Lecture: (Far-from-equilibrium) dynamics in magnetic charged chiral plasma

Non-Equilibrium Dynamics - NED2018, April 19th, 2018, Varadero, Cuba

by Matthias Kaminski (University of Alabama)

Lecture: (Far-from-equilibrium) dynamics in magnetic charged chiral plasma

Non-Equilibrium Dynamics - NED2018, April 19th, 2018, Varadero, Cuba

by Matthias Kaminski (University of Alabama)

Methods: holography & hydrodynamics

Assume we have a hard problem that is difficult to solve in a given theory, for example **QCD**

gravity dual to QCD or standard model?not known yet

holography (gauge/gravity correspondence)

QFT

Gravity

Matthias Kaminski

Methods: holography & hydrodynamics

Methods: holography & hydrodynamics

Lecture: Far-from-equilibrium dynamics in magnetic charged chiral plasma

Solve problems in

Teaser: Good agreement of lattice QCD data with holography (N=4 SYM)

[Endrödi, Kaminski, Schäfer, Wu, Yaffe; work in progress]

Contents

I. Hydrodynamics 2.0 (near equilibrium)

 Holography (near equilibrium)

correlation functions (transport coefficients)

3. Results for charged chiral plasma

4. Far-From Equilibrium

5. Conclusions

Matthias Kaminski

Thermodynamics

$$T, \mu, u^{\nu}$$

Hydrodynamics

 $T(t, \vec{x}), \, \mu(t, \vec{x}), \, u^{\nu}(t, \vec{x})$

Matthias Kaminski

Thermodynamics

$$T, \mu, u^{\nu}$$

Hydrodynamics

 $T(t, \vec{x}), \, \mu(t, \vec{x}), \, u^{\nu}(t, \vec{x})$

Matthias Kaminski

Thermodynamics

$$T, \mu, u^{\nu}$$

Hydrodynamics

 $T(t, \vec{x}), \, \mu(t, \vec{x}), \, u^{\nu}(t, \vec{x})$

Matthias Kaminski

Thermodynamics

$$T, \mu, u^{\nu}$$

Hydrodynamics

 $T(t, \vec{x}), \, \mu(t, \vec{x}), \, u^{\nu}(t, \vec{x})$

Universal effective field theory for microscopic QFTs, expansion in gradients of temperature, chemical potential and velocity

- fields $T(x), \, \mu(x), \, u^{
 u}(x)$
- conservation equations

• constitutive equations (Landau frame)

Universal effective field theory for microscopic QFTs, expansion in gradients of temperature, chemical potential and velocity

- fields $T(x), \, \mu(x), \, u^{
 u}(x)$
- conservation equations

$$\nabla_{\mu}T^{\mu\nu} = F^{\nu\lambda}j_{\lambda}$$
$$\nabla_{\nu}j^{\nu} = 0$$

• constitutive equations (Landau frame)

Universal effective field theory for microscopic QFTs, expansion in gradients of temperature, chemical potential and velocity

• fields $T(x), \, \mu(x), \, u^{
u}(x)$

conservation equations

$$\nabla_{\mu}T^{\mu\nu} = F^{\nu\lambda}j_{\lambda}$$
$$\nabla_{\nu}j^{\nu} = 0$$

• constitutive equations (Landau frame)

 $\underset{\text{tensor}}{^{\text{Energy momentum}}} T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} + P(g^{\mu\nu} + u^{\mu}u^{\nu}) + \tau^{\mu\nu}$

$$\begin{array}{c} \text{Conserved} \\ \text{current} \end{array} j^{\mu} = nu^{\mu} + \nu^{\mu} \end{array}$$

Universal effective field theory for microscopic QFTs, expansion in gradients of temperature, chemical potential and velocity

• fields $T(x), \, \mu(x), \, u^{
u}(x)$

conservation equations

$$\nabla_{\mu}T^{\mu\nu} = F^{\nu\lambda}j_{\lambda}$$
$$\nabla_{\nu}j^{\nu} = 0$$

• constitutive equations (Landau frame)

 $\underset{\text{tensor}}{\text{Energy momentum}} T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} + P(g^{\mu\nu} + u^{\mu}u^{\nu}) + \tau^{\mu\nu}$

 $\begin{array}{c} \text{Conserved} \\ \text{current} \end{array} j^{\mu} = nu^{\mu} + \nu^{\mu} \end{array}$

Constructing hydrodynamic constitutive equations

An old idea

1. Constitutive equations: all (pseudo)vectors and (pseudo)tensors under Lorentz group

Old example: New example:

$$abla _{
u} u^{
u} = rac{1}{2} \epsilon^{\mu
u\lambda
ho} u_{
u}
abla_{\lambda} u_{
ho} \quad (vorthermore constraints)$$

[Landau, Lifshitz]

Constructing hydrodynamic constitutive equations

An old idea

- 1. Constitutive equations: all (pseudo)vectors and (pseudo)tensors under Lorentz group
 - Old example: New example:

$$abla _{
u }u^{
u }$$
 $\omega ^{\mu }=rac{1}{2}\epsilon ^{\mu
u \lambda
ho }u_{
u }
abla _{\lambda }u_{
ho }$ (vort

2. Restricted by conservation equations Example: $\nabla_{\mu} j^{\mu}_{(0)} = \nabla_{\mu} (n u^{\mu}) = 0$

Statistical Physics

Constructing hydrodynamic constitutive equations

An old idea

- 1. Constitutive equations: all (pseudo)vectors and (pseudo)tensors under Lorentz group
 - Old example: New example:

$$abla _{
u }u^{
u }$$
 $\omega ^{\mu }=rac{1}{2}\epsilon ^{\mu
u \lambda
ho }u_{
u }
abla _{\lambda }u_{
ho }$ (vort

