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Event Horizon Telescope - BH imaging as GR tests with P Hess, W. Greiner

- Black Hole imaging of the Galactic Center and in M87 M. Bleicher, T. Schénenbach

- status
- tests of observational signatures of GR and pc-GR

GW detections —LIGO results with A. Miiller
- unique science cases

- status
- GW and electromagnetic detection



The black hole in the Galactic Center

the first indirect proof for the existence of Black Holes
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3 Millionen Solar Masses within 3 Light Hours




EHT - Black Hole imaging in the GC as GR tests

VLBI + ALMA
GCin standard GR

Ax =10 pas = 1R

GC in modified GR is different in size and flux observing:
- sub-mm shadowing

- emissivity profile

delayed since 2014
successful observations between April 5th-15th, 2017 (© Goddi)
SP data added in Winter 2017 — data processing still ongoing



2017 EHT Campaign

LMT . SMT

{Mexico) (;\rizona)




230 GHz mmVLBI observing during 5 nights in April with ALMA,
APEX, IRAM 30m, LMT, SMT, SMA, JCMT, SPT

Very successful campaign (instruments, teams, weather!)

Data correlation ongoing

Fringes for calibrators on all baselines!




MWL observations during EHT Campaign
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Motivation going beyond standard GR

GR theory has up to now withstood all experimental tests

nevertheless, there are extreme situations in GR, like
- the formation of a coordinate singularity at the Schwarzschild radius
- regions not accessible for observations

Kretschmann-scalar

shows how the curvature in the vicinity of the BH behaves
far away from the BH: space time is flat
close to the BH: space time curves strongly

at r=0: curvature diverges

1.3 ; radius
15

these are reasons to search for possible extensions to GR, i.e. pc-GR



The Pseudo-Complex Theory

Hess, Greiner et al. 2009-2017+

1. the effective potential
2. last stable orbits

3. observational tests



Acceptance of pc-GR in astronomical community

1. pc-GR is part of the Athena+ proposals for ESA’s Large Mission
Programme 2015-2025

2. pc-GR is part of the ALMA white paper for direct imaging
of black holes

there is growing interest from galactic and extragalactic experts
to perform tests going beyond standard GR



The Pseudo-Complex Theory — Einstein equation and metric tensor

1 8Kk - new Einstein equation
R#" — — g“VR =—— T"o - energy momentum tensor

2 C allows for repulsion at small r[m]
1 2
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rz —-2mr + aZCOSZQ E— 800: Metric tensor
. 2r B: new pseudo-complex variable
gOO o rz n az COSZH a: spin parameter

no coordinate singularity
atr=2mfora=0



Effective potential of test particle in pc-GR
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Last stable orbits

Schénenbach_etal?013

IT: no stable orbits in GR/pc—GR

1
last stable orbit in GR
“last" stable orbit in pc-GR
constraint for general orbits
“first" stable orbit in pc-GR

I: stable orbits in GR/pc—GR

a[m]

-0.6

-0.8



Normalized energy of particles on stable prograde circular orbits
in pseudo-complex GR (Hess, Greiner®, Schonenbach4)
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in the pc-GR case, more energy is released as particles move to smaller radii



flux function for GR and pc-GR
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- pc-GR black holes is brighter
- appearance of zero flux in pc-GR



Radial dependence of the angular frequency w(r)
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for the mass of the GC a maximum frequency of 0.219¢/m exists, corresponding to a orbital
period of 9.4 min



Geometrically thin accretion disc around a rotating compact object viewed from an
inclination of 70°

‘/ |

(d) standard GR a = 0.9m (d) pc-GR a = 0.9m

most prominent difference: pc-GR images are brighter
next significant difference: occurrence of a dark ring in pc-GR

- the ring appears due to the fact that the angular frequency has a maximum at 1.72 m
- at 1.72m the flux vanishes, going further inside, the flux increases again, which is a new feature in pc-GR



dark ring at 1.72m
as new feature of
pc-GR

inner disc

(d) pe-GR a = 0.9m



ray-tracing in GR and pc-GR

a=0 a=0.3 a=0.6 a=0.9

GR
|

most prominent difference: pc-GR images are brighter
next significant difference: occurrence of a dark ring in pc-GR




