

Charm dynamics and its hadronization in AA(pp)

Vincenzo Greco - University of Catania

17th April 2018 - Varadero, Cuba

♦ Basic scales for heavy flavor physics

♦ HF dynamical evolution in QGP:

- Boltzmann vs Langevin
- predictions at RHIC and LHC within a Quasi-Particle Model
- Estimating Ds transport coefficient

↔ Hadronization mechanics: $Λ_c/D$ ratio, $R_{AA}(Λ_c)$

♦ Impact of electro-magnetic field on HF dynamics

Basic Scales

Link to lattice QCD at finite T

Extract the Free Energy of QQ

→HQ Potential F=U-TS $q_0^2 \approx \vec{q}^4 / m_Q^2 << \vec{q}^2$ space-like transf. mom. → V(r)

Evaluate Diffusion Transp. Coeff.

Extract Spectral function ρ_E from colorelectric correlator with an initial assumption for ρ_E , then Kubo formula:

$$\kappa/T^3 = \lim_{\omega \to 0} \frac{2T\rho_{\rm E}(\omega)}{\omega} \qquad D = \frac{2T^2}{\kappa}$$

<u>Approximations/limitations:</u> quenched QCD, heavy quark vs. charm quark, continuum extrapolation, still systematic large errors ...

Studying the HF in uRHIC

- hadronic rescattering

Initial Production - $m_Q >> \Lambda_{QCD}$

$$d\sigma^{Q+X} \simeq \sum_{i,j} f_i^A \otimes f_j^B \otimes d\tilde{\sigma}_{ij \to Q+X}$$
$$d\sigma^H = d\sigma^Q \otimes D_Q^H(z)$$

FONNL (Fixed Order NNLO pQCD)

GM-VFNS (General Mass-Variable Fixed Flavor Number Scheme)

Initial Production - $m_Q >> \Lambda_{QCD}$

Now we have MonteCarlo (MC) generator at NLO compatible with FONNL, this will be Relevant when accessing triggered angular correlations.

Initial Charm distribution from various groups

EMMI-RRTF Collab., ArXiV:1803.03824

Still to our purpose (R_{AA} at $p_T < 4-5$ GeV) The best would be good precision data at low p_T

Studying the HF in uRHIC

 $f_Q(r,\phi_r,p,\phi_p,t) \rightarrow R_{AA}, v_2, v_3, dN/d\Delta\phi_{12}, v_2(soft)-v_2(HF)$

Two Main Observables in HIC

Nuclear Modification factor

 $R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{N_{coll} d^2 N^{NN} / dp_T d\eta}$

- Modification respect to pp
- Decrease with increasing partonic interaction

Anisotropy p-space: Elliptic Flow v₂

Standard Dynamics of Heavy Quarks in the QGP

200

100

2 3 4 5 6 7 8 p (GeV) Charm

9 10 11 12 13 14 15

- Evolution in p_{τ} of a single charm at $P_{\tau}(t=0)=10$ GeV
- For HIC double folding with $f_{\text{HQ}}(\textbf{r},\textbf{p},\textbf{t})$ and $\rho_{\text{Bulk}}(\textbf{r},\textbf{t})$
- I will also challenge such a scheme...

In 2003-04 ... pQCD dynamics for HQ in the QGP!?

Equilibration time

"D" Resonance model used in Van Hees, Rapp, PRC71(05) Van Hees, Greco, Rapp, PRC73 (06)

In 2003-04 ... pQCD dynamics for HQ in the QGP!?

 p_{T} [GeV/c]

Van Hees, Greco, Rapp, PRC73 (06)

From QM2006 ...

Strong suppression

S. Wicks et al. (QM06)

 $^{\sim}$ PHENIX preliminary 0.25 other STAR preliminary effects dominant c, $\hat{q} = 14 \text{ GeV}^2/\text{fm}$ 0.2 b, **q̂ =** 14 GeV²/fm + b, $\hat{q} = 14 \text{ GeV}^2/\text{fm}$ 0.15 c + b, **q̂** = 4 GeV²/fm 0.1 0.05 0 Au-Au, 0-80% $\sqrt{s_{NN}} = 200 \text{ GeV}$ -0.05^L 2 3 5 8 9 10 electron p₋ [GeV]

N. Armesto et al., PLB637(2006)362

- Radiative energy loss not sufficient
- Charm seems to flow like light quarks

<u>Heavy Quark strongly dragged by interaction with light quarks</u> pQCD does not work may be the real cross section is a K factor larger?

