Energy Dependence and Fluctuations of Anisotropic Flow

Raimond Snellings
Heavy-Ion Collisions at the LHC

- What happens to matter when you heat and compress it to extreme magnitudes which existed in the primordial universe?
- Lattice QCD predicts a phase transition to a quark-gluon-plasma at an energy density of about 1 GeV/fm3 and at a temperature of about 10^{12} K
- Temperatures 10^5 larger than the core of the sun
- Magnetic fields of order 10^{18} Gauss (strongest magnetic fields known of order 10^8 in the lab and 10^{15} in nature (magnetar))
Anisotropic Flow

- QCD in the strong coupling regime is complicated to calculate from first principles, pQCD only useful or small fraction of observables
- Measure properties of this hot and dense matter with respect to simpler systems p-p and p-A
- Use geometry as a control parameter
 - Anisotropic flow
- Can we constrain the transport parameters?
- Can we constrain the initial conditions?
A Single Collision
A Single Collision (coordinate space)

Simple Glauber Model Monte Carlo
Many Collisions versus the Reaction Plane

Simple Glauber Model Monte Carlo

![Graph showing the distribution of spectators and wounded nucleons with RMS values]

- **Spectators**
 - RMS x: 7.362 fm
 - RMS y: 3.318 fm

- **Wounded Nucleons**
 - RMS x: 2.42 fm
 - RMS y: 2.76 fm
Plane(s) of Symmetry (coordinate space)

Simple Glauber Model Monte Carlo
Plane(s) of Symmetry (coordinate space)

Simple Glauber Model Monte Carlo
Plane(s) of Symmetry (coordinate space)

Simple Glauber Model Monte Carlo
Plane(s) of Symmetry (coordinate space)

Simple Glauber Model Monte Carlo

![Diagram showing planes of symmetry and corresponding mean and RMS values for x and y coordinates.](image-url)
Anisotropic Flow (momentum space)

\[
\frac{dN}{d\varphi} \propto 1 + 2 \sum_{n=1}^{+\infty} v_n \cos [n(\varphi - \Psi_n)],
\]

- Use geometry as a control parameter
- If the constituents interact they convert the coordinate space asymmetries into momentum space asymmetries
- The \(v_n\) coefficients provide information about the initial state anisotropies, the transport parameters and the EoS, and can be used to constrain them
 - Many parameters to constrain, need many different observables
- The energy dependence can be used to constrain the temperature dependence of these parameters on which the \(v_n\) depend the most
- Detailed measurements can constrain the p.d.f. of the \(v_n\)
Anisotropic Flow

The difference between $v_2\{2\}$ and $v_2\{4\}$ depends on the v_2 event-by-event fluctuations (later in this talk).

A small increase between 2-10\% for the v_n is observed from 2.76 to 5.02 TeV.

The two parameterisations of η/s which describe the data might indicate no or a small dependence on temperature.
Anisotropic Flow

- The dependence of v_n on transverse momentum provides more differential information.
- At low transverse momentum the data can be interpreted in a "hydrodynamical" picture while at high-p_t the dominant mechanism is thought to be path length dependent energy loss of high energetic partons.
- The v_2 coefficients dominate over all transverse momenta except for the most central collisions.
- The v_2 is significant up to the highest transverse momenta.
Anisotropic Flow

- The ratios between v_n at 5.02 and 2.76 TeV are consistent with unity
- The increase in integrated v_n due to increase in $<p_t>$ (due to radial flow in hydro picture)
- Also consistent with almost no change of eta/s between the two beam energies
Anisotropic Flow; compared to models

- Models use IP-Glasma, AMPT-IC or TRENTo initial conditions and all use UrQMD for the hadronic phase
- All models qualitatively describe the low pt data while AMPT-EC + iEBE-VISHNU does best in details (artefact?)
- At large p_t the azimuthal asymmetries are thought to be due to path length dependent parton energy loss
- The model compared to the data uses an event-by-event hydro description (v-USPhydro) and jet quenching model (BBMG)
- Tested is a linear $dE/dx \sim L$ and quadratic energy loss
 - The v_2 at large p_t is compatible with linear energy loss
Anisotropic Flow; the shape of v_n

- The dependence of v_n on transverse momentum follows the previous observed power law scaling of $v_n^{1/n} \sim v_m^{1/m}$
- The scaling works over a surprisingly large momentum range particularly for v_3 compared to v_2
- The scaling does not exist in ideal hydro however seems to hold reasonably well for viscous hydro calculations shown
Anisotropic Flow Fluctuations

\[v_n \{2\} = \sqrt{\langle v_n^2 \rangle}, \]
\[v_n \{4\} = \sqrt{2 \langle v_n^2 \rangle^2 - \langle v_n^4 \rangle}, \]
\[v_n \{6\} = \sqrt{3 \langle v_n^6 \rangle - 9 \langle v_n^2 \rangle \langle v_n^4 \rangle + 12 \langle v_n^2 \rangle^3}, \]
\[v_n \{8\} = \sqrt{4 \langle v_n^8 \rangle - 16 \langle v_n^6 \rangle \langle v_n^2 \rangle - 18 \langle v_n^4 \rangle^2 + 144 \langle v_n^2 \rangle^2 \langle v_n^4 \rangle - 144 \langle v_n^2 \rangle^4}. \]

