parotto, Attila Pasztor, Israel Portillo, Kalman Szabo


## Lattice QCD

- Best first principle-tool to extract predictions for the theory of strong interactions in the non-perturbative regime
$\square$ Uncertainties:
- Statistical: finite sample, error $\sim 1 / \sqrt{\text { sample size }}$
- Systematic: finite box size, unphysical quark masses
$\square$ Given enough computer power, uncertainties can be kept under control
- Results from different groups, adopting different discretizations, converge to consistent results
$\square$ Unprecedented level of accuracy in lattice data


## Low temperature phase: HRG model

- Interacting hadronic matter in the ground state can be well approximated by a non-interacting resonance gas
$\square$ The pressure can be written as:
$p^{H R G} / T^{4}=\frac{1}{V T^{3}} \sum_{i \in \text { mesons }} \ln \mathcal{Z}_{m_{i}}^{M}\left(T, V, \mu_{X^{a}}\right)+\frac{1}{V T^{3}} \sum_{i \in \text { baryons }} \ln \mathcal{Z}_{m_{i}}^{B}\left(T, V, \mu_{X^{a}}\right)$
where

$$
\ln \mathcal{Z}_{m_{i}}^{M / B}=\mp \frac{V d_{i}}{2 \pi^{2}} \int_{0}^{\infty} d k k^{2} \ln \left(1 \mp z_{i} e^{-\varepsilon_{i} / T}\right)
$$

with energies $\varepsilon_{i}=\sqrt{k^{2}+m_{i}^{2}}$, degeneracy factors $d_{i}$ and fugacities

$$
z_{i}=\exp \left(\left(\sum_{a} X_{i}^{a} \mu_{X^{a}}\right) / T\right) .
$$

$X^{a}$ : all possible conserved charges, including the baryon number $B$, electric charge $Q$, strangeness $S$.
$\square$ Needs knowledge of the hadronic spectrum

## QCD Equation of state at $\mu_{\mathrm{B}}=0$




$\square$ EoS available in the continuum limit, with realistic quark masses

- Agreement between stout and HISQ action for all quantities

WB: S. Borsanyi et al., 1309.5258, PLB (2014) HotQCD: A. Bazavov et al., 1407.6387, PRD (20143/31

## Sign problem

- The QCD path integral is computed by Monte Carlo algorithms which samples field configurations with a weight proportional to the exponential of the action

$$
Z\left(\mu_{B}, T\right)=\operatorname{Tr}\left(e^{-\frac{H_{\mathrm{QCD}}-\mu_{B} N_{B}}{T}}\right)=\int \mathcal{D} U e^{-S_{G}[U]} \operatorname{det} M\left[U, \mu_{B}\right]
$$

$\square \operatorname{detM}\left[\mu_{\mathrm{B}}\right]$ complex $\rightarrow$ Monte Carlo simulations are not feasible
$\square$ We can rely on a few approximate methods, viable for small $\mu_{\mathrm{B}} / \mathrm{T}$ :

- Taylor expansion of physical quantities around $\mu_{\mathrm{B}}=0$ (Bielefeld-Swansea collaboration 2002; R. Gavai, S. Gupta 2003)
- Simulations at imaginary chemical potentials (plus analytic continuation) (Alford, Kapustin, Wilczek, 1999; de Forcrand, Philipsen, 2002; D’Elia, Lombardo 2003)


## Equation of state as a Taylor expansion in $\mu_{\mathrm{B}}$

- Notation:
$\hat{\mu}_{B} \equiv \mu_{B} / T \quad \hat{p} \equiv p / T^{4} \quad \hat{n} \equiv n_{B} / T^{3} \quad \hat{s} \equiv s / T^{3}$
- Taylor expansion for the pressure:

$$
\hat{p}=c_{0}(T)+c_{2}(T) \cdot \hat{\mu}_{B}^{2}+c_{4}(T) \cdot \hat{\mu}_{B}^{4}+c_{6}(T) \cdot \hat{\mu}_{B}^{6}+\ldots
$$