Large elliptic Flow

R_{AA} & v₂ with upscaled pQCD cross section

It's not just a matter of pumping up pQCD elastic cross section: too low R_{AA} or too low v₂

How HQ interact with the medium

* Elastic Collisional Energy Loss

- pQCD inspired+HTL (Torino, Nantes,LBL...)
 LO diagrams, soft scale resummed in HTL Infrared singularity, gT<<g² ?
- QuasiParticleModel (Catania, Frankfurt-PHSD) LO diagram, $\alpha_s(T)$ from a fit to IQCD-EoS main feature increased strength as T -> Tc

* <u>Radiative Energy Loss</u>

 - pQCD (p_T > 10 GeV) (AMY, DGLV, WHDG, HT, ...) some have both collisional and radiative both light & heavy but v₂ is often missed

Agreement that:

- $p \approx m_Q$ is dominated by Collisional E_{loss}
- p>>>m_Q radiative dominated
- what is the crossing is model dependent and exp. data are not able to clarify it even if favor collisional up to $p_T \approx 5-6$ GeV for charm

Some main specific features of:

- 1) LBL-CCNU-Duke
- 2) Nantes
- 3) QPM- Catania
- 4) PHSD
- 5) BAMPS,
- 6)TAMU
- 7)Torino, HTL
- 8) CUJET
- 9) DGLV
- 10) AdS/CFT

Some main specific features of:

- 1) **LBL-CCNU-Duke**, pQCD* $K(p_T,T)$ + Bayesian \rightarrow drag $\approx T$
- 2) **Nantes**, HTL for $|t| < |t^*| + \text{modified propagator } 1/(t-km_D^2) \rightarrow \text{forward peak}$
- 3) **QPM-Catania**, $\alpha_s(T)$ fitted to IQCD thermodynamics ϵ , p, s
- 4) **PHSD**, like QPM + off-shell dynamics
- 5) **BAMPS**, pQCD LO radiative+elastic α_s =0.6
- 6) TAMU, Resonant scattering drive by V(r,T) from IQCD
- 7) **Torino**, HTL for $|t| < |t^*|$ starting from D_p + FDT
- 8) **CUJET**, $\alpha_s(T)$ large increase at T \rightarrow Tc due to monopoles
- 9) **DGLV**, $\alpha_s(T)$ opacity expansion base on scattering on yukawa interaction
- 10) AdS/CFT, Drag \approx T² like pQCD but 10-20 time larger (no p dep.)

Shared feature Drag >> pQCD-LO and some have stronger interaction as $T \rightarrow T_c$

Simple QP-Model fitting IQCD

Plumari, Alberico, Greco, Ratti, PRD84 (2011)

$$P(T) = \sum_{i=g,q,\overline{q}} \frac{D_i}{(2\pi)^3} \int_0^\infty d^3k \frac{k^2}{3\omega_i(k)} f_i(k) - B(T) + \varepsilon(T) = \sum_{i=g,q,\overline{q}} \frac{d_i}{(2\pi)^3} \int_0^\infty d^3k \,\omega_i(k) \,f_i(k) + B(T) + \widetilde{W}_B(T)$$

W_B=0 guarantees Thermodynamicaly consistency

$$\begin{split} \omega_{q,g} &= k^2 + m_{q,g}^2(T) \\ m_g^2 &= \frac{1}{6} \left(N_c + \frac{1}{2} N_f \right) g^2 T^2 \\ m_q^2 &= \frac{N_c^2 - 1}{8N_c} g^2 T^2 \end{split}$$

g(T) from a fit to $\mathbf{\epsilon}$ from IQCD -> good reproduction of P, e-3P, c_s

$$g_{QP}^{2}(T) = \frac{48\pi^{2}}{(11N_{c} - 2N_{f})\ln\left[\lambda\left(\frac{T}{T_{c}} - \frac{T_{s}}{T_{c}}\right)\right]^{2}} \quad \begin{array}{l} \lambda = 2.6 \\ \mathsf{T}_{s} = 0.57 \ \mathsf{T}_{s} =$$

Larger than pQCD

Drag Transport coefficient in QPM

 $f(p,t=0)=\delta(p-p_0)$ $=p_o e^{-\gamma t}$

♦ Drag from QPM quite large than pQCD : g(T) enhanced as T-->Tc weak dependence on T

♦ pQCD or AdS/CFT
$$\gamma$$
 (T)≈ 1/T²

$$\gamma_{i} = \gamma(p^{2})p_{i} = \frac{1}{2E_{p}} \int \frac{d^{3}q}{(2\pi)^{3} 2E_{q}} \int \frac{d^{3}q'}{(2\pi)^{3} 2E_{q'}} \int \frac{d^{3}p'}{(2\pi)^{3} 2E_{p'}} \sum \left| M_{(q,g)+Q \to (q,g)+Q} \right|^{2} (2\pi)^{4} \delta^{4} (p+q-p'-q') f(q) \Big[(p-p')_{i} \Big]^{2} \left(\frac{d^{3}p'}{(2\pi)^{3} 2E_{q'}} \right)^{2} \left(\frac{d^{3}p'}{(2\pi)^{3} 2E_{q'}} \right)^$$