OBSERVED EHT intensity slices will provide robust GR test
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the ultimative test of pc-GR:

- analyze EHT flux slices into the direction of the center of the black hole

- determine relative flux ratios between GR and pc-GR as a function of r

- these flux ratios differ by a factor of 100, a rare phenomenon in astrophysics
EHT images provide a solid proof of pc-GR or standard GR



Normalized Flux
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relativistic Fe K line differences
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as pc-GR discs are brighter, the integreated line flux is larger in pc-GR
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the line profiles are clearly different from standard GR

this offers a second robust measurements to test pc-GR versus GR




Summary

motivated by the upcoming EHT observations of the BH in the GC and in M87, ray-
tracing methods have been applied both to standard GR and pc-GR

the correction terms in pc-GR include:
- a modified concept of the ISCO, allowing particles to get closer to the BH
- a reduced gravitational redshift and slower orbital motions

- the appearence of a maximum orbital frequency and a related zero flux emission at ® = const
- brighter accretion discs in pc-GR

the emissivity profiles of matter when approching the BH are different in GR and pc-GR
allowing a robust first test of GR and pc-GR, especially to the appearance of a dark ring in pc-
GR

the Iron Kou emission-line profiles are also different and those are good observables to test
regions of strong gravity




Gravitational Wave detections

_LIGO Hanford Data
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Gravitational Wave signatures
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Year

1916: predicted by Einstein and 1934 withdrawn by him due to the weakness of the expected signal.
Changes in the metric of the space-time, expansion with v=c

GW result into relative changes in length of 101821
- a length of 1 km length is changing by 102°cm

1974: first indirect proof with binary pulsar Hulse und Taylor

the orbital period is becoming shorter, as GWs are emitted
- L GW(Hulse-Taylor) =  10% Watt
-L_ GW(earth-sun) = 120 Watt



mﬁwowing black holes

Millisecond-timescale -0.76s
Below the black holes: curved space-

time

Gravitational-Hole e

Color-code indicates time delay green:
normal; yellow: 20-30% slower; red:
extreme slow in observers frame

last 0,76 s unitl merging
Sinus-amplitude until t =-0,07s

t =-0,017 s frequeny and amplitude is
Increasing

t = 0 s black hole — black- hole merger
ring-down after merger




Gravitational Wave "Crawler’




Gravitationswellen-Laserinterferometer
LIGO=Hanford+Livingston
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- Stilla-problem with 30 M.,

Big problem for stellar lution models
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\TMQ irp-Signal

A Gravitational wave amplitude

Inspiral merger

ringdown

time



4-signal and Interpretation
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— Numerical relativity
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Summary of-all GW events to date

credit: LIGO
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K Nobel Prize awarded to LIGO
Founders -

News Release * October 3, 2017

The LIGO Laboratory, comprising LIGO Hanford, LIGO
Livingston, Caltech, and MIT are excited to announce
that LIGO's three longest-standing and greatest
champions have been awarded the 2017 Nobel Prize
in Physics: Barry Barish and Kip Thorne of Caltech
and Rainer Weiss of MIT.

Barry C. Barish (Caltech) Kip S. Thorne (Caltech)

www.ligo.caltech.edu




First Gravitational Wave and electromagnetic detections

Nobel Price 2017
R. Weiss, B. Barish , K. Thorne

First GW detection: 14. september 2015 (LIGO)
First GW and electromagnetic radiation: 16. october 2017

Neutron star — neutron star merging: Fermi Gamma-Ray burst .and. GW signal detection on 17.8.2017

MPE Press Release: 20171016 (v. Kienlin.et al.) Credit: ESO/S, Smarit & T.-W. Chen
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Mamma ray birst 2 seconds later

credit: NASA
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Optical signal in NGC 4993
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credit: HST/NASA/ESA



FEuture detections
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Supernovae in Milky Way (high frequency)
Supermassive black holes (low frequency)
White Dwars (low frequency)

Big Bang: primordial gravitational waves




Characteristic Strain
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mbnal waves from the Big Bang

Earth’'s Normal Modes,
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Indirect Limits
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o GW-Amplitude h ~ VQg, credit: LIGO



Gravitational Wave Symphony

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

NASA/WMAP Science Team
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Virgo-Galaxienhaufen: 50 Millionen Lichtjahre
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