## Physics at imaginary $\mu$

$\square$ At imaginary $\mu$ there is no sign problem The partition function is periodic in $\mu_{\mathrm{l}}$ with period $2 \pi T$

$$
Z=\operatorname{Tr}\left(e^{-\beta \hat{H}+i \beta \mu_{I} \hat{N}}\right)
$$

For more chemical potentials: $\mu_{\mathrm{B}}, \mu_{\mathrm{Q}}, \mu_{\mathrm{S}}$, several trajectories are possible $\rightarrow$ useful for different physics
$\square$ Here we use:

$$
<\mathrm{n}_{\mathrm{s}}>=0 \quad<\mathrm{n}_{\mathrm{Q}}>=0.4<\mathrm{n}_{\mathrm{B}}>
$$

- Other choices are possible, e.g.:

$$
\mu_{\mathrm{S}}=0
$$

$$
\mu_{Q}=0
$$

## Strangeness neutrality

$\square$ We simulate at $\mu_{\mathrm{B}}, \mu_{\mathrm{S}}$ pairs such that $\left\langle\mathrm{n}_{\mathrm{S}}>=0\right.$
$\square$ This requires a non-trivial fine tuning


## Thermodynamic identities

For the pressure we measure:

$$
\begin{aligned}
\frac{n}{\mu_{B} T^{2}} & =\left.\frac{T}{\mu_{B}} \frac{d\left(p / T^{4}\right)}{d\left(\mu_{B} / T\right)}\right|_{\left\langle n_{S}\right\rangle=0,\left\langle n_{Q}\right\rangle=0.4\left\langle n_{B}\right\rangle, T=\text { const. }} \\
& =n_{B}\left(1+0.4 \frac{d \mu_{Q}}{d \mu_{B}}\right)=2 c_{2}+4 c_{4}\left(\frac{\mu_{B}}{T}\right)^{2}+6 c_{6}\left(\frac{\mu_{B}}{T}\right)^{4}+\ldots
\end{aligned}
$$

For the entropy and energy:

$$
\begin{aligned}
& s=\left[T^{4} \partial / \partial T+4 T^{3}\right]\left(p / T^{4}\right) \\
& \hat{\epsilon}=\hat{s}-\hat{p}+\hat{\mu}_{Q} \hat{n}_{Q}+\hat{\mu}_{B} \hat{n}_{B}
\end{aligned}
$$

## Taylor expansion of the pressure



## Equation of state at $\mu_{B}>0$

- Extract the isentropic trajectory that the system follows in the absence of dissipation
$\square \quad$ The freeze-out point estimates are from Alba et al., Phys. Lett. B738 (2014)



## Equation of state along the trajectories



## Different orders of $\mu_{\mathrm{B}}$ expansion for $\mathrm{n}_{\mathrm{B}}$

$$
T=145 \mathrm{MeV}
$$



## Fluctuations of conserved charges

- Definition:

$$
\chi_{l m n}^{B S Q}=\frac{\partial^{l+m+n} p / T^{4}}{\partial\left(\mu_{B} / T\right)^{l} \partial\left(\mu_{S} / T\right)^{m} \partial\left(\mu_{Q} / T\right)^{n}}
$$

$\square$ Relationship between chemical potentials:

$$
\begin{aligned}
\mu_{u} & =\frac{1}{3} \mu_{B}+\frac{2}{3} \mu_{Q} \\
\mu_{d} & =\frac{1}{3} \mu_{B}-\frac{1}{3} \mu_{Q} \\
\mu_{s} & =\frac{1}{3} \mu_{B}-\frac{1}{3} \mu_{Q}-\mu_{S} .
\end{aligned}
$$