Some other recent theoretical progress

Resonant Elastic scattering with T-matrix

Scattering under a potential derived from IQCD Free-energy: Like QPM indicates an increasing interaction as $T \rightarrow T_c$

Resonant Elastic scattering with T-matrix

Scattering under a potential derived from IQCD Free-energy: Like QPM indicates an increasing interaction as $T \rightarrow T_c$

2

1.0

1.5

2.0

2.5

 \sqrt{s} (GeV)

3.0

3.5

4.0

Scope: consistency with quarkonium

correlator, HQ susceptibilities, EoS, ...3-body?

pQCD E_{loss} extension of DGLV

Continous improvement: no static scatterings \rightarrow coll.+rad., finite size, magnetic and electric mass, α_s running, ...both heavy& light,

- Collisional non negliglible (also at p_T>5-10 GeV)
- Explain $R_{AA}(\pi) \approx R_{AA}(D) < R_{AA}(B)$

M. Djordjevic et al. PRC80 (2009), PRL101(2008), PLB709 (2012), PLB734 (2014) ...

pQCD E_{loss} extension of DGLV

Continous improvement: no static scatterings \rightarrow coll.+rad., Both heavy& light, finite size magnetic and electric mass, α_s running,...

- Collisional non negliglible (also at p_T>5-10 GeV)
- Explain $R_{AA}(\pi) \approx R_{AA}(D) > R_{AA}(B)$

Progress needed:

- ♦ Miss an underlying Hydro well controlled background
- ♦ Miss prediction for v_2

This step is starting ... ERC-Grant \$\$\$\$

I<L

Main point:

Starting from pQCD a K-factor is needed that is T and p depedent:

$$\hat{q} = \hat{q}_{pQCD} \cdot K^2 \left[1 + A_p e^{-\frac{p^2}{2\sigma_p^2}} \right] \left[1 + A_T e^{-\frac{(T-Tc)^2}{2\sigma_T^2}} \right]^2$$

- ♦ This means non-perturbative dynamics
 that is larger as T -> T_c
 - that disappears as p >> m_c

Data led different modeling to a coherent message

Future: 5 param. Global Bayesan fit [S.Bass talk]

Strong points:

- ♦ Both heavy and light
- ♦ Both radiative and collisional
- ♦ Realistic hydro background

What is the relation between transport coefficients and experimental observables?

Impact of T dep. interaction on $R_{AA} - v_2$

R_{AA} and v_2 correlation

No interaction means $R_{AA}=1$ and $v_2=0$. More interaction decrease R_{AA} and increase v_2

 R_{AA} can be "generated" faster than v_2

The relation between R_{AA} and time is not trivial and depend on how one interact and loose energy with time.

Impact of T dep. interaction on R_{AA} – v₂

2

3

p_T (GeV)

Looking at it beyond the specific modelings $\succ \gamma \approx T^2$ [Ads/CFT, pQCD α_s =const, Duke] $\triangleright \gamma \approx \mathbf{T}$ [pQCD strong α_s running] [MC@HQ] $\succ \gamma \approx \text{const.}$ [QPM, PHSD,..][T-matrix]

rescaled to fit $R_{AA}(p_T)$, D from FDT

PHENIX const. - BM

$$\mathbf{R}_{AA} - \mathbf{V}_2$$

<u>3 main contributions:</u>

- $\Rightarrow \gamma(T)$ factor 2 in v_2 vs 10-20%
 - more impact than $\eta/s(T)$ for bulk
- ♦ 10-25% Boltzmann dynamics
- \diamond 20-30% Hadronization by coalesc.

Still several ingredients to be scrutinized: initial p_T , w w/o CNM, hydro bulk, hadronization impact, w/o hadronic rescattering... we are working on this:

- EMMI-RRTF@GSI

- Jet-HQ

- Duke-Frankfurt-Nantes-Catania
- \Rightarrow At RHIC solution for R_{AA}-v₂, not clear is sufficient at LHC (still large error bars)
- ♦ Impact of Hadronic Rescattering 0-20%, but T_c=155-175 MeV would be appropriate to have 155 MeV (IQCD, SHM) and check v_{2D} vs v_{2Ds}

HQ diffusion in the expanding QGP

Two main approaches:

- **1) Langevin approach** (T<<m_q soft scattering) [*TAMU, Duke, Nantes, Torino, Catania,* ...]
- **2) Boltzman kinetic transport (**...Kadanoff-Baym-PHSD) [*Catania, Nantes, Frankfurt, LBL, CCNU,*...] background Hydro/transport expanding bulk

HQ diffusion in the expanding QGP

Two main approaches:

- **1) Langevin approach** (T<<m_q soft scattering) [*TAMU, Duke, Nantes, Torino, Catania,* ...]
- **2) Boltzman kinetic transport (**...Kadanoff-Baym-PHSD) [*Catania, Nantes, Frankfurt, LBL, CCNU,*...]

