

Resonance properties and transport coefficients in SMASH

Hannah Petersen

16.04.18, NED 2018, Varadero, Cuba

The QCD Phase Diagram

Main goals of heavy ion research

- Questions to be answered:
 - What is the temperature and the density? What are the relevant degrees of freedom?
 - Phase transition, critical point?
 - What are the transport properties? $(\eta/s)(T,\mu_B)$ and $(\zeta/s)(T,\mu_B)$
- Understand the structures in the phase diagram
- Investigate the properties of the quark-gluon plasma
- Focus in this talk: Hadron/Resonance dynamics and transport coefficients (η/s and electric conductivity)

Transport Approaches

• Theoretical models are essential to gain insights about the properties of the hot and dense stage of the reaction

Outline

- Hadronic transport approach
 - SMASH: content and validation
 - Bulk observables at GSI-SIS energies
 - Strangeness production at threshold
 - Dilepton production and resonance properties
- Transport coefficients of the hadron gas
 - Green-Kubo formalism and its application
 - Shear viscosity over entropy ratio
 - Electric conductivity in simple systems
- Summary and Outlook

Two regimes with well-established approaches

Two regimes with well-established approaches

,Standard model' at high energies $(\sqrt{s_{\rm NN}} = 39 \text{ GeV-}5.5 \text{ TeV+})$:

- Non-equilibrium initial evolution
- Viscous hydrodynamics
- Hadronic transport
- —> Refinement and Bayesian multi-parameter analysis

Two regimes with well-established approaches

At very low beam energies $(\sqrt{s_{\rm NN}} < 3 \text{ GeV})$:

- Hadronic transport approaches
- Resonance dynamics
- Nuclear potentials
- —> High density phase? Multi-particle interactions?

Two regimes with well-established approaches


```
,Standard model' at high energies (\sqrt{s_{\mathrm{NN}}} = 39 GeV-5.5 TeV+)
```

Hadron transport at very low beam energies ($\sqrt{s_{\mathrm{NN}}}$ < 3 GeV)

- How to interpolate between the two? Transport with hydro bubbles? Hydro with transport corona?
- How to model the phase transition/critical point?

Hadronic transport approach

SMASH*

Hadronic transport approach:

J. Weil et al, PRC 94 (2016)

- Includes all mesons and baryons up to ~2 GeV
- Geometric collision criterion
- Binary interactions: Inelastic collisions through resonance excitation and decay
- Infrastructure: C++, Git, Redmine, Doxygen, (ROOT)

* Simulating Many Accelerated Strongly-Interacting Hadrons

Detailed Balance

Inverse absorption cross section calculated from production cross section

Conservation of detailed balance (only 1 <-> 2 or

2 <--> 2 processes)

Test: Full hadron gas indicating most violating processes

Elementary Cross Sections

- Total cross section for pp/pπ collisions
- Parametrised elastic cross section
- Many resonance contributions to inelastic cross section
- Reasonable description of data up to 4 - 4.5 GeV
- String excitation by PYTHIA: work in progress

Analytic Solution

 Comparison to analytic solution of Boltzmann equation within expanding metric

 Perfect agreement proves correct numerical implementation of collision algorithm

J. Tindall, J. M. Torres-Rincon, J.-B. Rose and HP, PLB 770 (2017)

Bulk observables at GSI-SIS

J. Weil et al, arXiv:1606.06642, PRC 94 (2016)
M. Mayer et al in preparation

Pion Production in Au+Au

- Potentials decrease pion production, while Fermi motion increases yield
- Slightly too high pion multiplicities

Collective Behaviour

- Potentials in SMASH
 - Basic Skyrme and symmetry potential

$$U_{\text{Skyrme}} = \alpha(\rho/\rho_0) + \beta(\rho/\rho_0)^{\tau}$$
 $U_{\text{Symmetry}} = \pm 2S_{\text{Pot}} \frac{\rho_{I_3}}{\rho_0}$

Describes interactions between nucleons, repulsive at high densities

	soft EoS	default EoS	hard EoS
α	$-356.0~\mathrm{MeV}$	$-209.2~\mathrm{MeV}$	$-124.0~{ m MeV}$
β	303.0 MeV	156.4 MeV	71.0 MeV
τ	1.17	1.35	2.00
κ	200 MeV	240 MeV	380 MeV

Default values according to recent transport code comparison

Hannah Petersen NED 2018 16.04.18

Elliptic Flow

Second coefficient of the Fourier expansion of

the azimuthal particle distribution:

Coordinate space asymmetry
→ momentum space anisotropy

Flow is sensitive to the pressure as a function of time

-> equation of state of nuclear matter?