$\square$ They can be calculated on the lattice and compared to experiment

## Connection to experiment

- Fluctuations of conserved charges are the cumulants of their event-by-event distribution

$$
\begin{array}{cl}
\text { mean : } M=\chi_{1} & \text { variance : } \sigma^{2}=\chi_{2} \\
\text { skewness : } S=\chi_{3} / \chi_{2}^{3 / 2} & \text { kurtosis : } \kappa=\chi_{4} / \chi_{2}^{2} \\
S \sigma=\chi_{3} / \chi_{2} & \kappa \sigma^{2}=\chi_{4} / \chi_{2} \\
M / \sigma^{2}=\chi_{1} / \chi_{2} & S \sigma^{3} / M=\chi_{3} / \chi_{1} \\
& \text { F. Karsch: Centr. Eur. J. Phys. (201 2) }
\end{array}
$$

$\square$ The chemical potentials are not independent: fixed to match the experimental conditions:

$$
<\mathrm{n}_{\mathrm{S}}>=0 \quad<\mathrm{n}_{\mathrm{Q}}>=0.4<\mathrm{n}_{\mathrm{B}}>
$$

## Things to keep in mind

$\square$ Effects due to volume variation because of finite centrality bin width

- Experimentally corrected by centrality-bin-width correction method
$\square$ Finite reconstruction efficiency
$\square$ Experimentally corrected based on binomial distribution A.Bzdak,V.Koch, PRC (2012)
$\square$ Spallation protons
- Experimentally removed with proper cuts in $\mathrm{p}_{\mathrm{T}}$
$\square$ Canonical vs Gran Canonical ensemble
- Experimental cuts in the kinematics and acceptance
V. Koch, S. Jeon, PRL (2000)
$\square$ Proton multiplicity distributions vs baryon number fluctuations
- Recipes for treating proton fluctuations

$$
\text { M. Asakawa and M. Kitazawa, PRC(2012), M. Nahrgang et al., } 1402.1238
$$

$\square$ Final-state interactions in the hadronic phase

- Consistency between different charges = fundamental test
J.Steinheimer et al., PRL (2013)


## Freeze-out parameters from B fluctuations

$\square$ Thermometer: $\frac{\chi_{3}^{B}\left(T, \mu_{B}\right)}{\chi_{1}^{B}\left(T, \mu_{B}\right)}=\mathrm{S}_{\mathrm{B}} \sigma_{\mathrm{B}}{ }^{3} / \mathrm{M}_{\mathrm{B}}$


- Upper limit: $\mathrm{T}_{\mathrm{f}} \leq 151 \pm 4 \mathrm{MeV}$

Baryometer: $\frac{\chi_{1}^{B}\left(T, \mu_{B}\right)}{\chi_{2}^{B}\left(T, \mu_{B}\right)}=\sigma_{\mathrm{B}}^{2} / \mathrm{M}_{\mathrm{B}}$


WB: S. Borsanyi et al., PRL (2014)
STAR collaboration, PRL (2014)

- Consistency between freeze-out chemical potential from electric charge and baryon number is found.


## Freeze-out parameters from B fluctuations

$\square \quad$ Thermometer: $\frac{\chi_{3}^{B}\left(T, \mu_{B}\right)}{\chi_{1}^{B}\left(T, \mu_{B}\right)}=\mathrm{S}_{\mathrm{B}} \sigma_{\mathrm{B}}{ }^{3} / \mathrm{M}_{\mathrm{B}} \quad$ Baryometer: $\frac{\chi_{1}^{B}\left(T, \mu_{B}\right)}{\chi_{2}^{B}\left(T, \mu_{B}\right)}=\sigma_{\mathrm{B}}{ }^{2} / \mathrm{M}_{\mathrm{B}}$


| $\sqrt{s}[\mathrm{GeV}]$ | $\mu_{B}^{f}[\mathrm{MeV}]($ from $B)$ | $\mu_{B}^{f}[\mathrm{MeV}]$ (from $Q$ ) |
| :---: | :---: | :---: |
| 200 | $25.8 \pm 2.7$ | $22.8 \pm 2.6$ |
| 62.4 | $69.7 \pm 6.4$ | $66.6 \pm 7.9$ |
| 39 | $105 \pm 11$ | $101 \pm 10$ |
| 27 | - | $136 \pm 13.8$ |

- Upper limit: $\mathrm{T}_{\mathrm{f}} \leq 151 \pm 4 \mathrm{MeV}$

WB: S. Borsanyi et al., PRL (2014)
STAR collaboration, PRL (2014)

- Consistency between freeze-out chemical potential from electric charge and baryon number is found.