background Hydro/transport expanding bulk

Boltzmann (BM)

$$\frac{Df_Q(p)}{Dt} = C_{22} = \frac{1}{2E_p} \int \frac{d^3q}{(2\pi)^3 2E_q} \int \frac{d^3p'}{(2\pi)^3 2E'_p} \frac{d^3q'}{(2\pi)^3 2E'_p} \Big[f'_g(q') f'_Q(p') \Big| M_{gQ \to gQ}(p'q' \to pq) \Big|^2 - f_g(q) f_Q(p) \Big| M_{gQ \to gQ}(pq \to p'q') \Big|^2 \Big] (2\pi)^4 \delta^4(p+q-p'-q')$$

Small q² << M, M>> gT Brownian motion Langevin/Fokker Planck (LV)

Fluct.-Dissip. Th. D = $ET\gamma$

$$\gamma = \int d^{3}k \left| \mathbf{M}(\mathbf{k}, \mathbf{p}) \right|^{2} \mathbf{p}$$
$$D = \frac{1}{2} \int d^{3}k \left| \mathbf{M}(\mathbf{k}, \mathbf{p}) \right|^{2} p^{2}$$

|M|² scatt. matrix from some theory: *HTL, pQCD coll.,rad.,T-matrix..*

Going more differential

- ♦ Kinematics of collisions (Boltzmann) can throw particles at very low p soon.
- ♦ The motion of single HQ does not appear to be of Brownian type, on the other hand $M_c/T \approx 3$ -> $M_c/<p_{bulk}> \approx 1$ & p>>m_Q
- ♦ Evolution of is nearly identical in BM & LV

Equal evolution of vs time Very different fluctuations around
Going more differential – low p_T

♦ Low p_T for charm protected by thermalization
♦ Bottom protected by the significantly larger *M*/T

Momentum evolution for charm vs temperature

Ratio of p-spectra in a box at fixed T

♦ Main impact d σ /d θ :

- Large difference for isotropic scattering
- For Nantes $1/(t-0.2*m_D^2)$ difference small (if starting from A)
- \Rightarrow M/T \approx 10 BM similar to LV

Ratio of p-spectra in a box at fixed T

♦ Main impact d σ /d θ :

- Large difference for isotropic scattering
- For Nantes $1/(t-0.2*m_D^2)$ difference small (if starting from A)
- \Rightarrow M/T \approx 10 BM similar to LV

Are there differences coming from BM vs LV?

Most of the groups start from drag γ or from D_T (not D_L) This choice is more in line with Boltzmann that not having the FDT issue, can serve as a guide...

BM and LV \rightarrow R_{AA}(p_T) shaper nearly identical:

- but Drag γ has to be reduced by 15-40% depending on $m_c \& d\sigma_{gQ}/d\Theta$
- Larger $v_2(p_T) \approx 10-30\%$ again depending on $m_c \& d\sigma/d\Theta$

Impact of different implementation of FDT

- An essential part of LV is the Fluct.- Dissip. Th.: **D(p) =ETγ(p) (*)** D_L, D_T and γ from the scattering matrix that does not fulfill (*) [a sign that microscopic dynamics imply more than and $<\Delta p^2>$]
- ♦ Issue less relevant for bottom (M>>gT, T → Brownian motion)

Issue also in AdS/CFT

✓ No set –up for realistic v₂ prediction
 ✓ T² is quite unfavored by the exp.data on v₂

R^{3,1}

AdS5-Schwarzschild

horizon

New Result (≠FDT)

AdS/CFT

Impact on pairs correlation of the different form of FDT

LHC Pb+Pb at 2.76 ATeV (D-meson)

Fixed $R_{AA}(p_T)$

1) A and B_T (from pQCD No FDT, but $B_{||} = B_T$) 2) $B_{||} = B_T$ (pQCD) ; A (FDT) 3) A pQCD ; D= $B_{||} = B_T$ (FDT) 4) B_T and $B_{||}$ (pQCD) ; A FDT 5) $B_T = B_{||}$ (pQCD) ; A FDT 4) $A = \frac{B_{||}}{p} \frac{1}{a} \frac{\partial E}{\partial p}$

Boltzmann vs Langevin for angular correlations

◆ Boltzmann especially going to dN/d∆φ₁₂ and high p_T including both radiative and collisional should be more appropriate
 → Frankfurt, Subatech, LBL- CCNU, Catania, ...

What predictions can we do for charm experimental observables with QPM-Catania?

What are the differences coming from BM vs LV?

Most of the groups start from drag γ or from D_T (not D_L)

This choice is more in line with Boltzmann which not having the FDT issue,

can serve as a guide...