- 2. Restricted by conservation equations Example: $\nabla_{\mu} j^{\mu}_{(0)} = \nabla_{\mu} (n u^{\mu}) = 0$
- Landou and Lifebita Course of Theoretical Physics ticity)

Part 2

Statistical Physics

3. Further restricted by positivity of local entropy production: $\nabla_{\mu}J_{s}^{\mu}\geq 0$

Alternatively, use field theory restrictions (Onsager,...) [Jensen, <u>MK</u>, Kovtun, Meyer, Ritz, Yarom; PRL (2012)]

Matthias Kaminski

Chiral hydrodynamics [Son, Surowka; PRL (2009)]

Derived for any QFT with a chiral anomaly (e.g. QCD) [Son,Surowka; PRL (2009)] [Loganayagam; arXiv (2011)] [Jensen et al.; JHEP (2012)] [Jensen et al.; PRL (2012)]

 $\nabla_{\nu} j^{\nu} = 0 \quad \text{classical} \\
\text{theory}$

Chiral hydrodynamics [Son, Surowka; PRL (2009)]

Derived for any QFT with a chiral anomaly

[Loganayagam; arXiv (2011)] [Jensen et al.; JHEP (2012)] [Jensen et al.; PRL (2012)]

(e.g. QCD) $\nabla_{\mu} j^{\mu} = C \,\epsilon^{\nu\rho\sigma\lambda} F_{\nu\rho} F_{\sigma\lambda}$ quantum theory

Chiral hydrodynamics

Matthias Kaminski

Matthias Kaminski

Chiral hydrodynamics [Son, Surowka; PRL (2009)] Derived for any QFT with a chiral anomaly [Loganayagam; arXiv (2011)] [Jensen et al.; JHEP (2012)] (e.g. QCD)[Jensen et al.; PRL (2012)] $\nabla_{\mu} j^{\mu} = C \epsilon^{\nu \rho \sigma \lambda} F_{\nu \rho} F_{\sigma \lambda} \qquad \text{quantum}$ Def.: $V^{\mu} = E^{\mu} - T\Delta^{\mu\nu}\nabla_{\nu}\left(\frac{\mu}{T}\right)$ theory **Completed** constitutive equation with external fields $j^{\mu} = nu^{\mu} + \sigma V^{\mu} + \xi \omega^{\mu} + \xi_B B^{\mu} + \dots$ Agrees with gauge/gravity prediction: vorticity magnetic field [Erdmenger, Haack, Kaminski, $\omega^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\lambda\rho} u_{\nu} \nabla_{\lambda} u_{\rho} \quad B^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\lambda\rho} u_{\nu} F_{\lambda\rho}$ *Yarom; JHEP (2009)* $\xi = C\left(\mu^2 - \frac{2}{3}\frac{n\mu^3}{\epsilon + P}\right), \quad \xi_B = C\left(\mu - \frac{1}{2}\frac{n\mu^2}{\epsilon + P}\right)$ Observable in: heavy ion collisions? anomaly-coefficient C [Kharzeev, Son.; PRL (2011)] chiral chiral neutron stars? [Kaminski, Uhlemann, Schaffnervortical magnetic Bielich, Bleicher; PLB (2014)] effect effect condensed matter? [Li et al; (2014)] [Cortijo, Ferreiros, Landsteiner, Vozmediano; (2015)]

Matthias Kaminski

Exercise 1.a): hydrodynamic correlators

Simple (non-chiral) example in 2+1:

$$j^{\mu} = nu^{\mu} + \sigma \left[E^{\mu} - T \Delta^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T} \right) \right] \qquad \Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu} u^{\nu}$$

 $u^{\mu} = (1, 0, 0)$

Exercise 1.a): hydrodynamic correlators

Simple (non-chiral) example in 2+1:

$$j^{\mu} = nu^{\mu} + \sigma \left[E^{\mu} - T \Delta^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T} \right) \right] \qquad \Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu}$$
sources
$$A_t, A_x \propto e^{-i\omega t + ikx} \qquad u^{\mu} = (1, 0, 0)$$

fluctuations
$$n = n(t, x, y) \propto e^{-i\omega t + ikx}$$
 (fix *T* and *u*)

Exercise 1.a): hydrodynamic correlators

Simple (non-chiral) example in 2+1:

$$j^{\mu} = nu^{\mu} + \sigma \left[E^{\mu} - T \Delta^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T} \right) \right] \qquad \Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu}$$
sources

$$A_{t}, A_{x} \propto e^{-i\omega t + ikx} \qquad u^{\mu} = (1, 0, 0)$$
+other sources
fluctuations

$$n = n(t, x, y) \propto e^{-i\omega t + ikx} \quad \text{(fix } T \text{ and } u)$$
+ fluctuations in T and u
one point functions

$$\nabla_{\mu} j^{\mu} = 0$$

$$\langle j^{t} \rangle = n(\omega, k) = \frac{ik\sigma}{\omega + ik^{2}\frac{\sigma}{\chi}} (\omega A_{x} + kA_{t})$$

$$\langle j^{x} \rangle = \frac{i\omega\sigma}{\omega + ik^{2}\frac{\sigma}{\chi}} (\omega A_{x} + kA_{t})$$

$$\langle j^{y} \rangle = 0$$

$$\Rightarrow \text{ two point functions} \quad \langle j^{x} j^{x} \rangle = \frac{\delta \langle j^{x} \rangle}{\delta A_{x}} = \frac{i\omega^{2}\sigma}{\omega + iDk^{2}}$$

$$\Rightarrow \text{ hydrodynamic poles in spectral function}$$
Matthies Kaminski
$$Lecture: Far-from-equilibrium dynamics in magnetic charged chiral plasma
$$Page 1$$$$

$$\Re(\omega, \mathbf{q}) = -2 \operatorname{Im} G^{\operatorname{ret}}(\omega, \mathbf{q})$$