## Freeze-out line from first principles

$\square$ Use T- and $\mu_{\mathrm{B}}$-dependence of $\mathrm{R}_{12}{ }^{\mathrm{Q}}$ and $\mathrm{R}_{12}{ }^{\mathrm{B}}$ for a combined fit:

$$
\begin{aligned}
& R_{12}^{Q}\left(T, \mu_{B}\right)=\frac{\chi_{1}^{Q}\left(T, \mu_{B}\right)}{\chi_{2}^{Q}\left(T, \mu_{B}\right)}=\frac{\chi_{11}^{Q B}(T, 0)+\chi_{2}^{Q}(T, 0) q_{1}(T)+\chi_{11}^{Q S}(T, 0) s_{1}(T)}{\chi_{2}^{Q}(T, 0)} \frac{\mu_{B}}{T}+\mathcal{O}\left(\mu_{B}^{3}\right) \\
& R_{12}^{B}\left(T, \mu_{B}\right)=\frac{\chi_{1}^{B}\left(T, \mu_{B}\right)}{\chi_{2}^{B}\left(T, \mu_{B}\right)}=\frac{\chi_{2}^{B}(T, 0)+\chi_{11}^{B Q}(T, 0) q_{1}(T)+\chi_{11}^{B S}(T, 0) s_{1}(T)}{\chi_{2}^{B}(T, 0)} \frac{\mu_{B}}{T}+\mathcal{O}\left(\mu_{B}^{3}\right)
\end{aligned}
$$



## What about strangeness freeze-out?

$\square$ Yield fits seem to hint at a higher temperature for strange particles

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \pi & \mathbf{K}^{ \pm} & \mathbf{K}^{0} & \mathbf{K}^{*} & \phi & \mathrm{p} & \Lambda & \equiv & \Omega & \mathrm{~d} & { }_{\Lambda}^{3} \mathbf{H} & \mathrm{He} \\
\hline
\end{array}
$$


M. Floris: QM 2014


- Similar behavior found in lattice QCD results
R. Bellwied et al. (WB Collaboration): PRL2013


## Missing strange states?

$\square$ Quark Model predicts not-yet-detected (multi-)strange hadrons


$\square$ QM-HRG improves the agreement with lattice results for the baryon-strangeness correlator:

$$
\left(\mu_{\mathrm{S}} / \mu_{\mathrm{B}}\right)_{\left\llcorner\mathrm{O}=-\mathrm{X}_{11}{ }^{\mathrm{BS}} / X_{2}^{\mathrm{S}}+\mathrm{X}_{11}{ }^{\mathrm{QS}} \mu_{\mathrm{Q}} / \mu_{\mathrm{B}} .\right.}
$$

$\square$ The effect is only relevant at finite $\mu_{B}$

- Feed-down from resonance decays not included
A. Bazavov et al., PRL (2014)


## Missing strange states?

- New states appear in the 2014 version of the PDG



## Missing strange states?

$\square$ New states appear in the 2014 version of the PDG


## Missing strange states?

$\square$ The comparison with the lattice is improved for the baryonstrangeness correlator:


## Missing strange states?

$\square$ Some observables are in agreement with the PDG 2014 but not with the Quark Model:



- $X_{4}{ }^{\mathrm{S}} / \mathrm{X}_{2}{ }^{\mathrm{S}}$ is proportional to $<\mathrm{S}^{2}>$ in the system
$\square$ It seems to indicate that the quark model predicts too many multistrange states


## Missing strange states?

$\square$ Idea: define linear combinations of correlators which receive contributions only from particles with a given quantum number