Collective Flow -v2

 Directed and elliptic flow are compared to available data from FOPI and HADES

 SMASH agrees well with previous UrQMD calculation for v₂ excitation function

Strangeness at GSI-SIS

V. Steinberg et al in preparation

Φ/Ξ yields at SIS-18

 UrQMD hadronic transport approach with additional high mass resonances

J. Steinheimer and M. Bleicher. JPG43 (2016)

- Sub-threshold Φ and Ξ production is visible
- Decay channels of high N* resonances unknown

Φ Production in SMASH

 Independent data sets to constrain production crosssection from dileptons and elementary reactions

 Work in progress: prediction for Φ production in heavy ion collisions

Φ Production in SMASH

 Independent data sets to constrain production crosssection from dileptons and elementary reactions

 Work in progress: prediction for Φ production in heavy ion collisions

Strangeness Production

Elementary cross-sections provide constraints

 K^+ production $(Y \in \{\Lambda, \Sigma\})$:

$$NN \rightarrow NN^*/\Delta^* \rightarrow NYK$$

K[−] production:

$$NN \rightarrow N^*/\Delta^*... \rightarrow Y... \rightarrow Y^*... \rightarrow \bar{K}...$$

$$\pi Y \leftrightarrow \bar{K}N$$

		g ratio N*	
resonance	PDG	HADES	SMASH
N(1650)	5 - 15%	$7\pm4\%$	4%
N(1710)	5 - 25%	$15\pm10\%$	13%
N(1720)	4 - 5%	$8 \pm 7\%$	5%
N(1875)	> 0	$4 \pm 2\%$	2%
N(1880)		$2 \pm 1\%$	
N(1895)		$18 \pm 5\%$	
N(1900)	2 - 20%	$5 \pm 5\%$	2%
N(1990)			2%
N(2080)			0.5%
N(2190)	0.2 - 0.8%		0.8%
N(2220)			0
N(2250)			0.5%

Strangeness Production

Kaons and Lambdas in heavy ions:

 Ongoing work: Centrality dependence, predictions for pion beam and hyperon potentials

Dilepton Production

J. Staudenmaier, J. Weil, V. Steinberg, S. Endres and HP, arXiv: 1711.10297

Dileptons in SMASH

- Dileptons produced by resonance decays
- Direct and Dalitz dilepton decay channels
- Rare e.m. decays —> Time-Integration-Method / Shining
 - Continuously perform dilepton decays and weight them by taking their decay probability into account (better statistics)
- Acceptance correction for HADES detector possible

Dilepton Decays $\rho \rightarrow e^+e^ \omega \rightarrow e^+e^ \phi \rightarrow e^+e^ \pi \to e^+e^-\gamma$ $\eta \to e^+ e^- \gamma$ $\eta' \to e^+ e^- \gamma$ $\omega \rightarrow e^+e^-\pi^0$ $\phi \rightarrow e^+e^-\pi^0$ $\Delta^+ \rightarrow e^+ e^- p$ $\Delta^0 \rightarrow e^+e^-n^0$

Elementary Collisions

 Contributions of vector meson spectral functions below hadronic thresholds

Very nice agreement with HADES measurement

Vacuum Properties

 Hadron transport with collisional broadening sufficient for C+C collisions

 For larger systems (ArKCl) excess in intermediate mass region

Dilepton Production

HADES, PRL 98 (2007)

J. Staudenmaier et al, arXiv: 1711.10297

- SMASH and UrQMD compare very similar to data
- Different vector meson thresholds

Medium Modifications

 Medium modified spectral functions are applied on a coarse-grained transport evolution

- Very nice agreement with HADES data
- Waiting for Au+Au results...

Transport coefficients

J.-B. Rose, J. M. Torres-Rincon, A. Schäfer, D. Oliinychenko and HP, arXiv: 1709.00369 and 1709.03826 and J. Hammelmann et al, in preparation

Transport Coefficients

 Within hydrodynamics/hybrid approaches the shear viscosity is an input parameter

RHIC White paper, 2012

J. Bernhard et al, Phys.Rev. C94 (2016)

 Application of Bayesian techniques allows extraction of temperature dependence

Existing Results - Discrepancy

0.06

0.1

0.08

0.12

T(GeV)

0.14

0.16

N. Demir and S.A. Bass, Phys.Rev.Lett. 102 (2009)

Temperature (MeV)

 Long standing question: Why are the results so different from each other?

Hannah Petersen NED 2018 33

Shear Viscosity over Entropy Density

- Box with periodic boundary condition in chemical and thermal equilibrium
- Entropy is calculated via Gibbs formula from thermodynamic properties
- The shear viscosity is extracted following the Green-Kubo formalism:

$$\eta = \frac{V}{T} \int_0^\infty C^{xy}(t)dt$$

$$C^{xy}(t) = \frac{1}{N} \sum_{s}^{N} T^{xy}(s) T^{xy}(s+t)$$

$$T^{\mu\nu} = \frac{1}{V} \sum_{i}^{N_{part}} \frac{p_i^{\mu} p_i^{\nu}}{p_i^0}$$

$$C^{xy}(t) \simeq C^{xy}(0) \exp\left(-\frac{t}{\tau}\right)$$

$$\eta = \frac{VC^{xy}(0)\tau}{T}$$

Resonance Dynamics

 Energy-dependence of cross-sections is modelled via resonances

Point-like in analytic calculation and finite lifetime in

transport approach

 Agreement recovered by decreasing ρ meson lifetime

Comparison to Literature

Closest similarity to Bass/Demir result as expected

Point-like Interactions

 Adding a constant elastic cross section leads to agreement with B3D result

 Approximately linear relationship between relaxation time and mean free time is recovered