 $\begin{array}{ll} \textit{Transport coefficients using Kubo formulae, e.g.} \\ \textit{electric conductivity} & \sigma \sim \lim_{\omega \to 0} \frac{1}{\omega} \langle [J^t, J^t] \rangle \end{array}$

Matthias Kaminski

Exercise 1.b): hydrodynamic correlators

Simple (non-chiral) example in 2+1

two point function: $\langle j^x j^x \rangle = \frac{\delta \langle j^x \rangle}{\delta A_x} = \frac{i\omega^2 \sigma}{\omega + iDk^2}$

spectral function: $-\text{Im} G^R = -\text{Im} \langle j_x j_x \rangle = -\sigma \,\omega_R \frac{2Dk^2 \omega_I + \omega_R^2 + \omega_I^2}{\omega_R^2 + (\omega_I + Dk^2)^2}$

Exercise 1.b): hydrodynamic correlators

Simple (non-chiral) example in 2+1

two point function: $\langle j^x j^x \rangle = \frac{\delta \langle j^x \rangle}{\delta A_x} = \frac{i\omega^2 \sigma}{\omega + iDk^2}$

spectral function: $-\text{Im} G^R = -\text{Im} \langle j_x j_x \rangle = -\sigma \,\omega_R \frac{2Dk^2 \omega_I + \omega_R^2 + \omega_I^2}{\omega_R^2 + (\omega_I + Dk^2)^2}$

hydrodynamic pole (diffusion pole) in spectral function at decreasing momentum *k*:

Far beyond hydrodynamics

Example: 3+1-dimensional N=4 Super-Yang-Mills theory; poles of $\langle T_{xy}T_{xy}\rangle(\omega,k) = G_{xy,xy}^R(\omega,k) = -i\int d^4x \ e^{-i\omega t + ikz}\langle [T_{xy}(z),T_{xy}(0)]\rangle$

Matthias Kaminski
Far beyond hydrodynamics: holography

Example: 3+1-dimensional N=4 Super-Yang-Mills theory; poles of $\langle T_{xy}T_{xy}\rangle(\omega,k) = G_{xy,xy}^R(\omega,k) = -i\int d^4x \ e^{-i\omega t + ikz}\langle [T_{xy}(z),T_{xy}(0)]\rangle$

Matthias Kaminski

2. Holography

Matthias Kaminski

Holography (gauge/gravity) concepts - I

Holography (gauge/gravity) concepts - II strongly coupled quantum field theory [Maldacena (1997)] Koncepts - II weakly curved gravity

Matthias Kaminski

Holography (gauge/gravity) concepts - II

Matthias Kaminski

Holography (gauge/gravity) concepts - II

How does this give us correlators/transport?

Famous transport result: low shear viscosity/entropy density

Theory/Model	η/s	Reference
Lattice QCD	0.134(33)	[Meyer, 2007]
Hydro (Glauber)	0.19	[Drescher et al., 2007]
Hydro (CGC)	0.11	[Drescher et al., 2007]
Viscous Hydro (Glauber)	$0.08, 0.16, \{0.03\}$	[Romatschke et al.,2007]

Gauge/Gravity: $\frac{\eta}{s} \ge \frac{1}{4\pi} \approx 0.08$ [Policastro, Son, Starinets, 2001] [Kovtun, Son, Starinets, 2003]

Correspondence by zooming in on boundary

Matthias Kaminski

Matthias Kaminski

Holographic correlator calculation

• start with **gravitational background** (metric, matter content)

• choose one or more **fields to fluctuate** (obeying linearized Einstein equations; Fourier transformed $\phi(t) \propto e^{-i\omega t}\phi(\omega)$)

• impose **boundary conditions** that are in-falling at horizon:

(and for QNMs also vanishing at AdS-boundary: $\lim_{u \to u_{bdy}} \phi(u) = 0$)

Matthias Kaminski Lecture: Far-from-equilibrium dynamics in magnetic charged chiral plasma

Holographic correlator calculation

• start with gravitational background (metric, matter content)

Example: (charged) Reissner-Nordstrom black brane in 5-dim AdS

$$\begin{array}{ll} Janiszewski, \\ Kaminski; PRD \\ (2015)] \end{array} & ds^2 = \frac{r^2}{L^2} \left(-fdt^2 + d\vec{x}^2 \right) + \frac{L^2}{r^2 f} dr^2 \\ A_t = \mu - \frac{Q}{Lr^2} \end{array} & f(r) = 1 - \frac{mL^2}{r^4} + \frac{q^2 L^2}{r^6} \end{array}$$

 choose one or more fields to fluctuate (obeying linearized Einstein equations; Fourier transformed $\phi(t) \propto e^{-i\omega t} \phi(\omega)$)

Example: metric tensor fluctuation

$$\phi := h_x^y \qquad 0 = \phi'' - \frac{f(u) - u f'(u)}{u f(u)} \phi' + \frac{\omega^2 - f(u)k^2}{4r_H^2 u f(u)^2} \phi \qquad u = \left(\frac{r_H}{r}\right)^2$$

• impose **boundary conditions** that are in-falling at horizon: $\phi = (1-u)^{\pm \frac{i\tilde{\omega}}{2(2-\tilde{q}^2)}} \left[\phi_H^{(0)} + \phi_H^{(1)}(1-u) + \phi_H^{(2)}(1-u)^2 + \dots \right]$

(and for QNMs also vanishing at AdS-boundary: $\lim_{u \to u_{bdy}} \phi(u) = 0$)

Holographic correlator calculation

• start with gravitational background (metric, matter content)