BM and LV \rightarrow R_{AA}(p_T) shaper nearly identical:

- but Drag **γ has to be reduced by 35%** with a QPM model [max. 55%]
- Larger $v_2(p_T) \approx 15\%$ again with QPM [max. 30-35%]

What is the impact of coalescence?

- $R_{AA}(p_T)$ significant reshaped \rightarrow exp. data
- Opposite to energy loss Coalescence brings up both R_{AA} and v_2

What we predict for LHC?

No change in the HQ interaction,

Only the evolution in the bulk expansion of course

Scardina et al., arXiV: 1707.05452

- ✓ Shadowing appear necessary [EPS09, Eskola-Salgado JHEP(2009)]
- ✓ Coalescence still important

What we predict for LHC?

Scardina et al., arXiV: 1707.05452

- ✓ Shadowing appear necessary [EPS09, Eskola-Salgado JHEP(2009)]
- ✓ Coalescence still important
- ✓ Reasonable descripttion of v₂ Hadronic rescattering does not change R_{AA} - increase by 15% v₂

What is the underlying D_s?

- Another hint that the matter we create in uRHICs is the Hot QCD matter!
- ♦ We have a probe with τ_{therm} ≈ τ_{QGP}
 → easier to pin-down a T dependence of the transport coeff.

From theory itself pQCD does not work

NLO corrections for transport coefficent dominated by soft sector $p \approx m_D$

What is the underlying D_s?

Phenomenological approach in the right ball-park, and now we are starting to extend the analysis to v_3 , $v_2 - v_3$ light-heavy correlations and upcoming angular triggered correlation $dN/d\Delta\phi_{12}$

D meson to final charm spectrum: strong impact of hadronization

♦ Measurement of Λ_c /D can significantly provide *bounds and constraints on hadronization by coalescence* and/ or fragmentation

A step back:

> Do all agree with Coalescence implementation?

- ♦ Impact of coalescence differs among the approaches
- ♦ Measurement of Λ_c /D would provide *bounds and constraints on hadronization by coalescence* and/or fragmentation

Λ_c/D in elementary collisions

Fragmentation functions

$$\left(\frac{\Lambda_C}{D^0}\right)_{e^+e^-} \approx 0.1$$

Statistical Hadronization model

$$\left(\frac{\Lambda_c}{D^0}\right)_{e^+e^-}_{pp} \approx 0.25 - 0.30$$

A. Andronic et al. PLB571 (2003)I. Kuznetsova, J. Rafelski, EPJ C51 (2007)Y. Oh, C.M. Ko, et al., PRC79 (2009)

distribution function giving R_{AA} and v_2 for D just discussed

$$f_M(x_1, x_2; p_1, p_2) = A_W \exp\left(-\frac{x_{r1}^2}{\sigma_r^2} - p_{r1}^2 \sigma_r^2\right)$$

Wigner function with the width fixed by radius from quark model

```
C.-W. Hwang, EPJ C23, 585 (2002).

C. Albertus et al., NPA 740, 333 (2004)

\langle r^2 \rangle_{D^*} = 0.184 \, fm^2 \quad \langle r^2 \rangle_{D^*_s} = 0.124 \, fm^2 \quad \langle r^2 \rangle_{\Lambda^*_c} = 0.152 \, fm^2

= \frac{3}{2} \frac{Q_1 m_2^2 + Q_2 m_1^2}{(m_1 + m_2)^2} \sigma_r^2
```

S. Plumari et al, ArXiv:1712.****

In our calculations we take into account main hadronic channels, including the ground states and the first excited states for D and Λ_c

<u>MESONS</u>

- D+ (I=1/2,J=0)
- **D**⁰ (*I*=1/2,*J*=0)

D⁺_s (*I=0,J=0*)

Resonances

• D^{*+} ($l=1/2, l=1$) $\rightarrow D^{0} \pi^{+}$	B.R. 68%
$\rightarrow D^{+} X$	B.R. 32%
• D^{*^0} ($l=1/2, l=1$) $\rightarrow D^0 \pi^0$	B.R. 62%
$\rightarrow D^0 \gamma$	B.R. 38%
• \mathbf{D}_{s}^{*+} (<i>I=0,J=1</i>) $\rightarrow \mathbf{D}_{s}^{+} \mathbf{X}$	B.R. 100%
■ D_{s0}^{*+} (<i>l</i> =0, <i>J</i> =0) → D_{s}^{+} X	B.R. 100%

• Λ_c^+ (I=0, J=1/2)

BARYONS

<u>Resonances</u>

- $\Lambda_{c}^{+}(2595)$ (*I*=0,*J*=1/2) → Λ_{c}^{+} B.R. 100%
- $\Lambda_{c}^{+}(2625)$ (*I*=0,*J*=3/2) → Λ_{c}^{+} B.R. 100%
- $\Sigma_{c}^{+}(2455)$ (l=1, J=1/2) $\rightarrow \Lambda_{c}^{+}\pi$ B.R. 100%
- $\Sigma_c^+(2520)$ (l=1, J=3/2) $\rightarrow \Lambda_c^+\pi$ B.R. 100%

Data from STAR Coll., arXiv:1704.04364 [nucl-ex].