The different estimates of \(v_2 \) are sensitive to the moments of the \(v_2 \) distribution, if \(v_2 \{4\} = v_2 \{6\} = v_2 \{8\} \) then the distribution is a Bessel-Gaussian p.d.f.
A fine splitting is observed which is centrality dependent showing the non Bessel Gaussian contribution.

The splitting does not depend on the p_t range used and collision energy.

The results agree well with model calculations as well as with ATLAS results based on a different technique.
Anisotropic Flow Fluctuations

\[\gamma_1 = \frac{\langle (v_n \{RP\} - \langle v_n \{RP\}\rangle)^3 \rangle}{\langle (v_n \{RP\} - \langle v_n \{RP\}\rangle)^2 \rangle^{3/2}}, \]

\[\gamma_1^{\text{exp}} = -6\sqrt{2}v_2\{4\}^2 \frac{v_2\{4\} - v_2\{6\}}{(v_2\{2\}^2 - v_2\{4\}^2)^{3/2}}. \]

\[v_2\{6\} - v_2\{8\} = \frac{1}{11}(v_2\{4\} - v_2\{6\}). \]

The standardised skewness

The standardised skewness can estimated using the multi-particle cumulants

The experimental estimate depends on the fact that the higher order moments, e.g. kurtosis are small
Anisotropic Flow Fluctuations

$$v_2\{6\} - v_2\{8\} = \frac{1}{11}(v_2\{4\} - v_2\{6\}).$$
Anisotropic Flow Fluctuations

\[\gamma_1^{\text{exp}} = -6\sqrt{2}v_2\{4\}^2 \frac{v_2\{4\} - v_2\{6\}}{(v_2\{2\}^2 - v_2\{4\}^2)^{3/2}}. \]

- A negative skewness is observed as expected due to the constraint on \(\epsilon_2 \) between 0-1.
- The skewness agrees well with model calculations and increases towards peripheral collisions due to the constraint of 1.
Anisotropic Flow Fluctuations

\[P(\varepsilon_2) = \frac{1}{k_2^2} 2 \alpha \varepsilon_2 (1 - \varepsilon_2^2)^{\alpha - 1} (1 - \varepsilon_0^2)^{\alpha + 1/2} \frac{1}{\pi} \int_0^\pi (1 - \varepsilon_2 \varepsilon_0 \cos \varphi)^{-2\alpha - 1} d\varphi, \]

The elliptic power distribution can be used to describe the underlying p.d.f. of \(\varepsilon_2 \)

The parameter \(\alpha \) qualifies the magnitude of the flow fluctuations, \(\varepsilon_0 \) the mean eccentricity in the reaction plane and \(k_2 \) the proportionality between \(\varepsilon_2 \) and \(v_2 \); \(v_2 = k_2 \varepsilon_2 \)
Anisotropic Flow p.d.f.

\[P(\varepsilon_2) = \frac{1}{k_2} 2 \alpha \varepsilon_2 (1 - \varepsilon_2^2)^{\alpha - 1} \left(1 - \varepsilon_0^2 \right)^{1/2} \frac{1}{\pi} \int_0^\pi (1 - \varepsilon_2 \varepsilon_0 \cos \varphi)^{-2\alpha - 1} d\varphi, \]

Fluctuations of elliptic flow ALICE Collaboration

Ratios of elliptic flow coefficients

\[\frac{(2n+1)}{2} \frac{F_{n+1}}{F_n} \]

Elliptic Power parameters is given by [27] between initial-state eccentricity and flow fluctuations, with this coefficient:

\[P(\varepsilon_2) = \frac{1}{k_2} 2 \alpha \varepsilon_2 (1 - \varepsilon_2^2)^{\alpha - 1} \left(1 - \varepsilon_0^2 \right)^{1/2} \frac{1}{\pi} \int_0^\pi (1 - \varepsilon_2 \varepsilon_0 \cos \varphi)^{-2\alpha - 1} d\varphi, \]

multi-particle cumulant methods, as a function of centrality. Measurements at
Summary

• Anisotropic flow is precisely measured at the LHC as function of collision energy using multi-particle cumulants

• The measurements show that the system created behaves as an almost perfect liquid and constrain the path length dependence of parton energy loss

• The underlying p.d.f. of v_2 can be determined and used to constrain the initial conditions

![Graph showing the comparison between ideal hydro, viscous hydro, and AdS/CFT limits over time.](image)
Gracias!