Example: (charged) Reissner-Nordstrom black brane in 5-dim AdS

Example: metric tensor fluctuation

$$\phi := h_x^y \qquad 0 = \phi'' - \frac{f(u) - u f'(u)}{u f(u)} \phi' + \frac{\omega^2 - f(u)k^2}{4r_H^2 u f(u)^2} \phi \qquad u = \left(\frac{r_H}{r}\right)^2$$

• impose **boundary conditions** that are in-falling at horizon: $\phi = (1-u)^{\pm \frac{i\tilde{\omega}}{2(2-\tilde{q}^2)}} \left[\phi_H^{(0)} + \phi_H^{(1)}(1-u) + \phi_H^{(2)}(1-u)^2 + \dots \right]$

(and for QNMs also vanishing at AdS-boundary: $\lim_{u \to u_{bdy}} \phi(u) = 0$)

$$\Rightarrow \qquad \left\langle \mathcal{O}\mathcal{O} \right\rangle = \left. \frac{\delta \mathcal{O}}{\delta \mathcal{A}} \right|_{\mathcal{A}=0} \sim \frac{\delta \phi_{(1)}}{\delta \phi_{(0)}} \qquad \begin{array}{c} \text{holographic} \\ \text{correlator} \end{array} \right.$$

Matthias Kaminski

What are quasi-normal modes?

• heuristically: the eigenmodes of black holes or black branes

- the "ringing" of black holes
- quasi-eigensolutions to the linearized Einstein equations

What are quasi-normal modes?

• heuristically: the eigenmodes of black holes or black branes

- the "ringing" of black holes
- quasi-eigensolutions to the linearized Einstein equations
- quasinormal modes (gravity) holographically correspond to poles of correlators

$$\omega_{QNM}$$
 = pole of G_{QFT}^{ret}

Contents

Hydrodynamics 2.0(near equilibrium)

✓ Holography

correlation functions (transport coefficients)

3. Results for charged chiral plasma [Ammon, Kaminski, Koirala, Leiber, Wu; JHEP (2017)]

4. Far-From Equilibrium

5. Conclusions

Matthias Kaminski

vector modes under SO(2) rotations around B

$$\omega = -ik^2 \frac{\eta}{\epsilon_0 + P_0} + \frac{\eta}{\epsilon_0 + P_0} +$$

former momentum diffusion modes

$$\begin{split} \mathfrak{s}_0 &= s_0/n_0\\ \tilde{c}_P &= T_0 (\partial \mathfrak{s}/\partial T)_P \end{split}$$

vector modes under SO(2) rotations around B

former momentum diffusion modes

 $\mathfrak{s}_0 = s_0/n_0$ $\tilde{c}_P = T_0(\partial \mathfrak{s}/\partial T)_P$

[Ammon, Kaminski et al.; JHEP (2017)] Weak B hydrodynamics - poles of 2-point functions [Abbasi et al.; PLB (2016)] $\langle T^{\mu\nu} T^{\alpha\beta} \rangle, \langle T^{\mu\nu} J^{\alpha} \rangle, \langle J^{\mu} T^{\alpha\beta} \rangle, \langle J^{\mu} J^{\alpha} \rangle$ [Kalaydzhyan, Murchikova; NPB (2016)]

vector modes under SO(2) rotations around B

$$\omega = \mp \frac{Bn_0}{\epsilon_0 + P_0} - ik^2 \frac{\eta}{\epsilon_0 + P_0} + k \frac{Bn_0\xi_3}{(\epsilon_0 + P_0)^2} - \frac{iB^2\sigma}{\epsilon_0 + P_0}$$

$$\mathfrak{s}_0 = s_0/n_0$$

 $\tilde{c}_P = T_0(\partial \mathfrak{s}/\partial T)_P$

scalar modes under SO(2) rotations around B

$$\omega_0 = v_0 \, k - i D_0 \, k^2 + \mathcal{O}(\partial^3)$$
 former charge diffusion mode

$$\omega_{+} = \underbrace{v_{+} k - i\Gamma_{+} k^{2}}_{\omega_{-}} + \mathcal{O}(\partial^{3})$$

$$\omega_{-} = \underbrace{v_{-} k - i\Gamma_{-} k^{2}}_{wodes} + \mathcal{O}(\partial^{3})$$
former
sound
modes

former modes

vector modes under SO(2) rotations around B

$$\omega = \mp \frac{Bn_0}{\epsilon_0 + P_0} - ik^2 \frac{\eta}{\epsilon_0 + P_0} + k \frac{Bn_0\xi_3}{(\epsilon_0 + P_0)^2} - \frac{iB^2\sigma}{\epsilon_0 + P_0}$$

former momentum diffusion modes

$$\mathfrak{s}_0 = s_0/n_0$$

 $\tilde{c}_P = T_0(\partial \mathfrak{s}/\partial T)_P$

scalar modes under SO(2) rotations around B $\omega_{0} = v_{0} k - i D_{0} k^{2} + \mathcal{O}(\partial^{3}) \quad \text{former charge}_{diffusion mode}$ $\omega_{+} = v_{+} k - i \Gamma_{+} k^{2} + \mathcal{O}(\partial^{3})$ $\omega_{-} = v_{-} k - i \Gamma_{-} k^{2} + \mathcal{O}(\partial^{3}) \quad \text{former}_{sound}_{modes}$ $\omega_{-} = v_{-} k - i \Gamma_{-} k^{2} + \mathcal{O}(\partial^{3}) \quad \text{former}_{sound}_{modes}$ $D_{0} = \frac{w_{0}^{2} \sigma}{\tilde{c}_{P} n_{0}^{3} T_{0}}$

\Rightarrow dispersion relations of hydrodynamic modes are heavily modified by anomaly and *B*

Holographic result: hydrodynamic poles

Fluctuations around charged magnetic black branes

[Ammon, Kaminski et al.; JHEP (2017)]

- Weak *B*: holographic results are in "agreement" with hydrodynamics.
- Strong *B*: holographic result in agreement with thermodynamics, and numerical result indicates that **chiral waves propagate at** ...