X. Dong and V. Greco, Progress in Particle and Nuclear Physics (2018)

Needed data at low p_T : For the first time a failure of SHM!? Run I data

Another plus from $\tau_{th} \approx \tau_{QGP}$

Impact of large Magnetic Field

on the Charm dynamics

K Tuchin, Adv.High Energy Phys. 2013 (2013) 490495 K. Hattori, X.-G. Huang, arXiv:1609.00747 [nucl-th]

B field strength:

- created on Earth $\approx 10^7$ Gauss
- Neutron Star ≈ 10¹³ Gauss
- uRHIC $\approx 10^{19}$ Gauss $\approx 10 \text{ m}_{\pi}^2$

Strong B field induces:

- Chiral magnetic effect

Impacts on:

- Quarkonia states
- Radiative E_{loss}
- Electromagnetic radiation
- HQ transport coefficient $D_T >> D_{||}$

I will discuss the direct effect on HQ dynamics of the e.m. interaction

Impact of Magnetic Field on charm

E-B fields like Gursoy et al., PRC89(2014)

 $\eta = \frac{1}{2} \ln \left(\frac{t+z}{t-z} \right)$

New

Balance between Faraday current and Hall drift

Decreasing magnetic field B_y creates E_x that induces a current in opposite direction w.r.t. to the Magnetic Hall drift: <u>delicate balance</u>!

 \diamond Larger initial (t<1 fm/c) field important to determine a sizeable v₁ flow

New

Impact of Magnetic Field on charm

V. Greco, QM2017, NPA (2017) S. Das et al., PLB768 (2017)

HQ best probe for v₁ from e.m. field:

- $t_{form} \approx 0.1$ fm/c vs q << g at this time
- $\tau_{th}(c) \approx \tau_{QGP} >> \tau_{e.m}$
- do not mix with CME [c no chiral]
- do not mix vorticity [Odd- parity]

For light quarks predicted $v_1 \approx 10^{-3}$ - 10^{-4} [Gursoy et al., PRC89 (2014)] For charm quark we find a sizeable v_1 using the same E-B field evolution

About 40 times larger!

Conclusions

Open Charm is an excellent probe having:

- potential to link IQCD to phenomenology
- observables *not easy* to predict containing information on T dependence of the Hot-QCD interaction in *non-perturbative regime* ($p_T < 10$ GeV)
- ★ $\tau_{therm} \approx \tau_{QGP}$ → make it a probe carrying more info:
 - from R_{AA} , $v_2 \rightarrow D_s(T)$ of Hot QCD medium within IQCD
 - ... we are going to have v_3 , $v_2(HQ)-v_2(QGP)$, $dN_D/d\Delta\phi_{12}$,
 - Charm can allow to access the initial strong E-B field
- Haronization: Λ_c/D ratio in AA &pp? Will SHM fail? R_{AA}(Λ_c) ≈ 3-4? At the moment quite not under control even in pp

X. Dong and V. Greco, Progress in Particle and Nuclear Physics (2018)
New observable are coming v3, v₂(bulk)-v₂(charm), ...?

B & D at high p_T : path length but on e-b-e bulk

 $\frac{\mathrm{d}E}{\mathrm{d}x}\left(T,v\right) = f(T,v)\,\Gamma_{\mathrm{flow}},$ Caio-Prado et al.,arXiv:1612.05724

 \Rightarrow R_{AA} of B and D appears to be the same!

 \diamond V_{2D,B} linearly correlated with v₂ bulk – *for D see ALICE*, A.Barbano - Tue 16:50

 \diamond V₃ significantly affected by the T dependence of E_{loss}

♦ $v_{2,3}$ {2}, $v_{2,3}$ {4}, $v_{2,3}$ {6}, $v_{2,3}$ {8} all cumulants are equal → flow

B & D at high p_T : path length but on e-b-e bulk

 $\frac{\mathrm{d}E}{\mathrm{d}x}\left(T,v\right) = f(T,v)\,\Gamma_{\mathrm{flow}},$ Caio-Prado et al.,arXiv:1612.05724

 \Rightarrow R_{AA} of B and D appears to be the same!

 \diamond V_n linearly correlated with v_n bulk – *for D see ALICE*, A.Barbano - Tue 16:50

 \diamond v₃ show a persistence of the correlation with T dependence of E_{loss}

♦ $v_{2,3}$ {2}, $v_{2,3}$ {4}, $v_{2,3}$ {6}, $v_{2,3}$ {8} all cumulants are equal → flow

How v₂ of D is build-up?

