Th. Boller

Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany Frankfurt Inst f Advanced Studies FIAS & Inst f Theor Physics, Goethe University

Event Horizon Telescope - BH imaging as GR tests wit

with P. Hess, W. Greiner

- Black Hole imaging of the Galactic Center and in M87 M. Bleicher, T. Schönenbach
- status
- tests of observational signatures of GR and pc-GR

GW detections –LIGO results

with A. Müller

- unique science cases
- status
- GW and electromagnetic detection

The black hole in the Galactic Center

the first indirect proof for the existence of Black Holes

3 Millionen Solar Masses within 3 Light Hours

EHT - Black Hole imaging in the GC as GR tests

VLBI + ALMA

 $\Delta x = 10 \ \mu as = 1R_s$

observing:

- sub-mm shadowing
- emissivity profile

delayed since 2014 successful observations between April 5th-15th, 2017 (© Goddi) SP data added in Winter 2017 – data processing still ongoing

2017 EHT Campaign

First science light for ALMA with VLBI!

 230 GHz mmVLBI observing during 5 nights in April with ALMA, APEX, IRAM 30m, LMT, SMT, SMA, JCMT, SPT

- Very successful campaign (instruments, teams, weather!)

- Data correlation ongoing

- Fringes for calibrators on all baselines!

MWL observations during EHT Campaign

April 2017 campaign

MWL Campaign

Motivation going beyond standard GR

GR theory has up to now withstood all experimental tests

nevertheless, there are extreme situations in GR, like

- the formation of a coordinate singularity at the Schwarzschild radius
- regions not accessible for observations

Kretschmann-scalar

shows how the curvature in the vicinity of the BH behavesfar away from the BH:space time is flatclose to the BH:space time curves stronglyat r=0:curvature diverges

these are reasons to search for possible extensions to GR, i.e. pc-GR

The Pseudo-Complex Theory

Hess, Greiner et al. 2009-2017+

1. the effective potential

2. last stable orbits

3. observational tests

Acceptance of pc-GR in astronomical community

1. pc-GR is part of the Athena+ proposals for ESA's Large Mission Programme 2015-2025

2. pc-GR is part of the ALMA white paper for direct imaging of black holes

there is growing interest from galactic and extragalactic experts to perform tests going beyond standard GR

The Pseudo-Complex Theory – Einstein equation and metric tensor

$$R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R = -\frac{8\pi\kappa}{c^2} T^{\mu\nu} \sigma_{-}$$

$$\sigma_{-} = \frac{1}{2} (1 - I) \qquad \sigma_{-} \sigma_{+} = 0 \qquad \sigma_{-}^2 = \sigma_{-}$$

- new Einstein equation
- energy momentum tensor allows for repulsion at small r[m]

$$g_{00} = \frac{r^2 - 2mr + a^2 \cos^2 \theta + \frac{B}{2r}}{r^2 + a^2 \cos^2 \theta}$$

- g₀₀: metric tensor
- B: new pseudo-complex variable
- a: spin parameter

no coordinate singularity at r = 2m for a = 0

Effective potential of test particle in pc-GR

Last stable orbits

Schönenbach_etal²⁰¹³

Normalized energy of particles on stable prograde circular orbits in pseudo-complex GR (Hess, Greiner⁰⁹, Schönenbach¹⁴)

in the pc-GR case, more energy is released as particles move to smaller radii

flux function for GR and pc-GR

- pc-GR black holes is brighter
- appearance of zero flux in pc-GR

Radial dependence of the angular frequency $\omega(r)$

for the mass of the GC a maximum frequency of 0.219c/m exists, corresponding to a orbital period of 9.4 min

Geometrically thin accretion disc around a rotating compact object viewed from an inclination of 70°

(d) standard GR a = 0.9m

(d) pc-GR a = 0.9m

most prominent difference: pc-GR images are brighter next significant difference: occurrence of a dark ring in pc-GR

- the ring appears due to the fact that the angular frequency has a maximum at 1.72 m

- at 1.72m the flux vanishes, going further inside, the flux increases again, which is a new feature in pc-GR

dark ring at 1.72m as new feature of pc-GR

(d) pc-GR a = 0.9m

ray-tracing in GR and pc-GR

most prominent difference: pc-GR images are brighter next significant difference: occurrence of a dark ring in pc-GR

OBSERVED EHT intensity slices will provide robust GR test

the ultimative test of pc-GR:

- analyze EHT flux slices into the direction of the center of the black hole
- determine relative flux ratios between GR and pc-GR as a function of r
- these flux ratios differ by a factor of 100, a rare phenomenon in astrophysics EHT images provide a solid proof of pc-GR or standard GR

relativistic Fe K line differences

as pc-GR discs are brighter, the integreated line flux is larger in pc-GR

the line profiles are clearly different from standard GR

this offers a second robust measurements to test pc-GR versus GR

Summary

motivated by the **upcoming EHT observations** of the BH in the GC and in M87, raytracing methods have been applied both to standard GR and pc-GR

the correction terms in pc-GR include:

- a modified concept of the ISCO, allowing particles to get closer to the BH
- a reduced gravitational redshift and slower orbital motions
- the appearence of a maximum orbital frequency and a related zero flux emission at ω = const
- brighter accretion discs in pc-GR

the emissivity profiles of matter when approching the BH are different in GR and pc-GR allowing **a robust first test of GR and pc-GR**, especially to the appearance of a dark ring in pc-GR

the Iron K α emission-line profiles are also different and those are good observables to test regions of strong gravity

the observable differences between GR and pc-GR are remarkable different and will provide new tests of GR going beyond the 4 classicial tests of Einsteins GR theory

Gravitational Wave detections

Bilder: ESO, LIGO

Gravitational Wave signatures

1916: predicted by Einstein and 1934 withdrawn by him due to the weakness of the expected signal.

Changes in the metric of the space-time, expansion with v=c

GW result into relative changes in length of 10⁻¹⁸⁻⁻²¹

- a length of 1 km length is changing by 10⁻²⁰ cm

1974: first indirect proof with binary pulsar Hulse und Taylor

the orbital period is becoming shorter, as GWs are emitted

- L_GW(Hulse-Taylor) = 10⁴⁰ Watt
- L_GW(earth-sun) = 120 Watt

Simulation of two merging black holes

- Millisecond-timescale
- Below the black holes: curved spacetime
- o Gravitational-Hole
- Color-code indicates time delay green: normal; yellow: 20-30% slower; red: extreme slow in observers frame
- ◎ last 0,76 s unitl merging
- Sinus-amplitude until t = -0,07s
- t = -0,017 s frequeny and amplitude is increasing
- \circ t = 0 s black hole black- hole merger
- ring-down after merger

Gravitational Wave 'Crawler'

Gravitationswellen-Laserinterferometer LIGO=Hanford+Livingston

Hanford 4 km

Hannover 600 m

Hanford, Washington

Livingston, Louisiana

Still a problem with 30 M.

Big problem for stellar evolution models

The Chirp-Signal

Gravitational wave amplitude

GW150914 signal and Interpretation

LIGO collaboration

GW150914 14.09.2015

35-250 Hz

Merging of 2 black holes with 29 und 36 M_o

GW energy release äquivalent to 3 $\rm M_{\odot}$

Strain = relative length change

LIGO, CalTech

Nobel Price 2017

Laser Interferometer Gravitational-Wave Observatory Supported by the National Science Foundation Operated by Caltech and MIT

About Learn More News Gallery Educational Resources For Scientists Study & Work

< 1 2 3 4 5 6 >

Barry C. Barish (Caltech)

Kip S. Thorne (Caltech)

Rainer Weiss (MIT

2017 Nobel Prize in Physics

Nobel Prize awarded to LIGO Founders

News Release • October 3, 2017

The LIGO Laboratory, comprising LIGO Hanford, LIGO Livingston, Caltech, and MIT are excited to announce that LIGO's three longest-standing and greatest champions have been awarded the 2017 Nobel Prize in Physics: Barry Barish and Kip Thorne of Caltech and Rainer Weiss of MIT.

www.ligo.caltech.edu

First Gravitational Wave and electromagnetic detections

Nobel Price 2017 R. Weiss, B. Barish , K. Thorne

First GW and electromagnetic radiation: 16. October 2017

Neutron star – neutron star merging: Fermi Gamma-Ray burst .and. GW signal detection on 17.8.2017

The sound of gravitational waves

GW150914

Fermi 'saw'gamma ray birst 2 seconds later

credit: NASA

EM emission: opt., UV, IR, Radio

Radio

credit: Caltech

D = 130 Mio. Lj

credit: HST/NASA/ESA

Future detections

- Supernovae in Milky Way (high frequency)
- Supermassive black holes (low frequency)
- White Dwars (low frequency)
- Big Bang: primordial gravitational waves

GW-sources and frequences

Frequency / Hz

Gravitational waves from the Big Bang

• GW-Amplitude $h \sim \sqrt{\Omega_{GW}}$

credit: LIGO

Gravitational Wave Symphony

Virgo-Galaxienhaufen: 50 Millionen Lichtjahre

Th. Boller

Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany

Event Horizon Telescope - BH imaging as GR tests with P. Hess, W. Greiner

- Black Hole imaging of the Galactic Center and in M87

M. Bleicher, T. Schönenbach

- status
- tests of observational signatures of GR and pc-GR

GW detections –LIGO results

- unique science cases
- status
- GW and electromagnetic detection

THANKS FOR YOUR ATTENTION