Matthias Kaminski

Holographic result: hydrodynamic poles

Fluctuations around charged magnetic black branes

[Ammon, Kaminski et al.; JHEP (2017)]

- Weak *B*: holographic results are in "agreement" with hydrodynamics.
- Strong *B*: holographic result in agreement with thermodynamics, and numerical result indicates that **chiral waves propagate at** ...

confirming conjectures and results in probe brane approach

[Kharzeev, Yee; PRD (2011)]

Holographic result: hydrodynamic poles

Fluctuations around charged magnetic black branes

[Ammon, Kaminski et al.; JHEP (2017)]

- Weak *B*: holographic results are in "agreement" with hydrodynamics.
- Strong *B*: holographic result in agreement with thermodynamics, and numerical result indicates that **chiral waves propagate at** ...

Contents

Hydrodynamics 2.0(near equilibrium)

✓ Holography

correlation functions (transport coefficients)

۲

✓ Results for charged chiral plasma [Ammon, Kaminski, Koirala, Leiber, Wu; JHEP (2017)]

4. Far-From Equilibrium

5. Conclusions

Matthias Kaminski

cf. Casey Cartwright's talk

Thermalization:

nonzero T plasma

cf. Casey Cartwright's talk

Thermalization:

C Matthias Kaminski

Colliding shock waves in AdS

 $0 = \Sigma^2 \left[F'' - 2(d_3 B)' - 3B' d_3 B \right] + 4\Sigma' d_3 \Sigma \,,$ $-\Sigma \left[3\Sigma'F' + 4(d_3\Sigma)' + 6B'd_3\Sigma\right],$ (2) $0 = \Sigma^4 [A'' + 3B'd_+B + 4] - 12\Sigma^2 \Sigma'd_+\Sigma$ $+ e^{2B} \left\{ \Sigma^2 \left[\frac{1}{2} (F')^2 - \frac{7}{2} (d_3 B)^2 - 2 d_3^2 B \right] \right\}$ $+2(d_3\Sigma)^2-4\Sigma[2(d_3B)d_3\Sigma+d_3^2\Sigma]\},$ $0 = 6\Sigma^{3}(d_{+}\Sigma)' + 12\Sigma^{2}(\Sigma'd_{+}\Sigma - \Sigma^{2}) - e^{2B} \left\{ 2(d_{3}\Sigma)^{2} \right\}$ $+ \Sigma^{2} \left[\frac{1}{3} (F')^{2} + (d_{3}F)' + 2F' d_{3}B - \frac{7}{3} (d_{3}B)^{2} - 2d_{3}^{2}B \right]$ $+\Sigma\left[\left(F'-8d_3B\right)d_3\Sigma-4d_3^2\Sigma\right]\right\}.$ (2) $0 = 6\Sigma^4 (d_+ B)' + 9\Sigma^3 (\Sigma' d_+ B + B' d_+ \Sigma)$ $+e^{2B}\left\{\Sigma^{2}[(F')^{2}+2(d_{3}F)'+F'd_{3}B-(d_{3}B)^{2}-d_{3}^{2}B\right\}$ $+ 4(d_3\Sigma)^2 - \Sigma \left[(4F' + d_3B) d_3\Sigma + 2d_3^2\Sigma \right]$, (26) $0 = 6\Sigma^2 d_{\pm}^2 \Sigma - 3\Sigma^2 A' d_{\pm} \Sigma + 3\Sigma^3 (d_{\pm} B)^2$ $-e^{2B} \{ (d_3\Sigma + 2\Sigma d_3B)(2d_+F + d_3A) \}$ $+ \Sigma \left[2d_3(d_+F) + d_3^2 A \right] \},$ (2f $0 = \Sigma \left[2d_+(d_3\Sigma) + 2d_3(d_+\Sigma) + 3F'd_+\Sigma \right]$ $+\Sigma^{2}[d_{+}(F') + d_{3}(A') + 4d_{3}(d_{+}B) - 2d_{+}(d_{3}B)]$ and a state of the state

[Chesler, Yaffe; PRL (2011)] [Janik; PRD (2006)] [Fuini, Yaffe; (JHEP) 2015)] [Cartwright, Kaminski; work in progress]

Matthias Kaminski

Colliding shock waves in AdS

Hydro expansion

hadronisation cf. Burkhard Kämpfer's talk

Freeze-out

[Chesler, Yaffe; PRL (2011)] [Janik; PRD (2006)] [Fuini, Yaffe; (JHEP) 2015)] [Cartwright, Kaminski; work in progress]

Matthias Kaminski

Colliding shock waves in AdS

Colliding shock waves in AdS

Far-from equilibrium in hydrodynamics?

- hydrodynamics describes pressures much **earlier than expected** (lesson from holographic thermalization)
- similar effects in Bjorken flow **numerical hydro calculations**
- hydrodynamic expansion in gradients is asymptotic resummation reveals analogies to QFT expansion in Planck's constant, addressed by **resurgence**
- hydrodynamics may be rewritten with different fields, in order to describe far from equilibrium dynamics

[Romatschke; (2017)]

5. Conclusions

Things for which there was no time ...

transport coefficients and correlators

[Ammon, Grieninger, Kaminski, Koirala, Leiber, Wu; work in progress]

magnetohydrodynamics (dynamic B)

[Hernandez, Kovtun; JHEP (2017)] [Grozdanov, Hofman, Iqbal; PRD (2017)] [Hattori, Hirono, Yee, Yin; (2017)]

➡ axial *and* vector current

[Landsteiner, Megias, Pena Benitez; PRD (2014)] [Ammon, Grieninger, Jimenez-Alba, Macedo, Melgar; JHEP (2016)]

Holography: Fluid/gravity correspondence

see appendix

Perturbing the surface of a black hole.