SUBATECH-Nantes [MC@sNLO + EPOS]

This is just the beginning of a new step forward, how we will learn from it ... next QM2018

Impact of FDT implementation for pQCD-LO

1) A and B_T (from pQCD No FDT, but $B_{||} = B_T$)

2) B_{||} = B_T (pQCD) ; A (FDT)

3) A pQCD ; $D = B_{||} = B_{T}$ (FDT)

4) B_T and $B_{||}$ (pQCD) ; A FDT

5) $B_T = B_{||}$ (pQCD); A FDT

$$A = \frac{B_T}{ET} - \frac{1}{p} \frac{\partial B_T}{\partial p}$$
$$D = AET \quad \text{Post-Ito}$$
$$A = \frac{1}{p} B_{\parallel} \frac{1}{T} \frac{\partial E}{\partial p} - \frac{1}{p} \frac{\partial B_{\parallel}}{\partial p} - \frac{(n-1)}{p^2} (B_{\parallel} - B_{\perp})$$
$$A = \frac{B_{\parallel}}{ET} - \frac{1}{p} \frac{\partial B_{\parallel}}{\partial p}$$

Shape of 1,2,3, similar to Boltzmann dynamics

Impact on R_{AA} and v_2 of the different form of FDT

Rescaling A and B to have the same R_{AA} at $p_T < 4$ GeV

4) B_T and $B_{||}$ (pQCD); A FDT 5) $B_T=B_|$ (pQCD); A FDT

If $B_{||}$ is evaluated from pQCD one has to reduce the drag and the diffusion by 50% but the p_T dependence of R_{AA} and v_2 is quite different

Langevin vs Boltzmann angular correlation

Initially the c-c and b-b are distributed back to back (LO)

We have fixed the R_{AA} on exp. data for both the two approaches

Langevin vs Boltzmann angular correlation

Initially the c-c and b-b are distributed back to back (LO)

side

Associated hadrons

- Centrality bias

- R_{AA} is non-thermal
- We can see that $\gamma \approx T^2$ generates the smallest flow

Impact of different Tc

Two Main approches in LV-FP

Post-point Ito (already assumed that $D_L = D_T = D$)

(23) One is not able to embed
 (24) into Lagevin all the information
 from the Scattering Matrix

A(p) from the Scatt. matrix

(1)

 $D[E(p)] = \Gamma(p)E(p)T ,$ $\Gamma(p) = A(p) + \frac{1}{E(p)} \frac{\partial D[E(p)]}{\partial E} .$

(2)
$$\Gamma = A = \frac{1}{p} D_L \frac{1}{T} \frac{\partial E}{\partial p} - \frac{1}{p} \frac{\partial D_L}{\partial p} - \frac{(n-1)}{p^2} (D_L - D_T)$$

Both $D_L(p)$ & $D_T(p)$ from the scatt. matrix

$$\begin{aligned} \frac{\partial}{\partial t} f(t, \boldsymbol{p}) &= \frac{\partial}{\partial \boldsymbol{n}_i} \left\{ \Gamma(\boldsymbol{p}) p_i f(t, \boldsymbol{p}) + D(\boldsymbol{p}) \frac{\partial}{\partial \boldsymbol{n}_i} f(t, \boldsymbol{p}) \right\} \\ \mathrm{d} x_j &= \frac{p_j}{E} \mathrm{d} t , \end{aligned}$$
$$\begin{aligned} \mathrm{d} p_j &= -\Gamma(\boldsymbol{p}, T) p_j \mathrm{d} t + \sqrt{\mathrm{d} t} C_{jk} (\boldsymbol{p} + \xi d\boldsymbol{p}, T) \rho_k \end{aligned}$$

Are there differences coming from BM vs LV?

Most of the groups start from drag γ or from D_T (not D_L) This choice is more in line with Boltzmann that not having the FDT issue, can serve as a guide...

BM and LV \rightarrow R_{AA}(p_T) shaper nearly identical:

- but Drag γ has to be reduced by 15-40% depending on $m_c \& d\sigma_{gQ}/d\Theta$
- Larger $v_2(p_T) \approx 10-30\%$ again depending on $m_c \& d\sigma/d\Theta$

Are there difference coming from BM vs LV?

Most of the groups start from drag γ or from D_T (not D_L) This choice is more in line with Boltzmann that not having the FDT issue, *can serve as a guide...*

BM and LV \rightarrow R_{AA}(p_T) shaper nearly identical:

- but Drag γ has to be reduced by 15-40% depending on $m_c \& d\sigma_{gQ}/d\Theta$
- Larger $v_2(p_T) \approx 10-30\%$ again depending on $m_c \& d\sigma/d\Theta$

V₃ with e-b-e hydro bulk

Will v₃ constraint more Ds, hadronization, incomplete coupling to medium...?

Linearized Boltzmann: Coll.+Rad.