Electric Conductivity

 Comparison to linear response kinetic theory to validate our approach

Greif et al, Phys.Rev. D93 (2016)

$$\sigma_{el} = \frac{V}{T} \int_0^\infty \langle j_i(0)j_i(t)\rangle dt$$

$$\sigma_{el} = \frac{VC(0)\tau}{T}$$

• Infinite matter with constant $\sigma = 30$ mb

Effect of Lifetime

• ρ-π system is again affected by the lifetime

 Work in progress: Understand the differences between analytic calculation and SMASH results

Summary and Outlook

- SMASH has been developed as a new hadronic transport approach
 - Bulk observables are in reasonable agreement with experimental data
 - Strangeness production based on cross-section from elementary reactions
 - Electromagnetic observables are integrated
- Shear viscosity and electric conductivity have been calculated via Green-Kubo formalism
 - Comparison to analytic results are used for validation
 - Resonance lifetimes have large impact on relaxation dynamics in both cases
- Future: Afterburner calculations at RHIC/LHC

Backup

General Setup

 Transport models provide an effective solution of the relativistic Boltzmann equation

$$p^{\mu}\partial_{\mu}f_{i}(x,p) + m_{i}F^{\alpha}\partial_{\alpha}^{p}f_{i}(x,p) = C_{\text{coll}}^{i}$$

- Particles represented by Gaussian wave packets
- Geometric collision criterion

$$d_{\text{trans}} < d_{\text{int}} = \sqrt{\frac{\sigma_{\text{tot}}}{\pi}}$$

$$d_{\text{trans}}^2 = (\vec{r_a} - \vec{r_b})^2 - \frac{((\vec{r_a} - \vec{r_b}) \cdot (\vec{p_a} - \vec{p_b}))^2}{(\vec{p_a} - \vec{p_b})^2}$$

Test particle method

$$\sigma \mapsto \sigma \cdot N_{\text{test}}^{-1}$$
 $N \mapsto N \cdot N_{\text{test}}$

Resonances

Spectral function

 All unstable particles ("resonances") have relativistic Breit-Wigner spectral functions

Decay widths

Particles stable, if width < 10 keV

$$(\pi, \eta, K, \ldots)$$

Treatment of Manley et al

$$\Gamma_{R\to ab} = \Gamma_{R\to ab}^0 \frac{\rho_{ab}(m)}{\rho_{ab}(M_0)}$$

$$\mathcal{A}(m) = \frac{2\mathcal{N}}{\pi} \frac{m^2 \Gamma(m)}{(m^2 - M_0^2)^2 + m^2 \Gamma(m)^2}$$

D. M. Manley and E. M. Saleski, Phys. Rev. D 45, 4002 (1992)

Collision Term

 In few GeV energy regime decay and excitation of resonances dominate hadronic cross section

No string fragmentation yet

Treatment of Manley

D. M. Manley and E. M. Saleski, Phys. Rev. D 45, 4002 (1992)

Scaling of on-shell decay width:

$$\Gamma_{R\to ab} = \Gamma_{R\to ab}^0 \frac{\rho_{ab}(m)}{\rho_{ab}(M_0)}$$

Definition of rho-funtion:

$$\rho_{ab}(m) = \int dm_a dm_b \mathcal{A}_a(m_a) \mathcal{A}_b(m_b)$$

$$\times \frac{|\vec{p}_f|}{m} B_L^2(|\vec{p}_f|R) \mathcal{F}_{ab}^2(m)$$

Blatt Weisskopf functions

$$B_0^2 = 1$$

$$B_1^2(x) = x^2/(1+x^2)$$

M. Post, S. Leupold, U. Mosel, Nucl. Phys. A 741, 81 (2004)

Hadronic Form Factor:

$$\mathcal{F}_{ab}(m) = \frac{\lambda^4 + 1/4(s_0 - M_0^2)^2}{\lambda^4 + (m^2 - 1/2(s_0 + M_0^2))^2}$$

decay	$\lambda \; [{ m GeV}]$
πho	0.8
unstable mesons (e.g. ρN , σN)	1.6
unstable baryons (e.g. $\pi\Delta$)	2.0
two unstable daughters (e.g. $\rho\rho$)	0.6

Correlation Function Systematics

Important details:

Fixed intercept and 6% cut-off agree best with analytic expectations

Hannah Petersen

NED 2018
16.04.18

Pion Gas - Chapman-Enskog

Analytic results are well reproduced