Matthias Kaminski

Lecture: Far-from-equilibrium dynamics in magnetic charged chiral plasma

- Holography is good at predictions that are qualitative or universal.
- ➡ Compare holographic result to hydrodynamics of model theory.
- Compare hydrodynamics of original theory to hydrodynamics of model.
- Understand holography as an effective description.

- Holography is good at predictions that are qualitative or universal.
- ➡ Compare holographic result to hydrodynamics of model theory.
- Compare hydrodynamics of original theory to hydrodynamics of model.
- Understand holography as an effective description.

Thanks to collaborators

Friedrich-Schiller University of Jena, Germany

Prof. Dr. Martin Ammon

Dr. Julian Leiber

Regensburg

Sebastian Grieninger

> Prof. Dr. Andreas Schäfer

Goethe University, Frankfurt, Germany

University, Germany

Germa Dr. Gergely Endrödi

University of Washington, Seattle, USA

Prof. Dr. Laurence Yaffe University of Alabama, Tuscaloosa, USA

Roshan Koirala Casey Cartwright

Matthias Kaminski

Lecture: Far-from-equilibrium dynamics in magnetic charged chiral plasma

Page 34

APPENDIX

Fluid/gravity correspondence

[Bhattacharyya et al.; JHEP (2008)]

- Einstein equations
- hydrodynamicconservationequations

- dynamical
- + equations of motion

Constitutive equations from geometry near boundary.

Fluid/gravity correspondence

Conservation equations from gravity

5-dimensional Einstein-Maxwell-Chern-Simons equations of motion :

$$R_{MN} + 4g_{MN} = \frac{1}{2} F_{MK} F_N{}^K - \frac{1}{12} g_{MN} F^2$$

$$\partial_N (\sqrt{-g} F^{NM}) = \begin{pmatrix} \frac{1}{4\sqrt{3}} \epsilon^{MNOPQ} F_{NO} F_{PQ} \\ \frac{1}{4\sqrt{3}} \epsilon^{MNOPQ} F_{NO} \\ \frac{1}{4\sqrt{3}} \epsilon^{MNOPQ} \\ \frac{1}{4\sqrt{3}} \epsilon^{MNOPQ} F_{NO} \\ \frac{1}{4\sqrt{3}} \epsilon^{MNOPQ} \\ \frac{1}{4\sqrt{3}}$$

Constraint equations arise from contraction with one-form dr (normal to boundary) :

 $(\text{contraints})_M = \xi^N (\text{Einstein equations})_{MN}$ $(\text{contraint}) = \xi^N (\text{Maxwell} - \text{Chern} - \text{Simons equations})_N$

$$\mathbf{E} \left\{ \nabla_{\mu} T^{\mu\nu} = F^{\nu\lambda} j_{\lambda} \\ \mathbf{E} \left\{ \nabla_{\mu} j^{\mu} = C E^{\mu} B_{\mu} \right\} \right\}$$

Constitutive equations from gravity

Example: no matter content, vanishing gauge fields :

$$\langle T_{\mu\nu} \rangle = \lim_{r \to \infty} \left[\frac{r^{(D-3)}}{\kappa_D^2} \left(K_{\mu\nu} - K\gamma_{\mu\nu} - (D-2)\gamma_{\mu\nu} \right) \right]$$

with extrinsic curvature $K_{\mu\nu} = -\frac{1}{2n} (\partial_r \gamma_{\mu\nu} - \nabla_\mu n_\nu - \nabla_\nu n_\mu)$ $ds^2 = n^2 dr^2 + \gamma_{\mu\nu} (dx^\mu + n^\mu dr) (dx^\nu + n^\nu dr)$

Matthias Kaminski

Lecture: Far-from-equilibrium dynamics in magnetic charged chiral plasma

[Erdmenger, Haack, Kaminski, Yarom; JHEP (2009)]

Gravity dual: 5-dimensional Einstein-Maxwell-Chern-Simons action

$$S = -\frac{1}{2\kappa_5^2} \int \left[\sqrt{-g} \left(R + 12 - \frac{1}{4} F^2 \right) - \frac{1}{12\sqrt{3}} \epsilon^{MNOPQ} A_M F_{NO} F_{PQ} \right] d^4x \, dr$$

[Erdmenger, Haack, Kaminski, Yarom; JHEP (2009)]

Gravity dual: 5-dimensional Einstein-Maxwell-Chern-Simons action

$$S = -\frac{1}{2\kappa_5^2} \int \left[\sqrt{-g} \left(R + 12 - \frac{1}{4} F^2 \right) \left(-\frac{1}{12\sqrt{3}} \epsilon^{MNOPQ} A_M F_{NO} F_{PQ} \right) \right] d^4x \, dr$$

CS-term dual to chiral anomaly

[Erdmenger, Haack, Kaminski, Yarom; JHEP (2009)]

Gravity dual: 5-dimensional Einstein-Maxwell-Chern-Simons action

$$S = -\frac{1}{2\kappa_5^2} \int \left[\sqrt{-g} \left(R + 12 - \frac{1}{4} F^2 \right) \left(-\frac{1}{12\sqrt{3}} \epsilon^{MNOPQ} A_M F_{NO} F_{PQ} \right) \right] d^4x \, dr$$