- They allow to compare PDG and QM prediction for each sector separately

$$
\begin{array}{rlrl}
P_{S}\left(\hat{\mu}_{B}, \hat{\mu}_{S}\right) & =P_{0|1|} \cosh \left(\hat{\mu}_{S}\right) & P_{0|1|} & =\chi_{2}^{S}-\chi_{22}^{B S} \\
& +P_{1|1|} \cosh \left(\hat{\mu}_{B}-\hat{\mu}_{S}\right) & P_{1|1|} & =\frac{1}{2}\left(\chi_{4}^{S}-\chi_{2}^{S}+5 \chi_{13}^{B S}+7 \chi_{22}^{B S}\right) \\
& +P_{1|2|} \cosh \left(\hat{\mu}_{B}-2 \hat{\mu}_{S}\right) & & \\
& +P_{1|3|} \cosh \left(\hat{\mu}_{B}-3 \hat{\mu}_{S}\right) & P_{1|2|}=-\frac{1}{4}\left(\chi_{4}^{S}-\chi_{2}^{S}+4 \chi_{13}^{B S}+4 \chi_{22}^{B S}\right) \\
& & P_{1|3|}=\frac{1}{18}\left(\chi_{4}^{S}-\chi_{2}^{S}+3 \chi_{13}^{B S}+3 \chi_{22}^{B S}\right)
\end{array}
$$

## Missing strange states?



$\square$ The precision in the lattice results can allow to distinguish between the two scenarios
$\square$ Quark model pushes the agreement with the data for the strange baryons to higher temperatures

## Not enough strange mesons




- Both Quark Model and PDG 2014 underestimate the partial pressure due to strange mesons
$\square$ This might explain why the QM overestimates $X_{4}{ }^{s} / X_{2}{ }^{s}$ : more strange mesons would bring the curve down


## Kaon fluctuations

$\square$ Experimental data are becoming available.

- Exciting result but presently hampered by systematic errors
- BES-II will help
- Kaon fluctuations from HRG model will be affected by the hadronic spectrum and decays



## Kaon fluctuations on the lattice



- Boltzmann approximation works well for lower order kaon fluctuations

$$
\frac{\chi_{2}^{K}}{\chi_{1}^{K}}=\frac{\cosh \left(\hat{\mu}_{S}+\hat{\mu}_{Q}\right)}{\sinh \left(\hat{\mu}_{S}+\hat{\mu}_{Q}\right)}
$$

$\square X_{2}{ }^{K} / X_{1}{ }^{K}$ from primordial kaons + decays is very close to the one in the Boltzmann approximation

## Kaon fluctuations on the lattice



Experimental uncertainty does not allow a precise determination of $T_{f}^{k}$

## Conclusions

$\square$ Unprecedented precision in lattice QCD data allows a direct comparison to experiment for the first time
$\square$ QCD thermodynamics at $\mu_{\mathrm{B}}=0$ can be simulated with high accuracy
$\square$ Extensions to finite density are under control up to $\mathrm{O}\left(\mu_{\mathrm{B}}{ }^{6}\right)$

- Comparison with experiment allows to determine properties of strongly interacting matter from first principles
$\square$ It is possible to identify kaon fluctuations in lattice QCD


## Lattice details

## The 4stout staggered action

- 2+1+1 dynamical flavors
- 4 levels of stout smearing in the fermionic action
- The masses are set by bracketing both the pion and the kaon masses within a few percent, keeping $m_{c} / m_{s}=11.85$
- The scale is set in two ways: $f_{\pi}$ and $w_{0}$ (with Wilson flow). The scale setting procedure is one of the source of the systematic error in all of the plots


## Ensembles

- Continuum limit from $\mathrm{N}_{\mathrm{t}}=10,12,16$
- For imaginary $\mu$ we have $\mu_{B}=i T \pi j / 8$, with $j=3,4,5,6,6.5,7$


## Equation of state at $\mu_{B}>0$

- Expand the pressure in powers of $\mu_{\mathrm{B}}\left(\right.$ or $\left.\mu_{\mathrm{L}}=3 / 2\left(\mu_{\mathrm{u}}+\mu_{\mathrm{d}}\right)\right)$

- Continuum extrapolated results at the physical mass


## Analytical continuation - illustration of systematics

Analytical continuation on $N_{t}=12$ raw data