S. Cao, Tue 18:10

Linearized Boltzmann Transport : Rad.(pQCD) + Coll. E_{loss} Inelastic Scatt. probability based on the average number of medium-induced gluon Spectrum of medium-induced gluon (Higher-Twist formalism):

$$\frac{dN_g}{dxdk_{\perp}^2dt} = \frac{2\alpha_s C_A P(x)}{\pi k_{\perp}^4} \hat{q} \left(\frac{k_{\perp}^2}{k_{\perp}^2 + x^2 M^2}\right)^4 \sin^2\left(\frac{t - t_i}{2\tau_f}\right)$$

[Guo- Wang (2000), Majumder (2012); Zhang, Wang-Wang (2004)]

Number *n* of radiated gluons during Δt – Poisson distribution:

 $P(n) = \frac{\langle N_g \rangle^n}{n!} e^{-\langle N_g \rangle} \qquad P_{\text{inel}} = 1 - e^{-\langle N_g \rangle}$

[S.Cao, Luo, Qin and Wang, arXiv: 1605.06447]

Strong points:

- ♦ Both heavy and light
- ♦ Both radiative and collisional
- ♦ Realistic hydro background

Linearized Boltzmann: Coll.+Rad.

S. Cao, Tue 18:10

Linearized Boltzmann Transport : Rad.(pQCD) + Coll. E_{loss} Inelastic Scatt. probability based on the average number of medium-induced gluon Spectrum of medium-induced gluon (Higher-Twist formalism):

$$\frac{dN_g}{dxdk_{\perp}^2dt} = \frac{2\alpha_s C_A P(x)}{\pi k_{\perp}^4} \hat{q} \left(\frac{k_{\perp}^2}{k_{\perp}^2 + x^2 M^2}\right)^4 \sin^2\left(\frac{t - t_i}{2\tau_f}\right)$$

[Guo- Wang (2000), Majumder (2012); Zhang, Wang-Wang (2004)]

Number *n* of radiated gluons during Δt – Poisson distribution: $P(n) = \frac{\langle N_g \rangle^n}{n!} e^{-\langle N_g \rangle} \qquad P_{\text{inel}} = 1 - e^{-\langle N_g \rangle} \qquad [S.Cao, Luo, Qin and Wang, arXiv: 1605.06447]$

Strong points:

- ♦ Both heavy and light
- ♦ Both radiative and collisional
- ♦ Realistic hydro background

CUJET3.0 on HF [high p_T]

CUJET3.0: a simulation framework based on a microscopic picture of Semi-quark-gluon **monopole plasma**. E_{loss} from DGLV plus magnetic mass effect. Implement **non-pQCD physics near T_c** due to monopoles

First predictions on HF (independent test) with no parameter calibration within error bars nice description of R_{AA} and V₂ at high p_T.
[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]

CUJET3.0 on HF [high p_T]

CUJET3: a simulation framework based on a microscopic picture of Semi-quark-gluon **monopole plasma**. E_{loss} from DGLV plus magnetic mass effect. Implement **non-pQCD physics near T_C** due to monopoles

First predictions on HF (independent test) with no parameter calibration within error bars nice description of R_{AA} and v₂ at high p_T.
[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]

Open HQ in soft-collinear effective theory

♦ A new effective theory [power counting in p_T/Q] derived that describes the propagation of HQ in a background QCD medium – SCET_{M,G} Z. Kang et al. ArXiv: 1610.02043, JHEP submitted

♦ Role of mass understood in the vacuum and the medium to 1st order in opacity beyond the soft gluon approximation, but reduce to GLV in that limit Massive splitting function with dead cone $\left(\frac{dN}{dxd^2k_{\perp}}\right)_{Q \to Qg} = C_F \frac{\alpha_s}{\pi^2} \frac{1}{k_{\perp}^2 + x^2m^2} \left[\frac{1 - x + x^2/2}{x} - \frac{x(1 - x)}{k_{\perp}^2}\right]$

Consistent full NLO calculation

$$d\sigma_{\rm PbPb}^{H} = d\sigma_{pp}^{H,\rm NLO} + d\sigma_{\rm PbPb}^{H,\rm med}$$
$$\sum_{j} \hat{\sigma}_{i}^{(0)} \otimes \underbrace{\mathcal{P}_{i \to jk}^{\rm med} \otimes D_{j}^{H}}_{i \to jk} \hat{\sigma}_{i}^{(0)} \otimes D_{i}^{H,\rm med}$$

Gluon fragmentation plays an important role in the lower p_T range R. Sharma et al. PRC (2009)

At lower p_T including collisional **Dissociation** of D meson ($\tau_D = \tau_0 * E/m_D$)

S. Plumari et al, ArXiv:1712.****

- Centrality bias
- R_{AA} is non-thermal
- We can see that $\gamma \approx T^2$ generates the smallest flow