CS-term dual to chiral anomaly

Black hole with R-charge (in Eddington-Finkelstein coordinates):

$$\begin{aligned} ds^{2} &= -r^{2}f(r)u_{\mu}u_{\nu}dx^{\mu}dx^{\nu} + r^{2}\Delta_{\mu\nu}dx^{\mu}dx^{\nu} - 2u_{\mu}dx^{\mu}dr \\ \text{solution with constant parameters} & Q, b, u^{\mu} \\ f(r) &= 1 + \frac{Q^{2}}{r^{6}} - \frac{1}{b^{4}r^{4}} & A_{r} = 0 \\ A_{r} &= 0 \\ A_{\mu} &= -\frac{\sqrt{3}Q}{r^{2}}u_{\mu} & \Delta_{\mu\nu} = \eta_{\mu\nu} + u_{\mu}u_{\nu} \end{aligned}$$

[Erdmenger, Haack, Kaminski, Yarom; JHEP (2009)]

Gravity dual: 5-dimensional Einstein-Maxwell-Chern-Simons action

$$S = -\frac{1}{2\kappa_5^2} \int \left[\sqrt{-g} \left(R + 12 - \frac{1}{4} F^2 \right) - \frac{1}{12\sqrt{3}} \epsilon^{MNOPQ} A_M F_{NO} F_{PQ} \right] d^4x \, dr$$

CS-term dual to chiral anomaly

Black hole with R-charge (in Eddington-Finkelstein coordinates):

$$\begin{aligned} ds^2 &= -r^2 f(r) u_{\mu} u_{\nu} dx^{\mu} dx^{\nu} + r^2 \Delta_{\mu\nu} dx^{\mu} dx^{\nu} - 2u_{\mu} dx^{\mu} dr \\ \text{solution with constant parameters} \qquad Q, b, u^{\mu} \\ f(r) &= 1 + \frac{Q^2}{r^6} - \frac{1}{b^4 r^4} \qquad A_r = 0 \\ A_r &= 0 \\ A_\mu = -\frac{\sqrt{3}Q}{r^2} u_{\mu} \qquad \Delta_{\mu\nu} = \eta_{\mu\nu} + u_{\mu} u_{\nu} \end{aligned}$$

Make parameters boundary-coordinate-dependent:

dual to hydrodynamic fields

 $b \to b(x), \quad Q \to Q(x), \quad u^{\mu} \to u^{\mu}(x)$

[Erdmenger, Haack, Kaminski, Yarom; JHEP (2009)]

Gravity dual: 5-dimensional Einstein-Maxwell-Chern-Simons action

$$S = -\frac{1}{2\kappa_5^2} \int \left[\sqrt{-g} \left(R + 12 - \frac{1}{4} F^2 \right) \left(-\frac{1}{12\sqrt{3}} \epsilon^{MNOPQ} A_M F_{NO} F_{PQ} \right) \right] d^4x \, dr$$

CS-term dual to chiral anomaly

Black hole with R-charge (in Eddington-Finkelstein coordinates):

$$\begin{aligned} ds^{2} &= -r^{2}f(r)u_{\mu}u_{\nu}dx^{\mu}dx^{\nu} + r^{2}\Delta_{\mu\nu}dx^{\mu}dx^{\nu} - 2u_{\mu}dx^{\mu}dr \\ \text{solution with constant parameters} & Q, b, u^{\mu} \\ f(r) &= 1 + \frac{Q^{2}}{r^{6}} - \frac{1}{b^{4}r^{4}} & A_{r} = 0 \\ A_{r} &= 0 \\ A_{\mu} &= -\frac{\sqrt{3}Q}{r^{2}}u_{\mu} & \Delta_{\mu\nu} = \eta_{\mu\nu} + u_{\mu}u_{\nu} \end{aligned}$$

Make parameters boundary-coordinate-dependent:

dual to hydrodynamic fields

 $b \to b(x), \quad Q \to Q(x), \quad u^{\mu} \to u^{\mu}(x)$

- expand in gradients of b, Q and u dual to hydrodynamic expansion in the field theory
- new analytical solutions to Einstein equations

give values of transport coefficients in field theory

Proofs of Gauge/Gravity Correspondences -Some examples

- Three-point functions of N=4 Super-Yang-Mills theory
- Conformal anomaly of the same theory
- **RG** flows away from most symmetric case
- … many other symmetric instances of the correspondence

-Reasonable example results from Gauge/Gravity!

Compute observables in strongly coupled QFTs

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects
- Transport coefficients (e.g. 'universal' viscosity bound)

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects
- Transport coefficients (e.g. 'universal' viscosity bound)
- Deconfinement & Break: Chiral, Conformal, SUSY

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects
- Transport coefficients (e.g. 'universal' viscosity bound)
- Deconfinement & Break: Chiral, Conformal, SUSY
- Superconductivity/Superfluidity

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects
- Transport coefficients (e.g. 'universal' viscosity bound)
- Deconfinement & Break: Chiral, Conformal, SUSY
- Superconductivity/Superfluidity
- Models of quantum Hall states

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects
- Transport coefficients (e.g. 'universal' viscosity bound)
- Deconfinement & Break: Chiral, Conformal, SUSY
- Superconductivity/Superfluidity
- Models of quantum Hall states
- [AdS/QCD (bottom-up approach) distinct from string constr.]

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects
- Transport coefficients (e.g. 'universal' viscosity bound)
- Deconfinement & Break: Chiral, Conformal, SUSY
- Superconductivity/Superfluidity
- Models of quantum Hall states

Gauge/Gravity is a Powerful Tool

- non-perturbative results, strong coupling
- final treat many-body systems
- direct computations in real-time thermal QFT (transport)
- no sign-problem at finite charge densities
- methods often just require solving ODEs in classical gravity
- quick numerical computations (~few seconds on a laptop)
- (turn around: study strongly curved gravity)

Outline: Gauge/gravity correspondence

Outline: Gauge/gravity correspondence

Energy les Calenceres child ve dives compared a to toma

Quasi Normal Modes (QNMs)

Simple example: Eigenfrequencies / normal modes of the quantum mechanical harmonic oscillator (no damping)

$$\omega_n = \frac{1}{2} + n$$

quasinormal frequencies

Matthias Kaminski

Quasi Normal Modes (QNMs)

$$G_{ret} \propto \frac{1}{i\omega - Dq^2}$$

Example: Poles of charge current correlator

- QNMs are the quasieigenmodes of gauge field
- Dual QFT: lowest QNM identified with hydrodynamic diffusion pole (not propagating)
- Higher QN modes: gravity field waves propagate through curved b.h.
 background while decaying (dual gauge currents analogously)

Quasi Normal Modes (QNMs)

Complex frequency plane

Trajectories (dial k)

Chiral effects in vector and axial currents

Vector current (e.g. QCD U(1))

$$J_V^{\mu} = \dots + \xi_V \omega^{\mu} + \xi_{VV} B^{\mu} + \xi_{VA} B_A^{\mu}$$

chiral magnetic effect

Axial current (e.g. QCD axial U(1))

Matthias Kaminski

Lecture: Far-from-equilibrium dynamics in magnetic charged chiral plasma

Chiral effects in vector and axial currents

see e.g. [Jensen, Kovtun, Ritz; JHEP (2013)]

Vector current (e.g. QCD U(1))

$$J_V^{\mu} = \dots + \xi_V \omega^{\mu} + \xi_{VV} B^{\mu} + \xi_{VA} B_A^{\mu}$$

chiral magnetic effect

Axial current (e.g. QCD axial U(1))

Matthias Kaminski

Lecture: Far-from-equilibrium dynamics in magnetic charged chiral plasma

Chiral effects in vector and axial currents

see e.g. [Jensen, Kovtun, Ritz; JHEP (2013)]

Vector current (e.g. QCD U(1))

$$J_V^{\mu} = \dots + \xi_V \omega^{\mu} + \xi_{VV} B^{\mu} + \xi_{VA} B_A^{\mu}$$

chiral magnetic effect

Axial current (e.g. QCD axial
$$U(1)$$
)
$$J_A^{\mu} = \dots + \xi \omega^{\mu} + \xi_B B^{\mu} + \xi_{AA} B_A^{\mu}$$
$$\stackrel{\text{chiral separation effect}}{\overset{\text{chiral separation effect}}{\overset$$

Matthias Kaminski

Lecture: Far-from-equilibrium dynamics in magnetic charged chiral plasma

$$\xi = C\left(\mu^2 - \frac{2}{3}\frac{\mu^3 n}{\epsilon + P}\right) + \dots$$

formal approach guarantees completeness

$$\xi = C\left(\mu^2 - \frac{2}{3}\frac{\mu^3 n}{\epsilon + P}\right) + \dots$$

formal approach guarantees completeness

More than one anom

Than one anomalous current
$$\nabla_{\nu} J_{a}^{\nu} = \frac{1}{8} C_{abc} \epsilon^{\nu\rho\sigma\gamma} F_{\nu\rho}^{b} F_{\sigma\gamma}^{c}$$
$$\xi_{a} = C_{abc} \mu^{b} \mu^{c} + 2\beta_{a} T^{2} - \frac{2n_{a}}{\epsilon + p} \left(\frac{1}{3} C_{bcd} \mu^{b} \mu^{c} \mu^{d} + 2\beta_{b} \mu^{b} T^{2} + \gamma T^{3} \right)$$

[Neiman, Oz; JHEP (2010)]

$$\xi = C\left(\mu^2 - \frac{2}{3}\frac{\mu^3 n}{\epsilon + P}\right) + \dots$$

formal approach guarantees completeness

More than one anomalous current

$$\nabla_{\nu} J_{a}^{\nu} = \frac{1}{8} C_{abc} \epsilon^{\nu\rho\sigma\gamma} F_{\nu\rho}^{b} F_{\sigma\gamma}^{c}$$

$$\frac{n_{a}}{F_{p}} \left(\frac{1}{3} C_{bcd} \mu^{b} \mu^{c} \mu^{d} + 2\beta_{b} \mu^{b} T^{2} + \gamma T^{3} \right)$$

various charges (e.g. axial, vector)

 $= C_{abc} \mu^b \mu^c$ -

previously [Neiman, Oz; JHEP (2010)] neglected $\beta = -4\pi^2 c_m$ [Jensen, Loganayagam, Yarom; (2012)]

$$\xi = C\left(\mu^2 - \frac{2}{3}\frac{\mu^3 n}{\epsilon + P}\right) + \dots$$

formal approach guarantees completeness

More than one anomalous current $\nabla_{\nu}J_{a}^{\nu} = \frac{1}{8}C_{abc}\epsilon^{\nu\rho\sigma\gamma}F_{\nu\rho}^{b}F_{\sigma\gamma}^{c}$ $\xi_a = C_{abc}\mu^b\mu^c + \left(2\beta_a T^2\right) + \frac{2n_a}{\epsilon + p} \left(\frac{1}{3}C_{bcd}\mu^b\mu^c\mu^d + 2\beta_b\mu^b T^2 + \gamma T^3\right)$ previously various charges [Neiman, Oz; JHEP (2010)] neglected (e.g. axial, vector) $\beta = -4\pi^2 c_m$ [Jensen, Loganayagam, Yarom; (2012)] Gravitational anomalies full transport coefficient exactly known; $\nabla_{\nu} T^{\mu\nu}_{cov} = F^{\mu}_{\ \nu} J^{\nu}_{cov} + \underbrace{c_m}_{2} \nabla_{\nu} \left[\epsilon^{\rho\sigma\alpha\beta} F_{\rho\sigma} R^{\mu\nu}_{\ \alpha\beta} \right]$ first measurement of gravitational anomaly?